1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
# Owner(s): ["module: dynamo"]
import dataclasses
import pprint
from unittest import mock
import torch
import torch._dynamo.config as dynamo_config
import torch._inductor.config as inductor_config
from torch._dynamo import utils
from torch._inductor.test_case import TestCase
class TestUtils(TestCase):
def test_nan(self):
a = torch.Tensor([float("nan")])
b = torch.Tensor([float("nan")])
fp64_ref = torch.DoubleTensor([5.0])
res = utils.same(a, b, fp64_ref=fp64_ref, equal_nan=True)
self.assertTrue(res)
def test_larger_multiplier_for_smaller_tensor(self):
"""
Tensor numel between (10, 500]
"""
N = 100
fp64_ref = torch.full([N], 0.0, dtype=torch.double)
a = torch.full([N], 1.0)
tol = 4 * 1e-2
self.assertTrue(utils.same(a, a * 2, fp64_ref=fp64_ref, tol=tol))
self.assertFalse(utils.same(a, a * 4, fp64_ref=fp64_ref, tol=tol))
self.assertTrue(
utils.same(
a,
a * 4,
fp64_ref=fp64_ref,
use_larger_multiplier_for_smaller_tensor=True,
tol=tol,
)
)
self.assertFalse(
utils.same(
a,
a * 6,
fp64_ref=fp64_ref,
use_larger_multiplier_for_smaller_tensor=True,
tol=tol,
)
)
def test_larger_multiplier_for_even_smaller_tensor(self):
"""
Tesnor numel <=10
"""
fp64_ref = torch.DoubleTensor([0.0])
a = torch.Tensor([1.0])
tol = 4 * 1e-2
self.assertTrue(utils.same(a, a * 2, fp64_ref=fp64_ref, tol=tol))
self.assertFalse(utils.same(a, a * 7, fp64_ref=fp64_ref, tol=tol))
self.assertTrue(
utils.same(
a,
a * 7,
fp64_ref=fp64_ref,
use_larger_multiplier_for_smaller_tensor=True,
tol=tol,
)
)
self.assertFalse(
utils.same(
a,
a * 20,
fp64_ref=fp64_ref,
use_larger_multiplier_for_smaller_tensor=True,
tol=tol,
)
)
class TestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(3, 1)
def forward(self, x):
return self.linear(x)
class TestDynamoTimed(TestCase):
"""
Test utilities surrounding dynamo_timed.
"""
def run_forward_backward(self):
model = torch.compile(TestModel())
x = torch.rand([3], requires_grad=True)
output = model(x)
loss_fn = torch.nn.MSELoss()
target = torch.tensor([1.0])
loss = loss_fn(output, target)
loss.backward()
def warmup(self):
# Helper to make sure any process-global lru_caches (e.g., torch_key())
# have already executed. Just compile something.
@torch.compile
def add(x, y):
return x + y
add(torch.rand([10]), torch.rand([10]))
utils.reset_frame_count()
@dynamo_config.patch(
{
"log_compilation_metrics": True,
"inline_inbuilt_nn_modules": False,
}
)
@inductor_config.patch(
{
"bundle_triton_into_fx_graph_cache": False,
"bundled_autotune_remote_cache": False,
}
)
# We can't easily test that timing is actually accurate. Mock time to always
# return the same value; all durations will be zero.
@mock.patch("time.time", return_value=0.001)
@mock.patch("time.time_ns", return_value=100000)
@dynamo_config.patch(specialize_float=False)
def test_dynamo_timed(self, mock_time, mock_time_ns):
"""
Run a compilation that includes a forward and a backward and validate
various recorded metrics. This test could be broken into several, but the
compilation is somewhat expensive. Instead of resetting and compiling the
same thing multiple times, we may as well compile once and just check all
the things that are affected by dynamo_timed.
"""
self.warmup()
# The logging function is different for OSS vs. internal. Let's just mock
# and capture all the CompilationMetric objects logged.
compilation_events = []
with mock.patch("torch._dynamo.utils.log_compilation_event") as log_event:
self.run_forward_backward()
compilation_events = [arg[0][0] for arg in log_event.call_args_list]
# Validate utils.compile_times(). Unfortunately, we can't test the output
# reliably because it depends on whether 'tabulate' is installed. So we'll
# directly inspect the dict it prints instead:
self.assertExpectedInline(
pprint.pformat(utils.compilation_time_metrics),
"""\
{'GraphLowering.codegen': [0.0, 0.0],
'GraphLowering.compile_to_fn': [0.0, 0.0],
'GraphLowering.compile_to_module': [0.0, 0.0],
'GraphLowering.run': [0.0, 0.0],
'OutputGraph.call_user_compiler': [0.0],
'PyCodeCache.load_by_key_path': [0.0, 0.0],
'PythonWrapperCodegen.generate': [0.0, 0.0],
'Scheduler.__init__': [0.0, 0.0],
'Scheduler.codegen': [0.0, 0.0],
'Scheduler.fused_nodes': [0.0, 0.0],
'_compile.compile_inner': [0.0],
'_recursive_joint_graph_passes': [0.0],
'_recursive_post_grad_passes': [0.0, 0.0],
'_recursive_pre_grad_passes': [0.0],
'async_compile.wait': [0.0, 0.0],
'backward._backward_impl': [0.0],
'compile_file': [0.0, 0.0],
'compile_fx.<locals>.bw_compiler': [0.0],
'compile_fx.<locals>.fw_compiler_base': [0.0],
'compile_fx_inner': [0.0, 0.0],
'create_aot_dispatcher_function': [0.0]}""", # noqa: B950
)
