1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
# Owner(s): ["module: dynamo"]
import dataclasses
import importlib
import inspect
import math
import types
import unittest
import warnings
from typing import Any, Dict, Set
import torch
import torch._dynamo.config as config
import torch._dynamo.test_case
import torch._functorch.deprecated as deprecated_func
from torch._dynamo.trace_rules import (
LEGACY_MOD_INLINELIST,
load_object,
manual_torch_name_rule_map,
MOD_INLINELIST,
torch_c_binding_in_graph_functions,
torch_non_c_binding_in_graph_functions,
)
from torch._dynamo.utils import hashable, is_safe_constant, istype
from torch._dynamo.variables import TorchInGraphFunctionVariable, UserFunctionVariable
from torch.testing._internal.common_utils import skipIfWindows
try:
from .utils import create_dummy_module_and_function
except ImportError:
from utils import create_dummy_module_and_function
ignored_c_binding_in_graph_function_names = {
# Ignored because they have manual rules defined at `trace_rules.manual_torch_name_rule_map`.
"torch._nested_tensor_from_mask",
"torch._nested_from_padded",
"torch.sparse_compressed_tensor",
"torch.sparse_bsc_tensor",
"torch.sparse_bsr_tensor",
"torch.sparse_coo_tensor",
"torch.sparse_csc_tensor",
"torch.sparse_csr_tensor",
"torch.cuda._get_device_properties",
# Ignored and go through rules defined at `trace_rules.check`.
"torch._functionalize_are_all_mutations_under_no_grad_or_inference_mode",
"torch._cslt_sparse_mm_search",
"torch._C._abort",
"torch._C._mps_is_on_macos_or_newer",
"torch._C._swap_tensor_impl",
"torch._C._unsafe_reset_storage",
"torch._dynamo.eval_frame.reset_code",
"torch._C.autocast_decrement_nesting",
"torch._C.autocast_increment_nesting",
"torch._C.clear_autocast_cache",
"torch._C.set_anomaly_enabled",
"torch._C.set_autocast_cache_enabled",
"torch._C.set_autocast_cpu_dtype",
"torch._C.set_autocast_cpu_enabled",
"torch._C.set_autocast_enabled",
"torch._C.set_autocast_gpu_dtype",
"torch._C.set_autocast_ipu_dtype",
"torch._C.set_autocast_ipu_enabled",
"torch._C.set_autocast_xla_dtype",
"torch._C.set_autocast_xla_enabled",
"torch.resize_as_",
"torch.resize_as_sparse_",
"torch._C._data_address",
"torch._C._is_cow_tensor",
"torch._lazy_clone",
"torch._test_parallel_materialize",
"torch._C._storage_address",
"torch._C._pickle_save",
"torch._validate_sparse_compressed_tensor_args",
"torch._validate_sparse_csr_tensor_args",
"torch._validate_sparse_bsr_tensor_args",
"torch._validate_sparse_csc_tensor_args",
"torch._validate_sparse_coo_tensor_args",
"torch._validate_sparse_bsc_tensor_args",
"torch._validate_compressed_sparse_indices",
}
if torch._C._llvm_enabled():
ignored_c_binding_in_graph_function_names |= {
"torch._C._te.set_llvm_aot_workflow",
"torch._C._te.set_llvm_target_cpu",
"torch._C._te.set_llvm_target_attrs",
"torch._C._te.set_llvm_target_triple",
}
# Helper function to dump the torch name rule map generated based on
# the heuristic defined in gen_allowed_objs_and_ids.
def dump_allowed_torch_name_rule_map() -> None:
m = gen_allowed_objs_and_ids(record=True, c_binding_only=False).name_rule_map
for k, v in m.items():
print(f'"{k}": {v.__name__},')
@dataclasses.dataclass
class AllowedObjects:
"""
Track the objects, object id - name pairs, and name - dynamo wrapping rule pairs
from the heuristic defined in `gen_allowed_objs_and_ids`.
