File: test_reconstruct.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (308 lines) | stat: -rw-r--r-- 9,441 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Owner(s): ["module: dynamo"]

import contextlib
import dis
import unittest
from typing import List

import torch
import torch._dynamo.test_case
from torch.testing._internal.common_utils import IS_FBCODE


def _filter_instructions(instructions, opname):
    return list(filter(lambda x: x.opname == opname, instructions))


class ReconstructTest(torch._dynamo.test_case.TestCase):
    @contextlib.contextmanager
    def register_bytecode_hook(self, fn):
        def hook(code, out_code):
            fn(list(dis.get_instructions(out_code)))
            return code

        torch._dynamo.reset()
        handle = torch._dynamo.convert_frame.register_bytecode_hook(hook)
        try:
            yield
        finally:
            handle.remove()

    def test_ConstDict_optimize_reconstruct(self):
        """
        Emit code to reconstruct only the key that changed
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct only d[40]
            self.assertEqual(build_map[0].argval, 1)

        def f(d, t):
            d[40] = t + 1

        t = torch.randn(3, 4)
        d = {1: t}
        d_opt = d.copy()
        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    def test_ConstDict_pop_reconstruct(self):
        """
        If something is pop'ed from the dict, we reconstruct everything
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct everything
            self.assertEqual(build_map[0].argval, 2)

        def f(d, t):
            d.pop(2)
            d[40] = t + 1

        t = torch.randn(3, 4)
        d = {1: t, 2: t + 1}
        d_opt = d.copy()

        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    @unittest.expectedFailure
    def test_ConstDict_popitem_reconstruct(self):
        """
        If something is pop'ed from the dict, we reconstruct everything
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct everything
            self.assertEqual(build_map[0].argval, 1)

        def f(d, t):
            d.popitem()

        t = torch.randn(3, 4)
        d = {1: t, 2: t + 1}
        d_opt = d.copy()

        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    def test_ConstDict_popitem_reconstruct_graph_break(self):
        """
        If something is pop'ed from the dict, we reconstruct everything.
        Calling dict.popitem will graph break.
        """

        def f(d, t):
            d.popitem()

        t = torch.randn(3, 4)
        d = {1: t, 2: t + 1}
        d_opt = d.copy()

        f(d, t)

        opt_f = torch.compile(backend="eager")(f)
        opt_f(d_opt, t)
        self.assertEqual(d, d_opt)

    def test_ConstDict_del_reconstruct(self):
        """
        If something is deleted from the dict, we reconstruct everything
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct everything
            self.assertEqual(build_map[0].argval, 2)

        def f(d, t):
            del d[2]
            d[40] = t + 1

        t = torch.randn(3, 4)
        d = {1: t, 2: t + 1}
        d_opt = d.copy()

        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    def test_ConstDict_get_reconstruct(self):
        """
        dict.get shouldn't affect anything
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            self.assertEqual(build_map[0].argval, 1)
            load_const = _filter_instructions(instructions, "LOAD_CONST")
            self.assertNotIn(123, load_const)

        def f(d, t):
            d[456] = d.get(456) + t

        t = torch.randn(3, 4)
        d = {123: t, 456: t + 1}
        d_opt = d.copy()

        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    def test_ConstDict_clear_reconstruct(self):
        """
        If dict.clear() is used, we reconstruct everything
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct everything
            self.assertEqual(build_map[0].argval, 1)

        def f(d, t):
            d.clear()
            d[3] = t + 3

        t = torch.randn(3, 4)
        d = {1: t, 2: t + 1}
        d_opt = d.copy()

        f(d, t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            opt_f(d_opt, t)
            self.assertEqual(d, d_opt)

    def test_create_dict_reconstruct(self):
        """
        If dict is created inside a function, everything needs to be reconstructed
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            self.assertEqual(len(build_map), 1)
            # reconstruct everything
            self.assertEqual(build_map[0].argval, 2)

        def f(t):
            return {1: t, 2: t + 1}

        t = torch.randn(3, 4)
        d = f(t)

        with self.register_bytecode_hook(hook):
            opt_f = torch.compile(f, backend="eager", fullgraph=True)
            d_opt = opt_f(t)
            self.assertEqual(d, d_opt)

    @unittest.skipIf(
        IS_FBCODE, "capturing functional_call is not enabled by default in FB_CODE"
    )
    def test_functional_call_reconstruct(self):
        """
        PyTorch shouldn't codegen any key/value when functional_call is used
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            # don't reconstruct anything
            self.assertEqual(len(build_map), 0)

        m = torch.nn.Linear(3, 3)
        new_bias = torch.randn(3)
        new_weight = torch.randn(3, 3)

        def fn(new_weight, new_bias, x):
            return torch.func.functional_call(
                m, {"weight": new_weight, "bias": new_bias}, x
            )

        x = torch.randn(2, 3)
        expected = torch.nn.functional.linear(x, new_weight, new_bias)
        with self.register_bytecode_hook(hook):
            opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
            got = opt_fn(new_weight, new_bias, x)
            self.assertEqual(expected, got)

    @unittest.skipIf(
        IS_FBCODE, "capturing functional_call is not enabled by default in FB_CODE"
    )
    def test_functional_call_reconstruct_2(self):
        """
        PyTorch shouldn't codegen any key/value when functional_call is used
        """

        def hook(instructions: List[dis.Instruction]):
            build_map = _filter_instructions(instructions, "BUILD_MAP")
            # don't reconstruct anything
            self.assertEqual(len(build_map), 0)

        class DummyModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.nn.ModuleDict(
                    {
                        "b": torch.nn.ModuleDict(
                            {
                                "c": torch.nn.ModuleDict(
                                    {
                                        "d": torch.nn.ModuleDict(
                                            {"e": torch.nn.Linear(10, 10, bias=False)}
                                        )
                                    }
                                )
                            }
                        )
                    }
                )

            def forward(self, x):
                return self.a.b.c.d.e(x)

        model = DummyModule()

        def fn(model, states, x):
            return torch.func.functional_call(model, states, x)

        x = torch.randn(2, 3)
        states = model.state_dict()
        x = torch.randn(10, 10)
        expected = fn(model, states, x)
        with self.register_bytecode_hook(hook):
            opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
            got = opt_fn(model, states, x)
            self.assertEqual(expected, got)


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()