# Now validate utils.calculate_time_spent(). Formatting the return
# value makes reading diffs much easier.
time_spent = utils.calculate_time_spent()
self.assertExpectedInline(
pprint.pformat(time_spent),
"""\
{'_recursive_joint_graph_passes': 0.0,
'_recursive_post_grad_passes': 0.0,
'_recursive_pre_grad_passes': 0.0,
'async_compile.wait': 0.0,
'backend_compile': 0.0,
'code_gen': 0.0,
'entire_backward_compile': 0.0,
'entire_frame_compile': 0.0,
'inductor_compile': 0.0,
'total_wall_time': 0.0}""", # noqa: B950
)
# Now validate the CompilationMetrics logs. We expect a log for the
# forward and a log for the backward.
self.assertTrue(len(compilation_events) == 2)
self.assertTrue(
all(isinstance(e, utils.CompilationMetrics) for e in compilation_events)
)
# Remove a few fields that aren't helpful for test stability.
for e in compilation_events:
e.dynamo_config = None
e.co_filename = None
e.co_firstlineno = None
e.inductor_config = None
e.cuda_version = None
e.triton_version = None
# First event is for the forward. Formatting makes reading diffs
# much easier.
raw = dataclasses.asdict(compilation_events[0])
del raw["feature_usage"]
self.assertExpectedInline(
pprint.pformat(raw),
"""\
{'accumulated_cache_size': 0,
'aot_autograd_cumulative_compile_time_us': 0,
'backend_compile_time_s': 0.0,
'backward_cumulative_compile_time_us': None,
'cache_size': 0,
'co_filename': None,
'co_firstlineno': None,
'co_name': 'forward',
'code_gen_time_s': 0.0,
'compile_id': '1/0',
'compliant_custom_ops': set(),
'config_inline_inbuilt_nn_modules': False,
'config_suppress_errors': False,
'cuda_synchronize_time_us': None,
'cuda_version': None,
'distributed_ephemeral_timeout_us': None,
'duration_us': 0,
'dynamo_compile_time_before_restart_us': 0,
'dynamo_config': None,
'dynamo_cumulative_compile_time_us': 0,
'dynamo_time_before_restart_s': 0.0,
'end_time_us': 100,
'entire_frame_compile_time_s': 0.0,
'fail_reason': None,
'fail_type': None,
'fail_user_frame_filename': None,
'fail_user_frame_lineno': None,
'frame_key': '1',
'graph_input_count': 1,
'graph_node_count': 3,
'graph_op_count': 1,
'guard_count': 8,
'has_guarded_code': True,
'inductor_code_gen_cumulative_compile_time_us': 0,
'inductor_compile_time_s': 0.0,
'inductor_config': None,
'inductor_cumulative_compile_time_us': 0,
'inductor_fx_remote_cache_backend_type': None,
'inductor_fx_remote_cache_hit_count': None,
'inductor_fx_remote_cache_hit_keys': None,
'inductor_fx_remote_cache_miss_count': None,
'inductor_fx_remote_cache_miss_keys': None,
'is_forward': True,
'joint_graph_pass_time_us': 0,
'log_format_version': 3,
'non_compliant_ops': set(),
'num_triton_bundles': None,
'post_grad_pass_time_us': 0,
'pre_grad_pass_time_us': 0,
'remote_cache_time_saved_s': None,
'remote_cache_version': None,
'remote_fx_graph_cache_get_time_ms': None,
'remote_fx_graph_cache_get_time_us': None,
'remote_fx_graph_cache_put_time_ms': None,
'remote_fx_graph_cache_put_time_us': None,
'restart_reasons': set(),
'runtime_cudagraphify_time_us': None,
'runtime_triton_autotune_time_us': None,
'shape_env_guard_count': 0,
'specialize_float': False,
'start_time': 0.0001,
'start_time_us': 100,
'structured_logging_overhead_s': 0.0,
'structured_logging_overhead_us': 0,
'triton_compile_time_us': 0,
'triton_version': None}""", # noqa: B950
)
# Second event is for the backward
raw = dataclasses.asdict(compilation_events[1])
del raw["feature_usage"]
self.assertExpectedInline(
pprint.pformat(raw),
"""\
{'accumulated_cache_size': None,
'aot_autograd_cumulative_compile_time_us': None,
'backend_compile_time_s': None,
'backward_cumulative_compile_time_us': 0,
'cache_size': None,
'co_filename': None,
'co_firstlineno': None,
'co_name': None,
'code_gen_time_s': 0.0,
'compile_id': '1/0',
'compliant_custom_ops': None,
'config_inline_inbuilt_nn_modules': None,
'config_suppress_errors': None,
'cuda_synchronize_time_us': None,
'cuda_version': None,
'distributed_ephemeral_timeout_us': None,
'duration_us': 0,
'dynamo_compile_time_before_restart_us': None,
'dynamo_config': None,
