1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
# Owner(s): ["module: dynamo"]
import math
import random
import unittest
import numpy as np
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch.nn.functional as F
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import CompileCounter, CompileCounterWithBackend, same
from torch.testing._internal.common_utils import skipIfWindows
from torch.testing._internal.logging_utils import logs_to_string
# The intention of this test file is you should put test cases specifically
# for assume_static_by_default=False, aka you want to YOLO make everything as
# dynamic as possible. If you want to test the more normal situation where
# you assume static by default, put it in a regular test file and
# test_dynamic_shapes will cover both the YOLO and non-YOLO cases.
@torch._dynamo.config.patch(assume_static_by_default=False)
class UnspecTests(torch._dynamo.test_case.TestCase):
def test_numpy_correctness(self):
def fn(x, y, z):
xy = [x + y, y, False]
np_x = x.numpy()
np_y = y.numpy()
return {
"x": x,
"z": z,
"a": np_y.sum(),
"b": xy,
"c": np_y[0][0] / 68,
"d": np_x.sum(),
"e": np_x + np_y,
}, x + np_y.sum() + z
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
y = torch.ones([2, 2], dtype=torch.int64)
z = np.int64(12)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res2 = opt_fn(x, y, z)
self.assertEqual(res1, res2)
def test_no_recompilations(self):
# no recompilations if passing on different numpy int values
def fn(x, y):
return {"a": x + 1, "b": y / 2}
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
for i in range(10):
opt_fn(x, np.int64(i))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, 2)
@unittest.expectedFailure # array scalars decay to 0D arrays
def test_builtin_max_min(self):
# test unspecialized primitive max/min
def fn(x, y, z):
return z + 1, max(x, y), min(x - 4, y)
x = np.int64(12)
y = 10
z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res2 = opt_fn(x, y, z)
self.assertTrue(same(res1, res2, relax_numpy_equality=True))
def test_feed_random_values_into_graph_only(self):
def fn(shape):
torch.manual_seed(123)
x = torch.randn(shape, device="cpu") * random.randint(30, 100)
return x
shape = [2, 3]
random.seed(1)
res1 = fn(shape)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(shape)
self.assertTrue(same(res1, res2))
def test_random_values_with_graph_break(self):
def fn(x):
r1 = random.random()
y = x + random.uniform(10, 20)
y.sum().item()
r2 = random.randint(2, 18) # no graph output in this frame
y.sum().item()
return y + r1, r2
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
# Really annoying intersection of specialization and RandomValueSource
# If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other
# unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be referring
# to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do
# wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then
# some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as
# it is, this test fails.
# The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up.
def test_multiple_consecutive_random_calls_before_graph(self):
def fn(x):
dim1 = random.randrange(start=0, stop=5)
dim2 = random.randrange(start=0, stop=5)
dim3 = random.randrange(start=0, stop=5)
y = torch.rand(dim1, dim2, dim3)
return x + 2, y
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_compiled_random_calls_are_random(self):