"""
object_ids: Dict[int, str]
c_binding_in_graph_functions: Set[Any]
non_c_binding_in_graph_functions: Set[Any]
name_rule_map: Dict[str, Any]
def gen_allowed_objs_and_ids(record=False, c_binding_only=True) -> AllowedObjects:
"""
Walk torch.* and get the ids of all the stuff in it
"""
warnings.filterwarnings("ignore", category=UserWarning, module="torch.distributed")
torch_object_ids = {}
c_binding_in_graph_functions = set()
non_c_binding_in_graph_functions = set()
torch_name_rule_map = {}
# In some platforms, these functions were loaded as classes instead of functions.
# To mitigate these weired cases, we need this special check.
def is_special_functions(obj):
return hashable(obj) and obj in {
torch._C._cuda_isCurrentStreamCapturing,
torch._C._graph_pool_handle,
}
# Add obj to c_binding_in_graph_functions set or non_c_binding_in_graph_functions set
# if it's a torch function or method.
# This is used to generate the in graph function list based on heuristic.
def heuristic_record_if_in_graph_function(obj, module, name):
try:
if hasattr(obj, "__wrapped__"):
obj = obj.__wrapped__
except Exception:
pass
if isinstance(
obj,
(
types.FunctionType,
types.BuiltinFunctionType,
types.MethodDescriptorType,
types.WrapperDescriptorType,
),
) or is_special_functions(obj):
torch_name_rule_map[
f"{module.__name__}.{name}"
] = TorchInGraphFunctionVariable
if c_binding_only:
if not hasattr(obj, "__code__"):
c_binding_in_graph_functions.add(obj)
else:
if hasattr(obj, "__code__"):
non_c_binding_in_graph_functions.add(obj)
else:
c_binding_in_graph_functions.add(obj)
def _is_allowed_module_prefix(obj):
allowed_modules = ("torch", "math")
# torch.nn.modules.rnn is disallowed because these modules internally
# flatten their parameters. This flattening process will call
# Tensor.set_ with a Storage, and Storages cannot be traced with
# AOTAutograd; so we need to graph-break. To ensure this, we inline
# these functions, rather than keep them opaque-ly in the graph.
disallowed_modules = [
"torch.optim.",
"torch.nn.modules.rnn.",
"torch._dynamo.",
"torch._C._dynamo.",
"torch._inductor.",
"torch._C.inductor.",
"torch.fx.",
"torch._C._autograd",
"torch._C._cudart",
"torch._C._distributed_autograd",
"torch._C._distributed_c10d",
"torch._C._distributed_rpc",
"torch._C._functorch",
"torch._C._monitor",
"torch._C._nvtx",
"torch._C._lazy",
"torch._C._profiler",
"torch.__config__",
"torch._custom_op",
"torch._decomp",
"torch._dispatch",
"torch._export",
"torch._functorch.make_functional",
"torch._functorch.compile_utils",
"torch._functorch.partitioners",
"torch._functorch.aot_autograd",
"torch._functorch.compilers",
"torch._functorch.fx_minifier",
"torch.autograd.profiler_util",
"torch.autograd.profiler",
"torch._jit_internal",
"torch._library",
"torch._lobpcg",
"torch._logging",
"torch._meta_registrations",
"torch._namedtensor_internals",
"torch._numpy",
"torch._sources",
"torch._subclasses",
"torch._tensor",
"torch._tensor_str",
"torch._utils",
"torch._utils_internal",
"torch._vmap_internals",
"torch.compiler",
"torch.distributed",
"torch.export",
"torch.hub",
"torch.jit",
"torch.library",
"torch.masked.maskedtensor",
"torch.nn.init",
"torch.nn.modules.module",
"torch.nn.parallel",
"torch.nn.utils",
"torch.multiprocessing",
"torch.onnx",
"torch.overrides",
"torch.package",
"torch.profiler",
"torch.serialization",
"torch.storage",
"torch.utils",
"torch.distributed.",
]
allowed_modules_dot = tuple([x + "." for x in allowed_modules])
module = inspect.getmodule(obj)
if module is None:
return False
mod_name = module.__name__
if any(mod_name.startswith(m) for m in disallowed_modules):
return False
return mod_name in allowed_modules or mod_name.startswith(allowed_modules_dot)
def _find_torch_objects(module):
if any(
module.__name__.startswith(mod_name)
for mod_name in config.allowed_functions_module_string_ignorelist
):
return
torch_object_ids[id(module)] = module.__name__
for name, obj in list(module.__dict__.items()):
if id(obj) not in torch_object_ids:
