File: test_draft_export.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (426 lines) | stat: -rw-r--r-- 14,480 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Owner(s): ["oncall: export"]
import copy
import tempfile
import unittest
from typing import List, Tuple

import torch
from torch.export import Dim, export
from torch.export._draft_export import draft_export, FailureType
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from torch.testing._internal.torchbind_impls import (
    _empty_tensor_queue,
    init_torchbind_implementations,
)
from torch.utils._pytree import tree_leaves


class TestDraftExport(TestCase):
    def setUp(self):
        init_torchbind_implementations()

        @torch._library.register_fake_class("_TorchScriptTesting::_TensorQueue")
        class FakeTensorQueue:
            def __init__(self, queue):
                self.queue = queue

            @classmethod
            def __obj_unflatten__(cls, flattened_ctx):
                return cls(**dict(flattened_ctx))

            def push(self, x):
                self.queue.append(x)

            def pop(self):
                return self.queue.pop(0)

            def size(self):
                return len(self.queue)

            def is_empty(self):
                return len(self.queue) == 0

            def float_size(self):
                return float(len(self.queue))

        self.torch_bind_ops = [
            torch.ops._TorchScriptTesting.queue_pop,
            torch.ops._TorchScriptTesting.queue_push,
            torch.ops._TorchScriptTesting.queue_size,
        ]

    def tearDown(self):
        torch._library.fake_class_registry.deregister_fake_class(
            "_TorchScriptTesting::_TensorQueue"
        )

    def test_missing_meta_kernel_custom_op(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:

            @torch.library.custom_op("mylib::foo2", mutates_args={})
            def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
                return a + b

            class M(torch.nn.Module):
                def forward(self, a, b):
                    res = torch.ops.mylib.foo2(a, b)
                    return res

            inp = (torch.ones(3, 3), torch.ones(3, 3))

            ep, report = draft_export(M(), inp)

            self.assertEqual(len(report.failures), 1)
            self.assertEqual(
                report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
            )

            inp = (torch.randn(3, 3), torch.randn(3, 3))
            self.assertEqual(ep.module()(*inp), M()(*inp))

    def test_missing_meta_kernel_impl(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
            torch.library.define(
                "mylib::foo",
                "(Tensor a, Tensor b) -> Tensor",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )

            @torch.library.impl("mylib::foo", "cpu", lib=lib)
            def foo_impl(a, b):
                return a + b

            class M(torch.nn.Module):
                def forward(self, a, b):
                    res = torch.ops.mylib.foo(a, b)
                    return res

            inp = (torch.ones(3, 3), torch.ones(3, 3))

            ep, report = draft_export(M(), inp)

            self.assertEqual(len(report.failures), 1)
            self.assertEqual(
                report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
            )

            inp = (torch.randn(3, 3), torch.randn(3, 3))
            self.assertEqual(ep.module()(*inp), M()(*inp))

    @unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
    def test_missing_meta_kernel_guard(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:

            @torch.library.custom_op("mylib::foo4", mutates_args={})
            def foo4_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
                return a + b

            class M(torch.nn.Module):
                def forward(self, a, b):
                    res1 = torch.ops.mylib.foo4(a, b)
                    return res1

            inp = (
                torch.ones(3, 4),
                torch.ones(3, 4),
            )

            ep, report = draft_export(
                M(),
                inp,
                dynamic_shapes={
                    "a": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
                    "b": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
                },
            )

            inp = (torch.randn(2, 3), torch.randn(2, 3))
            self.assertEqual(ep.module()(*inp), M()(*inp))
            m = ep.module()
            with self.assertRaisesRegex(RuntimeError, "Tensor device mismatch!"):
                bad_device_inps = (
                    torch.randn(2, 3, device=torch.device("cuda")),
                    torch.randn(2, 3, device=torch.device("cuda")),
                )
                m(*bad_device_inps)

            with self.assertRaisesRegex(RuntimeError, "Tensor dtype mismatch!"):
                bad_dtype_inps = (
                    torch.randn(2, 3, dtype=torch.float16),
                    torch.randn(2, 3, dtype=torch.float16),
                )
                m(*bad_dtype_inps)

    def test_data_dependent_failure(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
            torch.library.define(
                "mylib::foo1",
                "(Tensor a, Tensor b) -> Tensor",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )

            @torch.library.impl("mylib::foo1", "cpu", lib=lib)
            def foo_impl(a, b):
                return a + b

            @torch.library.register_fake("mylib::foo1", lib=lib)
            def mylib_foo_default_fake(*args, **kwargs):
                ctx = torch.library.get_ctx()
                fake_shape = [ctx.new_dynamic_size() for _ in range(2)]
                return torch.empty(fake_shape, dtype=torch.float32, device="cpu")

            class M(torch.nn.Module):
                def forward(self, a, b, c):
                    res = torch.ops.mylib.foo1(a, b)

                    c_item = c.item()
                    return res[:c_item]

            inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3))

            ep, report = draft_export(M(), inp)
            self.assertTrue(len(report.failures) > 0)
            self.assertEqual(
                report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
            )

            inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2))
            self.assertEqual(ep.module()(*inp), M()(*inp))

    def test_dedup_data_dependent_failure(self):
        class M(torch.nn.Module):
            def forward(self, x, y, z):
                res = 0
                for v in [x, y]:
                    if v.item() > 10:
                        res += v * v
                    else:
                        res += v + v

                return z * res

        inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2))

        ep, report = draft_export(M(), inp)
        self.assertTrue(len(report.failures) > 0)
        self.assertEqual(
            report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
        )

        inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6))
        self.assertEqual(ep.module()(*inp), M()(*inp))

    def test_offsets(self):
        class M(torch.nn.Module):
            def forward(self, x):
                a = x.item()
                if a == 0:
                    raise RuntimeError("bad")
                return x * a

        inp = (torch.tensor(3),)
        ep, report = draft_export(M(), inp)

    def test_shape_failure(self):
        class M(torch.nn.Module):
            def forward(self, a):
                assert a.shape[0] == 3
                return a * a

        inp = (torch.ones(3, 3),)

        ep, report = draft_export(M(), inp, dynamic_shapes={"a": {0: Dim("a0")}})

        self.assertEqual(len(report.failures), 1)
        self.assertEqual(
            report.failures[0].failure_type, FailureType.CONSTRAINT_VIOLATION_ERROR
        )

        inp = (torch.randn(3, 3),)
        self.assertEqual(ep.module()(*inp), M()(*inp))

        inp = (torch.randn(4, 3),)
        with self.assertRaises(RuntimeError):
            ep.module()(*inp)

    def test_side_effect1(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.register_buffer("a", torch.tensor(2))

            def forward(self, b):
                a_item = self.a.item()
                if a_item == 2:
                    res = a_item * b
                else:
                    res = (a_item + 1) * b

                self.a.add_(1)
                a_item = self.a.item()

                if a_item == 3:
                    res = a_item * res
                else:
                    res = (a_item + 1) * res
                return res

        inp = (torch.ones(3, 3),)
        mod = M()
        ep, report = draft_export(mod, inp)
        self.assertEqual(mod.a, torch.tensor(2))
        FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run(
            ep.graph_module.code
        )

    def test_side_effect_inps(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()

            def forward(self, x):
                x.sin_()
                return x

        inp = (torch.ones(3, 3),)
        ep, report = draft_export(M(), inp)
        self.assertTrue(report.successful())
        self.assertEqual(inp[0], torch.ones(3, 3))

    def test_torchbind(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(2, 2)

            def forward(self, tq, x):
                x_cos = tq.pop() + tq.float_size() + self.linear(x)
                if tq.is_empty():
                    x_sin = self.linear(tq.pop()) - tq.size() + x
                else:
                    x_sin = tq.pop() + tq.size() + x
                return x_sin, x_cos, tq