# For compiled functions with random calls,
# it should return different values for every iteration.
# https://github.com/pytorch/pytorch/issues/95425
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return (x + 1) * random.uniform(0, 1)
res = []
for _ in range(5):
res.append(fn(torch.ones(2)))
for i in range(1, 5):
self.assertFalse(same(res[i - 1], res[i]))
def test_random_call_with_while_loop(self):
def fn(x):
dim1 = random.randrange(start=0, stop=3)
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(start=0, stop=3)
return x * 2
x = torch.randn(4)
random.seed(1)
res1 = fn(x)
opt_fn = torch.compile(fn, backend="eager")
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
random.seed(10)
res1 = fn(x)
random.seed(10)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_random_object(self):
# test argument passing, mutation, reconstruction, state correctness
def fn(x, rand2):
r1 = random.randint(1, 9)
r2 = rand2.randint(1, 9)
rand3 = random.Random(42)
r3 = rand3.randint(1, 9)
y = x + r1 + r2 + r3
return y, rand2, rand3
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
random.seed(0)
y_1, rand2_1, rand3_1 = fn(inp, random.Random(12))
state_1 = random.getstate()
random.seed(0)
y_2, rand2_2, rand3_2 = opt_fn(inp, random.Random(12))
state_2 = random.getstate()
self.assertEqual(y_1, y_2)
self.assertEqual(state_1, state_2)
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_methods(self):
def fn(x, rand1, rand2, rand3):
rand1.seed(42)
rand4 = random.Random(9002)
rand2.setstate(rand4.getstate())
r1 = rand1.random()
r2 = rand2.randint(1, 10)
r3 = rand3.randrange(10)
r4 = rand4.uniform(0, 1)
return x + r1 + r2 + r3 + r4
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
rand1_1 = random.Random(1)
rand2_1 = random.Random(2)
rand3_1 = random.Random(3)
rand1_2 = random.Random(1)
rand2_2 = random.Random(2)
rand3_2 = random.Random(3)
y1 = fn(inp, rand1_1, rand2_1, rand3_1)
y2 = opt_fn(inp, rand1_2, rand2_2, rand3_2)
self.assertEqual(y1, y2)
self.assertEqual(rand1_1.getstate(), rand1_2.getstate())
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_overriden_methods(self):
# these will result in graph breaks, but we shouldn't crash
def get_rng():
rand1 = random.Random(1)
rand2 = random.Random(2)
orig_random = rand1.random
def custom_random():
return orig_random()
orig_getstate = rand2.getstate
def custom_getstate():
return orig_getstate()
rand1.random = custom_random
rand2.getstate = custom_getstate
return rand1, rand2
def fn(x, rand1, rand2):
r1 = rand1.random()
rand3 = random.Random()
rand3.setstate(rand2.getstate())
r2 = rand3.random()
return x + r1 + r2
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager")
y1 = fn(inp, *get_rng())
y2 = opt_fn(inp, *get_rng())
self.assertEqual(y1, y2)
def test_builtin_getitem(self):
# builtin getitem args[0] is python list and args[1] is unspec
def fn(x, idx):
return (torch.zeros(idx), x[idx], x[idx:])
x = list(range(50))
ref = fn(x, 48) # 48 is unspecialized
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res = opt_fn(x, 48)
self.assertTrue(same(ref, res))
def test_use_and_specialize(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
x = x + y
if y == 2:
return x - 1
else:
return x + 1
self.assertTrue(same(fn(torch.tensor([5]), 2), 6))
self.assertTrue(same(fn(torch.tensor([6]), 2), 7))
self.assertTrue(same(fn(torch.tensor([5]), 3), 9))
self.assertTrue(same(fn(torch.tensor([4]), 3), 8))
self.assertEqual(cnt.frame_count, 2)
def test_no_recompiles(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
return x + y
self.assertTrue(same(fn(torch.tensor([5]), 100), 105))
self.assertTrue(same(fn(torch.tensor([4]), 200), 204))
self.assertTrue(same(fn(torch.tensor([3]), 300), 303))
self.assertTrue(same(fn(torch.tensor([2]), 400), 402))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_no_recompiles_prod_backward(self):
# https://github.com/pytorch/pytorch/issues/120608
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(t):
return torch.prod(t, 3, keepdim=True)
input_shapes = [(8, 10, 3, 2), (8, 3, 5, 2), (8, 4, 8, 2)]
for s in input_shapes:
t1 = torch.randn(s, requires_grad=True)
h_result = fn(t1)
grad = torch.ones_like(h_result)
h_result.backward(grad)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_builtin_functions_on_cuda(self):
def fn(x, scaler):
m = torch.nn.ReLU()
y = m(x) * scaler
return y
x = torch.randn([3, 6], device="cuda")
scaler = 0.23 # 0.23 is unspecialized
ref = fn(x, scaler)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res = opt_fn(x, scaler)
self.assertTrue(same(ref, res))
self.assertEqual(ref.device, res.device)
def test_unspec_float_precision(self):
def fn(image, scale_factor):
image = torch.nn.functional.interpolate(
image[None],
size=None,
scale_factor=scale_factor,
mode="bilinear",
recompute_scale_factor=True,
align_corners=False,
)[0]
return image.shape
x = torch.rand([3, 427, 640])
scale_factor = 1.873536229133606
ref = fn(x, scale_factor)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res = opt_fn(x, scale_factor)
self.assertTrue(same(ref, res))
@unittest.expectedFailure # fails as long as numpy scalars are 0D arrays
def test_specializing_numpy_float_in_control_flow(self):
