File: Evalue.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (479 lines) | stat: -rw-r--r-- 13,941 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#pragma once

#include <ATen/ATen.h>
/**
 * WARNING: EValue is a class used by Executorch, for its boxed operators. It
 * contains similar logic as `IValue` in PyTorch, by providing APIs to convert
 * boxed values to unboxed values.
 *
 * It's mirroring a fbcode internal source file
 * [`EValue.h`](https://www.internalfb.com/code/fbsource/xplat/executorch/core/values/Evalue.h).
 *
 * The reason why we are mirroring this class, is to make sure we have CI job
 * coverage on torchgen logic, given that torchgen is used for both Executorch
 * and PyTorch.
 *
 * If any of the logic here needs to be changed, please update fbcode version of
 * `Evalue.h` as well. These two versions will be merged as soon as Executorch
 * is in OSS (hopefully by Q2 2023).
 */
namespace torch {
namespace executor {

#define ET_CHECK_MSG TORCH_CHECK_MSG
#define EXECUTORCH_FORALL_TAGS(_) \
  _(None)                         \
  _(Tensor)                       \
  _(String)                       \
  _(Double)                       \
  _(Int)                          \
  _(Bool)                         \
  _(ListBool)                     \
  _(ListDouble)                   \
  _(ListInt)                      \
  _(ListTensor)                   \
  _(ListScalar)                   \
  _(ListOptionalTensor)

enum class Tag : uint32_t {
#define DEFINE_TAG(x) x,
  EXECUTORCH_FORALL_TAGS(DEFINE_TAG)
#undef DEFINE_TAG
};

struct EValue;

template <typename T>
struct evalue_to_const_ref_overload_return {
  using type = T;
};

template <>
struct evalue_to_const_ref_overload_return<at::Tensor> {
  using type = const at::Tensor&;
};

template <typename T>
struct evalue_to_ref_overload_return {
  using type = T;
};

template <>
struct evalue_to_ref_overload_return<at::Tensor> {
  using type = at::Tensor&;
};

/*
 * Helper class used to correlate EValues in the executor table, with the
 * unwrapped list of the proper type. Because values in the runtime's values
 * table can change during execution, we cannot statically allocate list of
 * objects at deserialization. Imagine the serialized list says index 0 in the
 * value table is element 2 in the list, but during execution the value in
 * element 2 changes (in the case of tensor this means the TensorImpl* stored in
 * the tensor changes). To solve this instead they must be created dynamically
 * whenever they are used.
 */
template <typename T>
class EValObjectList {
 public:
  EValObjectList() = default;
  /*
   * Wrapped_vals is a list of pointers into the values table of the runtime
   * whose destinations correlate with the elements of the list, unwrapped_vals
   * is a container of the same size whose serves as memory to construct the
   * unwrapped vals.
   */
  EValObjectList(EValue** wrapped_vals, T* unwrapped_vals, int size)
      : wrapped_vals_(wrapped_vals, size), unwrapped_vals_(unwrapped_vals) {}
  /*
   * Constructs and returns the list of T specified by the EValue pointers
   */
  at::ArrayRef<T> get() const;

 private:
  // Source of truth for the list
  at::ArrayRef<EValue*> wrapped_vals_;
  // Same size as wrapped_vals
  mutable T* unwrapped_vals_;
};

// Aggregate typing system similar to IValue only slimmed down with less
// functionality, no dependencies on atomic, and fewer supported types to better
// suit embedded systems (ie no intrusive ptr)
struct EValue {
  union Payload {
    // When in ATen mode at::Tensor is not trivially copyable, this nested union
    // lets us handle tensor as a special case while leaving the rest of the
    // fields in a simple state instead of requiring a switch on tag everywhere.
    union TriviallyCopyablePayload {
      TriviallyCopyablePayload() : as_int(0) {}
      // Scalar supported through these 3 types
      int64_t as_int;
      double as_double;
      bool as_bool;
      // TODO(jakeszwe): convert back to pointers to optimize size of this
      // struct
      at::ArrayRef<char> as_string;
      at::ArrayRef<int64_t> as_int_list;
      at::ArrayRef<double> as_double_list;
      at::ArrayRef<bool> as_bool_list;
      EValObjectList<at::Tensor> as_tensor_list;
      EValObjectList<std::optional<at::Tensor>> as_list_optional_tensor;
    } copyable_union;