# Dynamo allows all builtins into the graph and does not attempt
# to introspect into them. We don't want to allow instances of
# HigherOrderOperator into the graph all the time (Dynamo needs
# to introspect the body functions of these HigherOrderOperator
# first, decide they are safe, and then allow them into the graph).
# So we exclude HigherOrderOperator from being a builtin.
import torch._ops
if isinstance(obj, torch._ops.HigherOrderOperator):
continue
# We want to trace through `grad` and `vmap`
if obj in (
torch.func.grad,
deprecated_func.grad,
torch.func.vmap,
deprecated_func.vmap,
torch.nn.functional.triplet_margin_with_distance_loss,
torch.cond,
):
continue
if isinstance(obj, types.ModuleType):
if obj.__name__.startswith("torch.") and _is_allowed_module_prefix(
obj
):
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
_find_torch_objects(obj)
elif _is_allowed_module_prefix(obj):
if record:
heuristic_record_if_in_graph_function(obj, module, name)
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
elif inspect.getmodule(obj) is None and not is_safe_constant(obj):
if record:
heuristic_record_if_in_graph_function(obj, module, name)
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
_find_torch_objects(torch)
_find_torch_objects(math)
return AllowedObjects(
torch_object_ids,
c_binding_in_graph_functions,
non_c_binding_in_graph_functions,
torch_name_rule_map,
)
class TraceRuleTests(torch._dynamo.test_case.TestCase):
def _check_set_equality(self, generated, used, rule_map, ignored_set):
x = generated - used
y = used - generated
msg1 = (
f"New torch objects: {x} "
f"were not added to `trace_rules.{rule_map}` or `test_trace_rules.{ignored_set}`. "
"Refer the instruction in `torch/_dynamo/trace_rules.py` for more details."
)
msg2 = (
f"Existing torch objects: {y} were removed. "
f"Please remove them from `trace_rules.{rule_map}` or `test_trace_rules.{ignored_set}`. "
"Refer the instruction in `torch/_dynamo/trace_rules.py` for more details."
)
self.assertTrue(len(x) == 0, msg1)
self.assertTrue(len(y) == 0, msg2)
# We are using python function and module string names for these inlinelist,
# this unit test is to make sure the functions/modules can be correctly imported
# or loaded in case there is typo in the strings.
def test_skipfiles_inlinelist(self):
for m in LEGACY_MOD_INLINELIST.union(MOD_INLINELIST):
try:
mod = importlib.import_module(m)
except ImportError:
continue
else:
self.assertTrue(
isinstance(mod, types.ModuleType),
f"{m} from trace_rules.MOD_INLINELIST/LEGACY_MOD_INLINELIST "
"is not a python module, please check and correct it.",
)
@unittest.skip(
"This test keeps getting broken and our disable infra is not handling well. see #120627"
)
def test_torch_name_rule_map_updated(self):
# Generate the allowed objects based on heuristic defined in `allowed_functions.py`,
objs = gen_allowed_objs_and_ids(record=True, c_binding_only=True)
