File: test_skip_non_tensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (195 lines) | stat: -rw-r--r-- 4,973 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Owner(s): ["module: dynamo"]
from unittest.mock import patch

import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter


_variable = 0
_variable_2 = 0


def user_function():
    return torch.compiler.is_compiling()


def user_generator():
    for _ in range(1):
        yield torch.compiler.is_compiling()
    return


class MyModule(torch.nn.Module):
    def __init__(self, mode: int):
        super().__init__()
        self.mode = mode
        self.register_forward_pre_hook(self.pre_forward, with_kwargs=True)

    def pre_forward(self, module, args, kwargs):
        if self.mode == 5:
            if user_function():
                global _variable
                _variable += 1
        return args, kwargs

    def forward(self, x):
        global _variable, _variable_2

        if self.mode == 1:
            if torch.compiler.is_compiling():
                _variable += 1
            else:
                _variable_2 += 1
        elif self.mode == 2:
            if user_function():
                _variable += 1
        elif self.mode == 3:
            lambda_f = lambda: torch.compiler.is_compiling()  # noqa: E731
            if lambda_f():
                _variable += 1
        elif self.mode == 4:
            for cond in user_generator():
                if cond:
                    _variable += 1
        elif self.mode == 5:
            x += 1
        elif self.mode == 6:
            if user_function():
                torch._dynamo.graph_break()
                _variable += 1
        return x


class SkipNonTensorTests(torch._dynamo.test_case.TestCase):
    def test_add_tensor1(self):
        def fn(a, b):
            return a + b

        counter = CompileCounter()
        x = torch.randn(4)
        y = 5
        opt_fn = torch._dynamo.optimize_assert(counter)(fn)
        opt_fn(x, y)

        assert counter.op_count == 1

    def test_add_tensor2(self):
        def fn(a, b):
            return torch.add(a, b)

        counter = CompileCounter()

        x = torch.randn(4)
        y = 5
        opt_fn = torch._dynamo.optimize_assert(counter)(fn)
        opt_fn(x, y)

        assert counter.op_count == 1

    def test_add_tensor_list(self):
        def fn(lst):
            return lst[0] + lst[1]

        counter = CompileCounter()
        x = torch.randn(4)
        y = 5
        opt_fn = torch._dynamo.optimize_assert(counter)(fn)
        opt_fn([x, y])

        assert counter.op_count == 1

    def test_add_tensor_dict(self):
        def fn(dt):
            return dt["a"] + dt["b"]

        counter = CompileCounter()
        x = torch.randn(4)
        y = 5
        opt_fn = torch._dynamo.optimize_assert(counter)(fn)
        opt_fn({"a": x, "b": y})

        assert counter.op_count == 1

    def test_add_skip(self):
        def fn(a, b):
            return a + b

        counter = CompileCounter()
        opt_fn = torch._dynamo.optimize_assert(counter)(fn)
        x = 4
        y = 5
        opt_fn(x, y)

        assert counter.op_count == 0

    @patch.object(torch._dynamo.config, "raise_on_ctx_manager_usage", False)
    def test_recursive_list(self):
        def fn(x):
            return x

        counter = CompileCounter()

        x = []
        x.append(x)
        with torch._dynamo.optimize_assert(counter):
            fn(x)

        assert counter.op_count == 0

    @patch.object(torch._dynamo.config, "raise_on_ctx_manager_usage", False)
    def test_custom_list(self):
        def fn(x):
            return x[0] + x[1]

        counter = CompileCounter()

        class Foo(list):
            def __iter__(self):
                raise Exception  # noqa: TRY002

            def __len__(self):
                raise Exception  # noqa: TRY002

        x = Foo()
        x.append(torch.randn(4))
        x.append(torch.randn(4))
        with torch._dynamo.optimize_assert(counter):
            fn(x)

        assert counter.op_count == 0

    def test_do_not_skip_side_effects(self):
        # https://github.com/pytorch/pytorch/issues/110765

        # By invoking torch.compiler.is_compiling(),
        # there may be side-effects inconsistent with eager when
        # compiling. Thus we force dynamo to commit the graph,
        # even if it does not perform any tensor operation
        global _variable, _variable_2

        for mode in range(1, 7):
            torch._dynamo.reset()

            _variable = 0
            _variable_2 = 0

            mod = MyModule(mode=mode)
            model = torch.compile(mod, backend="eager", fullgraph=mode != 6)
            assert _variable == 0
            assert _variable_2 == 0

            model(torch.tensor([1]))
            assert _variable == 1
            assert _variable_2 == 0

            model(torch.tensor([1]))
            assert _variable == 2
            assert _variable_2 == 0


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()