    // Since a Tensor just holds a TensorImpl*, there's no value to use Tensor*
    // here.
    at::Tensor as_tensor;

    Payload() {}
    ~Payload() {}
  };

  // Data storage and type tag
  Payload payload;
  Tag tag;

  // Basic ctors and assignments
  EValue(const EValue& rhs) : EValue(rhs.payload, rhs.tag) {}

  EValue(EValue&& rhs) noexcept : tag(rhs.tag) {
    moveFrom(std::move(rhs));
  }

  EValue& operator=(EValue&& rhs) & noexcept {
    if (&rhs == this) {
      return *this;
    }

    destroy();
    moveFrom(std::move(rhs));
    return *this;
  }

  EValue& operator=(EValue const& rhs) & {
    // Define copy assignment through copy ctor and move assignment
    *this = EValue(rhs);
    return *this;
  }

  ~EValue() {
    destroy();
  }

  /****** None Type ******/
  EValue() : tag(Tag::None) {
    payload.copyable_union.as_int = 0;
  }

  bool isNone() const {
    return tag == Tag::None;
  }

  /****** Int Type ******/
  /*implicit*/ EValue(int64_t i) : tag(Tag::Int) {
    payload.copyable_union.as_int = i;
  }

  bool isInt() const {
    return tag == Tag::Int;
  }

  int64_t toInt() const {
    ET_CHECK_MSG(isInt(), "EValue is not an int.");
    return payload.copyable_union.as_int;
  }

  /****** Double Type ******/
  /*implicit*/ EValue(double d) : tag(Tag::Double) {
    payload.copyable_union.as_double = d;
  }

  bool isDouble() const {
    return tag == Tag::Double;
  }

  double toDouble() const {
    ET_CHECK_MSG(isDouble(), "EValue is not a Double.");
    return payload.copyable_union.as_double;
  }

  /****** Bool Type ******/
  /*implicit*/ EValue(bool b) : tag(Tag::Bool) {
    payload.copyable_union.as_bool = b;
  }

  bool isBool() const {
    return tag == Tag::Bool;
  }

  bool toBool() const {
    ET_CHECK_MSG(isBool(), "EValue is not a Bool.");
    return payload.copyable_union.as_bool;
  }

  /****** Scalar Type ******/
  /// Construct an EValue using the implicit value of a Scalar.
  /*implicit*/ EValue(at::Scalar s) {
    if (s.isIntegral(false)) {
      tag = Tag::Int;
      payload.copyable_union.as_int = s.to<int64_t>();
    } else if (s.isFloatingPoint()) {
      tag = Tag::Double;
      payload.copyable_union.as_double = s.to<double>();
    } else if (s.isBoolean()) {
      tag = Tag::Bool;
      payload.copyable_union.as_bool = s.to<bool>();
    } else {
      ET_CHECK_MSG(false, "Scalar passed to EValue is not initialized.");
    }
  }

  bool isScalar() const {
    return tag == Tag::Int || tag == Tag::Double || tag == Tag::Bool;
  }

  at::Scalar toScalar() const {
    // Convert from implicit value to Scalar using implicit constructors.

    if (isDouble()) {
      return toDouble();
    } else if (isInt()) {
      return toInt();
    } else if (isBool()) {
      return toBool();
    } else {
      ET_CHECK_MSG(false, "EValue is not a Scalar.");
      return c10::Scalar();
    }
  }