# np.float64 is unspecialized by default,
# but it should be specialized when used in control flow.
def fn(x, y):
if y > 1.0:
return x + 1
else:
return x - 1
x = torch.rand(4)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
for t in [np.float16, np.float32, np.float64]:
y = t(1.23)
ref = fn(x, y)
res = opt_fn(x, y)
self.assertTrue(same(ref, res))
def test_mark_static_inside(self):
def fn(x):
torch._dynamo.mark_static(x, 0)
comptime.assert_static(x.size(0))
return x + 1
opt_fn = torch.compile(fn, dynamic=True, fullgraph=True)
opt_fn(torch.randn(12, 23))
def test_shape_graph_break(self):
from torch._dynamo.comptime import comptime
def fn(x):
x_shape = x.size()
comptime.graph_break()
return x + torch.randn(x_shape)
x = torch.randn(20)
opt_fn = torch.compile(fn, backend="eager")
opt_fn(x)
def test_isinstance_symint(self):
def fn(x):
assert isinstance(x.size(0), int)
return x * 2
x = torch.randn(20)
opt_fn = torch.compile(fn, backend="eager")
opt_fn(x)
y = torch.randn(30)
torch._dynamo.mark_dynamic(y, 0)
opt_fn(y)
def test_mark_01_dynamic(self):
def fn(x):
return x * 2
x = torch.randn(1)
torch._dynamo.mark_dynamic(x, 0)
opt_fn = torch.compile(fn, backend="eager")
# This will fail to compile a generic kernel, but we should not
# complain about it (mark dynamic will try its best but 0/1
# specialization is allowed)
opt_fn(x)
def test_conv1d_symint_padding(self):
kernel = torch.randn(1, 1, 4)
def func(x):
padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1
out = F.conv1d(x, kernel, padding=padding, stride=2)
return out
opt_func = torch.compile(func)
x = torch.randn(1, 1, 175)
opt_func(x) # passes
x = torch.randn(1, 1, 249)
opt_func(x) # crashes
@torch._dynamo.config.patch("assume_static_by_default", True)
def test_propagate_dynamic_dim(self):
x = torch.randn(20)
torch._dynamo.mark_dynamic(x, 0)
@torch.compile()
def fn(x):
y = x * 2
comptime.graph_break()
z = y * 2
return z
z = fn(x)
self.assertEqual(z._dynamo_weak_dynamic_indices, {0})
def test_rshift_dynamic(self):
def shift_right(tensor: torch.Tensor) -> torch.Tensor:
return (tensor >> 2).to(torch.long)
opt_fn = torch.compile(shift_right, fullgraph=True, dynamic=True)
sample_input = torch.tensor([4, 4, 16, 32], dtype=torch.uint8)
opt_fn(sample_input)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_symfloat_to_tensor(self):
def f1(v):
return torch.tensor([v.item()])
def f2(v):
return torch.tensor([[v.item()], [2.0]])
def f3(v):
return torch.tensor(v.item())
def f4(v):
return torch.tensor((v.item(),))
optimize = torch.compile(backend="aot_eager", fullgraph=True)
r = torch.randn(1)
self.assertEqual(f1(r), optimize(f1)(r))
self.assertEqual(f2(r), optimize(f2)(r))
self.assertEqual(f3(r), optimize(f3)(r))
self.assertEqual(f4(r), optimize(f4)(r))
@skipIfWindows(
msg="AssertionError: The values for attribute 'dtype' do not match: torch.int32 != torch.int64."