'dynamo_cumulative_compile_time_us': None,
'dynamo_time_before_restart_s': None,
'end_time_us': 100,
'entire_frame_compile_time_s': None,
'fail_reason': None,
'fail_type': None,
'fail_user_frame_filename': None,
'fail_user_frame_lineno': None,
'frame_key': None,
'graph_input_count': None,
'graph_node_count': None,
'graph_op_count': None,
'guard_count': None,
'has_guarded_code': None,
'inductor_code_gen_cumulative_compile_time_us': 0,
'inductor_compile_time_s': 0.0,
'inductor_config': None,
'inductor_cumulative_compile_time_us': 0,
'inductor_fx_remote_cache_backend_type': None,
'inductor_fx_remote_cache_hit_count': None,
'inductor_fx_remote_cache_hit_keys': None,
'inductor_fx_remote_cache_miss_count': None,
'inductor_fx_remote_cache_miss_keys': None,
'is_forward': False,
'joint_graph_pass_time_us': None,
'log_format_version': 3,
'non_compliant_ops': None,
'num_triton_bundles': None,
'post_grad_pass_time_us': 0,
'pre_grad_pass_time_us': None,
'remote_cache_time_saved_s': None,
'remote_cache_version': None,
'remote_fx_graph_cache_get_time_ms': None,
'remote_fx_graph_cache_get_time_us': None,
'remote_fx_graph_cache_put_time_ms': None,
'remote_fx_graph_cache_put_time_us': None,
'restart_reasons': None,
'runtime_cudagraphify_time_us': None,
'runtime_triton_autotune_time_us': None,
'shape_env_guard_count': None,
'specialize_float': None,
'start_time': 0.0001,
'start_time_us': 100,
'structured_logging_overhead_s': 0.0,
'structured_logging_overhead_us': 0,
'triton_compile_time_us': 0,
'triton_version': None}""", # noqa: B950
)
class TestInductorConfigParsingForLogging(TestCase):
"""
Test for parsing inductor config for logging in CompilationMetrics.
"""
class TestObject:
def __init__(self, a, b):
self.a = a
self.b = b
def test_inductor_config_jsonify(self):
"""
Sanity check if the actual inductor config is parsed correctly
"""
inductor_config_json = utils._scrubbed_inductor_config_for_logging()
self.assertTrue(isinstance(inductor_config_json, str))
@mock.patch("torch._dynamo.utils.torch._inductor.config")
def test_inductor_config_parsing_non_conforming_items(self, mocked_inductor_config):
"""
Test if the inductor config is parsed correctly when the config is
- None
- not a dict
- not json serializable
- complex unserializable objects
"""
obj = TestCase
test_mock_config = {
"some": {1: "0", obj: "this", "name": obj, "some": True},
"data": {1: "0", obj: "this", "name": obj, "some": True},
"list": [
{1: "0", obj: "this", "name": obj, "some": True},
{1: "0", obj: "this", "name": obj, "some": True},
],
"object": {
1: "0",
obj: "this",
"name": obj,
"some": True,
"data": {1: "0", obj: "this", "name": obj, "some": True},
},
}
expected = (
"""{"some": {"1": "0", "name": "Value is not JSON serializable", "some": true},"""
""" "data": {"1": "0", "name": "Value is not JSON serializable", "some": true}, "list": """
"""[{"1": "0", "name": "Value is not JSON serializable", "some": true}, """
"""{"1": "0", "name": "Value is not JSON serializable", "some": true}], "object": """
"""{"1": "0", "name": "Value is not JSON serializable", "some": true, "data": """
"""{"1": "0", "name": "Value is not JSON serializable", "some": true}}}"""
)
mocked_inductor_config.get_config_copy.return_value = test_mock_config
inductor_config_json = utils._scrubbed_inductor_config_for_logging()
self.assertEqual(inductor_config_json, expected)
expected = "{}"
mocked_inductor_config.get_config_copy.return_value = {obj: obj}
inductor_config_json = utils._scrubbed_inductor_config_for_logging()
self.assertEqual(inductor_config_json, expected)
expected = "Inductor Config is not JSON serializable"
mocked_inductor_config.get_config_copy.return_value = obj
inductor_config_json = utils._scrubbed_inductor_config_for_logging()
self.assertEqual(inductor_config_json, expected)
expected = None
mocked_inductor_config.get_config_copy.return_value = None
inductor_config_json = utils._scrubbed_inductor_config_for_logging()
self.assertEqual(inductor_config_json, expected)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|