  /****** Tensor Type ******/
  /*implicit*/ EValue(at::Tensor t) : tag(Tag::Tensor) {
    // When built in aten mode, at::Tensor has a non trivial constructor
    // destructor, so regular assignment to a union field is UB. Instead we must
    // go through placement new (which causes a refcount bump).
    new (&payload.as_tensor) at::Tensor(t);
  }

  bool isTensor() const {
    return tag == Tag::Tensor;
  }

  at::Tensor toTensor() && {
    ET_CHECK_MSG(isTensor(), "EValue is not a Tensor.");
    return std::move(payload.as_tensor);
  }

  at::Tensor& toTensor() & {
    ET_CHECK_MSG(isTensor(), "EValue is not a Tensor.");
    return payload.as_tensor;
  }

  const at::Tensor& toTensor() const& {
    ET_CHECK_MSG(isTensor(), "EValue is not a Tensor.");
    return payload.as_tensor;
  }

  /****** String Type ******/
  /*implicit*/ EValue(const char* s, size_t size) : tag(Tag::String) {
    payload.copyable_union.as_string = at::ArrayRef<char>(s, size);
  }

  bool isString() const {
    return tag == Tag::String;
  }

  at::string_view toString() const {
    ET_CHECK_MSG(isString(), "EValue is not a String.");
    return at::string_view(
        payload.copyable_union.as_string.data(),
        payload.copyable_union.as_string.size());
  }

  /****** Int List Type ******/
  /*implicit*/ EValue(at::ArrayRef<int64_t> i) : tag(Tag::ListInt) {
    payload.copyable_union.as_int_list = i;
  }

  bool isIntList() const {
    return tag == Tag::ListInt;
  }

  at::ArrayRef<int64_t> toIntList() const {
    ET_CHECK_MSG(isIntList(), "EValue is not an Int List.");
    return payload.copyable_union.as_int_list;
  }

  /****** Bool List Type ******/
  /*implicit*/ EValue(at::ArrayRef<bool> b) : tag(Tag::ListBool) {
    payload.copyable_union.as_bool_list = b;
  }

  bool isBoolList() const {
    return tag == Tag::ListBool;
  }

  at::ArrayRef<bool> toBoolList() const {
    ET_CHECK_MSG(isBoolList(), "EValue is not a Bool List.");
    return payload.copyable_union.as_bool_list;
  }

  /****** Double List Type ******/
  /*implicit*/ EValue(at::ArrayRef<double> d) : tag(Tag::ListDouble) {
    payload.copyable_union.as_double_list = d;
  }

  bool isDoubleList() const {
    return tag == Tag::ListDouble;
  }

  at::ArrayRef<double> toDoubleList() const {
    ET_CHECK_MSG(isDoubleList(), "EValue is not a Double List.");
    return payload.copyable_union.as_double_list;
  }

  /****** Tensor List Type ******/
  /*implicit*/ EValue(EValObjectList<at::Tensor> t) : tag(Tag::ListTensor) {
    payload.copyable_union.as_tensor_list = t;
  }

  bool isTensorList() const {
    return tag == Tag::ListTensor;
  }

  at::ArrayRef<at::Tensor> toTensorList() const {
    ET_CHECK_MSG(isTensorList(), "EValue is not a Tensor List.");
    return payload.copyable_union.as_tensor_list.get();
  }

  /****** List Optional Tensor Type ******/
  /*implicit*/ EValue(EValObjectList<std::optional<at::Tensor>> t)
      : tag(Tag::ListOptionalTensor) {
    payload.copyable_union.as_list_optional_tensor = t;
  }

  bool isListOptionalTensor() const {
    return tag == Tag::ListOptionalTensor;
  }

  at::ArrayRef<std::optional<at::Tensor>> toListOptionalTensor() {
    return payload.copyable_union.as_list_optional_tensor.get();
  }

  /****** ScalarType Type ******/
  at::ScalarType toScalarType() const {
    ET_CHECK_MSG(isInt(), "EValue is not a ScalarType.");
    return static_cast<at::ScalarType>(payload.copyable_union.as_int);
  }

