File: test_verify_correctness.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (143 lines) | stat: -rw-r--r-- 4,160 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Owner(s): ["module: dynamo"]
import operator

import torch
import torch._dynamo
import torch._dynamo.config as config
import torch._dynamo.test_case
from torch._dynamo.testing import same
from torch.fx._lazy_graph_module import _force_skip_lazy_graph_module


class Seq(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.layers = torch.nn.Sequential(
            torch.nn.Linear(10, 10),
            torch.nn.ReLU(),
            torch.nn.Linear(10, 10),
            torch.nn.Sigmoid(),
        )

    def forward(self, x):
        return self.layers(x)


class Conv_Bn_Relu(torch.nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super().__init__()
        self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = torch.nn.BatchNorm2d(out_channels, eps=0.001)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        return self.relu(self.bn(self.conv(x)))


def toy_example(a, b):
    x = a / (torch.abs(a) + 1)
    if b.sum() < 0:
        b = b * -1
    return x * b


def transform(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
    for node in gm.graph.nodes:
        # Checks if we're calling a function (i.e:
        # operator.add)
        if node.op == "call_function":
            # The target attribute is the function
            # that call_function calls.
            if node.target == operator.mul:
                node.target = operator.add

    gm.graph.lint()  # Does some checks to make sure the
    # Graph is well-formed.

    gm.recompile()
    return gm


@config.patch("verify_correctness", True)
class TestVerifyCorrectness(torch._dynamo.test_case.TestCase):
    def test_example_inputs(self):
        def fn(a, bc, d):
            b, c = bc
            return a / d - b / c

        def compiler_fn(graph, example_inputs):
            nonlocal r1
            r1 = graph(*example_inputs)[0]
            return graph.forward

        a = torch.empty(2).fill_(1)
        b = torch.empty(2).fill_(2)
        c = torch.empty(2).fill_(3)
        d = 4
        r1 = None
        r2 = fn(a, (b, c), d)
        opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
        r3 = opt_fn(a, (b, c), d)

        self.assertIsNotNone(r1)

        self.assertEqual(r1.shape, r2.shape)
        self.assertEqual(r1.shape, r3.shape)
        self.assertEqual(r1.device, r2.device)
        self.assertEqual(r1.device, r3.device)

    @_force_skip_lazy_graph_module()
    def test_torchscript(self):
        s = Seq()
        i = torch.randn(10)
        r1 = s(i)
        opt_s = torch.compile(s, backend="ts")
        r2 = opt_s(i)
        self.assertTrue(same(r1, r2))

    def test_incorrect_verify_true(self):
        """
        If a bad optimization return a graph that
        is not functionally equal to the original graph;
        When config.verify_correctness=True, it will
        check the correctness of outputs and raise an error
        """
        i1 = torch.randn(10)
        i2 = torch.randn(10)

        def incorrect_compile_fn(gm, example_inputs):
            return transform(gm).forward

        toy_example(i1, i2)
        try:
            opt_toy_example = torch.compile(toy_example, backend=incorrect_compile_fn)
            opt_toy_example(i1, i2)
        except RuntimeError:
            pass
        else:
            self.fail("expected failure")

    @config.patch("verify_correctness", False)
    def test_incorrect_verify_false(self):
        """
        The bad optimization return a graph that
        is not functionally equal to the original graph;
        When config.verify_correctness=False, wrong outputs
        will return
        """
        i1 = torch.randn(10)
        i2 = torch.randn(10)

        def incorrect_compile_fn(gm, example_inputs):
            return transform(gm).forward

        r1 = toy_example(i1, i2)
        opt_toy_example = torch.compile(toy_example, backend=incorrect_compile_fn)
        r2 = opt_toy_example(i1, i2)
        self.assertTrue(not same(r1, r2))


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()