# Test C binding in graph functions are updated in torch_name_rule_map.
generated = objs.c_binding_in_graph_functions
used = set()
for x in (
set(torch_c_binding_in_graph_functions.keys())
| ignored_c_binding_in_graph_function_names
):
obj = load_object(x)
if obj is not None:
used.add(obj)
self._check_set_equality(
generated,
used,
"torch_c_binding_in_graph_functions",
"ignored_c_binding_in_graph_function_names",
)
# For non C binding in graph functions, we only test if they can be loaded successfully.
for f in torch_non_c_binding_in_graph_functions:
self.assertTrue(
isinstance(
load_object(f),
(
types.FunctionType,
types.BuiltinFunctionType,
types.MethodDescriptorType,
types.WrapperDescriptorType,
),
)
)
def test_force_inline_torch_function(self):
# `torch._dynamo.utils.istype` is skipped by default
def fn(x):
if istype(x, torch.Tensor):
return x + 1
else:
return x - 1
_manual_torch_name_rule_map = manual_torch_name_rule_map.copy()
# Force inline `torch._dynamo.utils.istype` by setting trace rule.
_manual_torch_name_rule_map["torch._dynamo.utils.istype"] = UserFunctionVariable
_torch_name_rule_map = [
_manual_torch_name_rule_map,
torch_c_binding_in_graph_functions,
torch_non_c_binding_in_graph_functions,
]
self.assertTrue(
"torch._dynamo" not in torch._dynamo.trace_rules.LEGACY_MOD_INLINELIST
)
self.assertTrue("torch._dynamo" not in torch._dynamo.trace_rules.MOD_INLINELIST)
with unittest.mock.patch(
"torch._dynamo.trace_rules.torch_name_rule_map",
_torch_name_rule_map,
), unittest.mock.patch(
"torch._dynamo.trace_rules.get_torch_obj_rule_map",
torch._dynamo.trace_rules.get_torch_obj_rule_map.__wrapped__, # bypass functools.lru_cache
):
x = torch.rand(3)
opt_fn = torch.compile(backend="eager", fullgraph=True)(fn)
ref = fn(x)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_force_inline_custom_function(self):
mod, func = create_dummy_module_and_function()
def fn(x):
return func(x)
_manual_torch_name_rule_map = manual_torch_name_rule_map.copy()
# Force inline `mod.func` by setting trace rule.
_manual_torch_name_rule_map[
f"{mod.__name__}.{func.__name__}"
] = UserFunctionVariable
_torch_name_rule_map = [
_manual_torch_name_rule_map,
torch_c_binding_in_graph_functions,
torch_non_c_binding_in_graph_functions,
]
with unittest.mock.patch(
"torch._dynamo.trace_rules.torch_name_rule_map",
_torch_name_rule_map,
), unittest.mock.patch(
"torch._dynamo.trace_rules.get_torch_obj_rule_map",
torch._dynamo.trace_rules.get_torch_obj_rule_map.__wrapped__,
):
# First adding the module to SKIP_DIRS so that it will be skipped by default.
torch._dynamo.trace_rules.add(mod.__name__)
x = torch.rand(3)
opt_fn = torch.compile(backend="eager", fullgraph=True)(fn)
ref = fn(x)
res = opt_fn(x)
self.assertEqual(ref, res)
class TestModuleSurviveSkipFiles(torch._dynamo.test_case.TestCase):
@unittest.skipIf(
not torch.distributed.is_available(),
"need to import MLP module from distributed",
)
@skipIfWindows(
msg="AssertionError: False is not true : MLP did not survive skip files"
)
def test_module_survive_skip_files(self):
from torch.testing._internal.common_fsdp import MLP
model = MLP(3)
inp = torch.randn((2, 3))
frame_count_before = torch._dynamo.convert_frame.FRAME_COUNTER
model.compile(backend="eager")
model(inp)
frame_count_after = torch._dynamo.convert_frame.FRAME_COUNTER
self.assertTrue(
frame_count_after > frame_count_before, "MLP did not survive skip files"
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|