)
def test_to_tensor(self):
def f1():
a = np.random.uniform(low=-1, high=1, size=(20, 1))
return torch.tensor([a, a, a, a], dtype=torch.float64, device="cpu")
def f2():
a = torch.tensor([[[123]]])
return torch.tensor([a, a])
def f3():
a = torch.tensor(123)
return torch.tensor([a, a])
def f4():
a = torch.tensor(123)
b = torch.tensor([[[456]]])
return torch.tensor([a, b])
def f5():
a = np.array([1, 2])
return torch.tensor([a, a])
optimize = torch.compile(backend="aot_eager", fullgraph=True)
self.assertEqual(f1().shape, optimize(f1)().shape)
self.assertEqual(f2(), optimize(f2)())
self.assertEqual(f3(), optimize(f3)())
self.assertEqual(f4(), optimize(f4)())
self.assertEqual(f5(), optimize(f5)())
def test_sym_int_conversion(self):
def f(x):
y = x.size(0)
return x * int(y == 0)
opt_fn = torch.compile(f, backend="eager", fullgraph=True)
x = torch.randn(2, 3)
opt_fn(x)
def test_sum_dimlist_spec(self):
def fn(inputs, dim):
return torch.sum(inputs, dim)
inputs = torch.randn(128, 5, 24, 24)
dim = (-1, 1, 0, 2)
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, dim), fn(inputs, dim))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_item_max(self):
def fn(x):
return torch.ones(max(x.item(), 1024))
x = torch.tensor([1000])
y = torch.tensor([2000])
compl_fn = torch.compile(fn, backend="eager", fullgraph=True)
self.assertEqual(fn(x), compl_fn(x))
self.assertEqual(fn(y), compl_fn(y))
# https://github.com/pytorch/pytorch/issues/104812
def test_argmin_coerces_symint_to_intlist_spec(self):
def fn(x, dim):
# the python arg parser coerces dim into a vector<int>
return torch.amin(x, dim=dim, keepdim=True)
x = torch.randn(4, 4, 4)
dim = 2
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(x, dim), fn(x, dim))
def test_exponential(self):
def fn(inputs, op_inputs_dict):
res = inputs.exponential_(**op_inputs_dict)
return res
inputs = torch.randn(2, 3, 4)
op_inputs_dict = {"lambd": 10, "generator": None}
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, op_inputs_dict), fn(inputs, op_inputs_dict))
def test_symbol_guard_limit_before_specialize(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, dynamic=True)
def fn(x):
torch._check(x.size(0) != 3)
torch._check(x.size(0) != 4)
torch._check(x.size(0) != 5)
torch._check(x.size(0) != 6)
return x + 2
# Control test
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """1""")
cnts.frame_count = 0
torch._dynamo.reset()
with torch.fx.experimental._config.patch(
symbol_guard_limit_before_specialize=3
):
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """3""")
def test_defaults(self):
def g(x, i=8):
comptime.assert_static(i)
return x * i
def fn(x):
return g(x)
inputs = torch.randn(2, 3, 4)
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
self.assertEqual(compl_fn(inputs), fn(inputs))
@torch._dynamo.config.patch(specialize_float=False)
def test_symfloat_no_replacement(self):