        mod = Model()
        tq = _empty_tensor_queue()
        tq2 = copy.deepcopy(tq)
        a = torch.randn(2, 2)
        b = torch.randn(2, 2)
        tq.push(a)
        tq.push(b)
        tq3 = copy.deepcopy(tq)
        inp = (tq, torch.randn(2, 2))
        ep, report = draft_export(mod, inp)
        self.assertTrue(report.successful())
        self.assertEqual(tq2.size(), 0)
        self.assertEqual(tq3.size(), 2)
        self.assertEqual(tq.size(), 2)

    def test_override_size_and_dtype_mismatched_fake_kernels(self):
        class M(torch.nn.Module):
            def forward(self, a):
                return torch.ops.mylib.foo(a)

        @torch.library.custom_op("mylib::foo", mutates_args={})
        def foo(a: torch.Tensor) -> List[torch.Tensor]:
            x = a * 2
            y = a.repeat(2, 2)
            z = a.to(torch.bfloat16)
            return [x, y, z]

        @foo.register_fake
        def foo_fake_impl(a):
            x = torch.empty_like(a)  # good
            y = torch.empty_like(a)  # size mismatch
            z = torch.empty_like(a)  # dtype mismatch
            return [x, y, z]

        mod = M()
        inputs = (torch.randn(3, 3),)
        with self.assertRaises(RuntimeError):
            with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
                export(mod, inputs)

        ep, report = draft_export(mod, inputs)
        for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)):
            self.assertTrue(torch.allclose(ep_out, eager_out))
            self.assertEqual(ep_out.dtype, eager_out.dtype)

        self.assertEqual(len(report.failures), 2)
        self.assertEqual(
            report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
        )
        self.assertEqual(
            report.failures[1].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
        )
        self.assertEqual(
            sorted([f.data["reason"] for f in report.failures]),
            [
                "Dtypes torch.bfloat16 and torch.float32 are not equal!",
                "mismatch between fake value 3 and real value 6 ",
            ],
        )

    def test_override_incorrectly_aliasing_kernel(self):
        class M(torch.nn.Module):
            def forward(self, a):
                return torch.ops.mylib.foo(a)

        @torch.library.custom_op("mylib::foo", mutates_args={})
        def foo(a: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
            return a * 2, a + 2

        @foo.register_fake
        def foo_fake_impl(a):
            return a, torch.empty_like(a)  # incorrectly aliasing

        mod = M()
        inputs = (torch.randn(3, 3),)
        with self.assertRaisesRegex(
            RuntimeError,
            "Real tensor propagation found an aliasing mismatch",
        ):
            with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
                export(mod, inputs)

        ep, report = draft_export(mod, inputs)
        for ep_out, eager_out in zip(
            tree_leaves(ep.module()(*inputs)), tree_leaves(mod(*inputs))
        ):
            self.assertTrue(torch.allclose(ep_out, eager_out))
            self.assertEqual(ep_out.dtype, eager_out.dtype)

        self.assertEqual(len(report.failures), 1)
        self.assertEqual(
            report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
        )
        self.assertTrue(
            "Mismatched aliasing spec between fake kernel and real kernel"
            in report.failures[0].data["reason"]
        )

    # https://github.com/pytorch/pytorch/issues/140625
    @unittest.skipIf(IS_WINDOWS, "aoti_compile_and_package not supported on Windows")
    def test_constantify_unbacked_symbol(self):
        class M(torch.nn.Module):
            def forward(self, x, y):
                xt = torch.tensor(x.shape)
                u0 = xt[0].item()
                return y * torch.arange(u0)

        mod = M()
        example_inputs = (torch.randn(3, 5), torch.randn(3))
        draft_ep, _ = draft_export(mod, example_inputs)
        with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
            aoti_model_path = torch._inductor.aoti_compile_and_package(
                draft_ep,
                example_inputs,
                package_path=f.name,
            )


if __name__ == "__main__":
    run_tests()