  /****** MemoryFormat Type ******/
  at::MemoryFormat toMemoryFormat() const {
    ET_CHECK_MSG(isInt(), "EValue is not a MemoryFormat.");
    return static_cast<at::MemoryFormat>(payload.copyable_union.as_int);
  }

  template <typename T>
  T to() &&;

  template <typename T>
  typename evalue_to_ref_overload_return<T>::type to() &;

  /**
   * Converts the EValue to an optional object that can represent both T and
   * an uninitialized state.
   */
  template <typename T>
  inline std::optional<T> toOptional() {
    if (this->isNone()) {
      return std::nullopt;
    }
    return this->to<T>();
  }

 private:
  // Pre cond: the payload value has had its destructor called
  void clearToNone() noexcept {
    payload.copyable_union.as_int = 0;
    tag = Tag::None;
  }

  // Shared move logic
  void moveFrom(EValue&& rhs) noexcept {
    if (rhs.isTensor()) {
      new (&payload.as_tensor) at::Tensor(std::move(rhs.payload.as_tensor));
      rhs.payload.as_tensor.~Tensor();
    } else {
      payload.copyable_union = rhs.payload.copyable_union;
    }
    tag = rhs.tag;
    rhs.clearToNone();
  }

  // Destructs stored tensor if there is one
  void destroy() {
    // Necessary for ATen tensor to refcount decrement the intrusive_ptr to
    // tensorimpl that got a refcount increment when we placed it in the evalue,
    // no-op if executorch tensor #ifdef could have a
    // minor performance bump for a code maintainability hit
    if (isTensor()) {
      payload.as_tensor.~Tensor();
    } else if (isTensorList()) {
      for (auto& tensor : toTensorList()) {
        tensor.~Tensor();
      }
    } else if (isListOptionalTensor()) {
      for (auto& optional_tensor : toListOptionalTensor()) {
        optional_tensor.~optional();
      }
    }
  }

  EValue(const Payload& p, Tag t) : tag(t) {
    if (isTensor()) {
      new (&payload.as_tensor) at::Tensor(p.as_tensor);
    } else {
      payload.copyable_union = p.copyable_union;
    }
  }
};

#define EVALUE_DEFINE_TO(T, method_name)                           \
  template <>                                                      \
  inline evalue_to_ref_overload_return<T>::type EValue::to<T>()& { \
    return static_cast<T>(this->method_name());                    \
  }

template <>
inline at::Tensor& EValue::to<at::Tensor>() & {
  return this->toTensor();
}

EVALUE_DEFINE_TO(at::Scalar, toScalar)
EVALUE_DEFINE_TO(int64_t, toInt)
EVALUE_DEFINE_TO(bool, toBool)
EVALUE_DEFINE_TO(double, toDouble)
EVALUE_DEFINE_TO(at::string_view, toString)
EVALUE_DEFINE_TO(at::ScalarType, toScalarType)
EVALUE_DEFINE_TO(at::MemoryFormat, toMemoryFormat)
EVALUE_DEFINE_TO(std::optional<at::Tensor>, toOptional<at::Tensor>)
EVALUE_DEFINE_TO(at::ArrayRef<int64_t>, toIntList)
EVALUE_DEFINE_TO(
    std::optional<at::ArrayRef<int64_t>>,
    toOptional<at::ArrayRef<int64_t>>)
EVALUE_DEFINE_TO(
    std::optional<at::ArrayRef<double>>,
    toOptional<at::ArrayRef<double>>)
EVALUE_DEFINE_TO(at::ArrayRef<std::optional<at::Tensor>>, toListOptionalTensor)
EVALUE_DEFINE_TO(at::ArrayRef<double>, toDoubleList)
#undef EVALUE_DEFINE_TO

template <typename T>
at::ArrayRef<T> EValObjectList<T>::get() const {
  for (size_t i = 0; i < wrapped_vals_.size(); i++) {
    unwrapped_vals_[i] = wrapped_vals_[i]->template to<T>();
  }
  return at::ArrayRef<T>{unwrapped_vals_, wrapped_vals_.size()};
}

} // namespace executor
} // namespace torch