# See https://github.com/pytorch/pytorch/pull/139250 for more context
# The high level idea is if we don't want to set a replacement where a
# symbol is on both the right and left side, otherwise we'll end up
# in an infinite self._find recursion.
def fn(t, m):
return 2 * t if m.is_integer() else t
t = torch.tensor([1])
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
self.assertEqual(fn(t, 1.0), compl_fn(t, 1.0))
@torch._dynamo.config.patch(specialize_float=False)
def test_unspec_roundtrip_float_input(self):
def f(x, y):
if y == 5.0:
return x + 2
else:
return x + y
return (x, y)
cf = torch.compile(backend="eager", fullgraph=True)(f)
x = 1.1234567891234568
y = 1.1234567891234569
self.assertAlmostEqual(f(x, y), cf(x, y))
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_input(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
if y == 5.0:
return x + 2
else:
return x + y
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 2.0), cf(x, 2.0))
self.assertEqual(f(x, 3.0), cf(x, 3.0)) # automatic dynamic kicks in here
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertExpectedInline(cnts.frame_count, """2""") # no recompile
self.assertEqual(f(x, 5.0), cf(x, 5.0))
self.assertExpectedInline(cnts.frame_count, """3""") # guard worked
self.assertEqual(f(x, math.nan), cf(x, math.nan))
self.assertExpectedInline(cnts.frame_count, """4""") # nan always recompiles
@torch._dynamo.config.patch(specialize_float=False, capture_scalar_outputs=True)
def test_unspecialized_float_multiply_precision(self):
dtypes = [torch.bfloat16, torch.float16, torch.float32, torch.float64]
for i, dtype in enumerate(dtypes):
def fn(x, y):
return x * y
cnt = CompileCounterWithBackend("aot_eager")
fn_opt = torch.compile(fn, backend=cnt)
x = torch.randn(5, dtype=dtype, requires_grad=True)
y1 = 1.00048828125
y2 = 1.00048828126
y3 = 1.00048828127
self.assertEqual(fn_opt(x, y1), fn(x, y1))
self.assertEqual(fn_opt(x, y2), fn(x, y2))
self.assertEqual(fn_opt(x, y3), fn(x, y3))
if i == 0:
# This is kind of quirky part of automatic dynamic,
# since it just uses source name + tx.f_code as the key
# subsequent recompilations will actually reuse the automatic
# dynamic choices.
self.assertEqual(cnt.frame_count, 2)
else:
self.assertEqual(cnt.frame_count, 1)
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=False)
def test_unspec_float_input_f64(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
return x + y
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.zeros(3, dtype=torch.float64)
# 17 digits of precision so unrepresentable in float32
flt = 1.2345678901234567
self.assertEqual(f(x, flt), cf(x, flt))
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_output(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
return x + 1, y * 2
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 3.0), cf(x, 3.0))
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertEqual(f(x, 5.0), cf(x, 5.0))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_data_dependent_evaluate_expr_graph_break(self):
cnts = torch._dynamo.testing.CompileCounter()
# To ensure that the continuation frame is compiled,
# have to write the test function in this funny way.
# See https://github.com/pytorch/pytorch/issues/111918
def test(y):
if y > 2:
return True
else:
return False
@torch.compile(backend=cnts)
def fn(x):
x = x + 1
y = x.item()
if test(y):
return x * 2
else:
return x * 3
x = torch.tensor([3.0])
fn(x)
self.assertExpectedInline(cnts.frame_count, """2""")
self.assertExpectedInline(cnts.op_count, """4""")
def test_prune_torch_check(self):
log_stream, ctx = logs_to_string("torch._dynamo.output_graph", "graph_code")
@torch.compile(fullgraph=True, dynamic=True, backend="eager")
def f(x, y):
torch._check(y + 5 == 85)
torch._check(x.size(0) == 80)
with ctx():
f(torch.randn(80, 100), 80)
out = "\n".join(log_stream.getvalue().strip().split("\n")[3:]).strip()
self.assertExpectedInline(
out,
"""\
def forward(self):
return ()""",
)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_split_aot_autograd(self):
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, i):
y, z = i.tolist()
return torch.split(x, [y, z])
print(f(torch.randn(10, requires_grad=True), torch.tensor([7, 3])))
def test_bool_tensor_ctor(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, dynamic=True, fullgraph=True)
def f(x):
y = torch.empty((x.size(0) // 13) * 13)
return torch.tensor(y.numel() == 0)
self.assertTrue(f(torch.empty(8)).item())
self.assertFalse(f(torch.empty(13)).item())
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8)
x2 = torch.rand(1, 5, 4, 8)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_hint_consistency(self):
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
x = torch.randn(1)
torch._dynamo.decorators.mark_unbacked(x, 0)
@torch.compile()
def f(x):
if guard_size_oblivious(x.size(0) != 1):
return x + 3
else:
return x + 4
self.assertEqual(f(x), x + 3)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_channels_last(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8).to(memory_format=torch.channels_last)
x2 = torch.rand(1, 5, 4, 8).to(memory_format=torch.channels_last)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|