File: test_reorder_logs.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (211 lines) | stat: -rw-r--r-- 6,751 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Owner(s): ["module: dynamo"]
import io
import logging
import warnings
from unittest.mock import patch

import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from torch._dynamo.utils import counters
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
)


logger = logging.getLogger(__name__)
logger_test = logging.getLogger("test")


def f_info(x):
    x = x + x
    logger.info("moo")
    x = x * x
    return x


def f_isEnabledFor(x):
    x = x + x
    if logger.isEnabledFor(logging.INFO):
        logger.info("moo")
    x = x * x
    return x


@instantiate_parametrized_tests
class IgnoreLogsTests(torch._dynamo.test_case.TestCase):
    @parametrize(
        "ignore_method, fn, should_ignore_logger",
        [
            (None, f_info, False),
            (logger_test.info, f_info, False),
            (None, f_isEnabledFor, False),
            (logger_test.isEnabledFor, f_isEnabledFor, False),
            (logger.info, f_info, True),
            (logging.Logger.info, f_info, True),
            (logger.isEnabledFor, f_isEnabledFor, True),
            (logging.Logger.isEnabledFor, f_isEnabledFor, True),
        ],
    )
    def test_ignore_logger(self, ignore_method, fn, should_ignore_logger):
        counters.clear()
        x = torch.randn(3, 3)
        orig_out = fn(x)
        with torch._dynamo.config.patch(ignore_logger_methods={ignore_method}):
            opt_f = torch.compile(backend="eager")(fn)
            with self.assertLogs(logger, level="INFO") as captured:
                logger.info("call logger info to avoid error")
                opt_out = opt_f(x)
                printed_output = [entry.split(":", 2)[2] for entry in captured.output]

        self.assertTrue(same(orig_out, opt_out))
        if should_ignore_logger:
            self.assertNotIn("moo", printed_output)
            self.assertEqual(len(counters["graph_break"]), 0)
        else:
            self.assertIn("moo", printed_output)
            self.assertEqual(len(counters["graph_break"]), 1)


class ReorderLogsTests(torch._dynamo.test_case.TestCase):
    def test_dont_reorder_print(self):
        def f(x):
            x = x + x
            print("moo")
            x = x * x
            return x

        counters.clear()
        x = torch.randn(3, 3)
        opt_f = torch.compile(backend="eager")(f)
        with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
            opt_out = opt_f(x)
            printed_output = mock_stdout.getvalue().strip()
            orig_out = f(x)

        self.assertTrue(same(orig_out, opt_out))
        self.assertEqual(printed_output, "moo")
        self.assertEqual(len(counters["graph_break"]), 1)

    @torch._dynamo.config.patch(reorderable_logging_functions={print})
    def test_reorder_print(self):
        def f(x):
            print("moo")
            x1 = x + x
            print(x1)
            x2 = x1 * x1
            print(1, 2, 3)
            x3 = x2 + x2
            return (x1, x3)

        x = torch.ones(3, 3)
        opt_f = torch.compile(backend="eager", fullgraph=True)(f)
        with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
            opt_out = opt_f(x)
            printed_output = mock_stdout.getvalue().strip()
            orig_out = f(x)

        self.assertEqual(printed_output, f"moo\n{torch.ones(3, 3) * 2}\n1 2 3")
        self.assertTrue(same(orig_out, opt_out))

    @torch._dynamo.config.patch(reorderable_logging_functions={warnings.warn})
    def test_reorder_warnings(self):
        import warnings

        def f(x):
            x1 = x + x
            warnings.warn("moo")
            x2 = x1 * x1
            warnings.warn(f"{x2}")
            x3 = x2 + x2
            return x3

        x = torch.ones(3, 3)
        opt_f = torch.compile(backend="eager", fullgraph=True)(f)
        with warnings.catch_warnings(record=True) as w:
            opt_out = opt_f(x)
            warning_messages = [str(i.message) for i in w]
            orig_out = f(x)

        self.assertTrue(same(orig_out, opt_out))
        self.assertIn("moo", warning_messages)

    @torch._dynamo.config.patch(reorderable_logging_functions={print})
    def test_reorder_print_graph_break(self):
        def f(x):
            x1 = x + x
            print(f"res: {x1}")
            x2 = x1 * x1
            torch._dynamo.graph_break()
            x3 = x2 + x2
            print(1, 2, 3)
            return x3

        x = torch.ones(3, 3)
        opt_f = torch.compile(backend="eager")(f)
        with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
            opt_out = opt_f(x)
            printed_output = mock_stdout.getvalue().strip()
            orig_out = f(x)

        self.assertEqual(printed_output, f"res: {torch.ones(3, 3) * 2}\n1 2 3")
        self.assertTrue(same(orig_out, opt_out))

    def test_reorder_custom_log_fn(self):
        custom_logs = []

        def custom_log(s: str):
            torch._dynamo.graph_break()
            custom_logs.append(s)

        def f(x):
            custom_log("moo")
            x1 = x + x
            custom_log(f"{x1}")
            return x + x

        x = torch.ones(3, 3)
        counters.clear()
        with torch._dynamo.config.patch(reorderable_logging_functions={custom_log}):
            opt_f = torch.compile(backend="eager")(f)
            opt_out = opt_f(x)

        self.assertEqual(sum(counters["graph_break"].values()), 1)
        self.assertEqual(custom_logs[0], "moo")
        self.assertEqual(custom_logs[1], f"{torch.ones(3, 3) * 2}")

    @torch._dynamo.config.patch(reorderable_logging_functions={print})
    def test_constant_mutation(self):
        def f(x):
            alist = [x]
            alist.append(x + 1)
            print(alist[-1])
            alist[0].sum().item()  # graph break
            res = alist.pop()
            print(alist[-1])
            res.sum().item()  # graph break
            return res

        inputs = (torch.tensor([1]),)
        counters.clear()
        opt_f = torch.compile(backend="eager")(f)
        with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
            opt_out = opt_f(*inputs)
            printed_output = mock_stdout.getvalue().strip()
            orig_out = f(*inputs)

        self.assertEqual(printed_output, "tensor([2])\ntensor([1])")
        self.assertTrue(same(orig_out, opt_out))

        graph_break_key = counters["graph_break"].keys()
        self.assertEqual(len(graph_break_key), 1)
        self.assertEqual(next(iter(graph_break_key)), "Tensor.item")


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()