1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
# Owner(s): ["oncall: export"]
import copy
import tempfile
import unittest
from typing import List, Tuple
import torch
from torch.export import Dim, export
from torch.export._draft_export import draft_export, FailureType
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from torch.testing._internal.torchbind_impls import (
_empty_tensor_queue,
init_torchbind_implementations,
)
from torch.utils._pytree import tree_leaves
class TestDraftExport(TestCase):
def setUp(self):
init_torchbind_implementations()
@torch._library.register_fake_class("_TorchScriptTesting::_TensorQueue")
class FakeTensorQueue:
def __init__(self, queue):
self.queue = queue
@classmethod
def __obj_unflatten__(cls, flattened_ctx):
return cls(**dict(flattened_ctx))
def push(self, x):
self.queue.append(x)
def pop(self):
return self.queue.pop(0)
def size(self):
return len(self.queue)
def is_empty(self):
return len(self.queue) == 0
def float_size(self):
return float(len(self.queue))
self.torch_bind_ops = [
torch.ops._TorchScriptTesting.queue_pop,
torch.ops._TorchScriptTesting.queue_push,
torch.ops._TorchScriptTesting.queue_size,
]
def tearDown(self):
torch._library.fake_class_registry.deregister_fake_class(
"_TorchScriptTesting::_TensorQueue"
)
def test_missing_meta_kernel_custom_op(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
@torch.library.custom_op("mylib::foo2", mutates_args={})
def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo2(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_missing_meta_kernel_impl(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
@unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
def test_missing_meta_kernel_guard(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
@torch.library.custom_op("mylib::foo4", mutates_args={})
def foo4_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res1 = torch.ops.mylib.foo4(a, b)
return res1
inp = (
torch.ones(3, 4),
torch.ones(3, 4),
)
ep, report = draft_export(
M(),
inp,
dynamic_shapes={
"a": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
"b": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
},
)
inp = (torch.randn(2, 3), torch.randn(2, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
m = ep.module()
with self.assertRaisesRegex(RuntimeError, "Tensor device mismatch!"):
bad_device_inps = (
torch.randn(2, 3, device=torch.device("cuda")),
torch.randn(2, 3, device=torch.device("cuda")),
)
m(*bad_device_inps)
with self.assertRaisesRegex(RuntimeError, "Tensor dtype mismatch!"):
bad_dtype_inps = (
torch.randn(2, 3, dtype=torch.float16),
torch.randn(2, 3, dtype=torch.float16),
)
m(*bad_dtype_inps)
def test_data_dependent_failure(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo1",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo1", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
@torch.library.register_fake("mylib::foo1", lib=lib)
def mylib_foo_default_fake(*args, **kwargs):
ctx = torch.library.get_ctx()
fake_shape = [ctx.new_dynamic_size() for _ in range(2)]
return torch.empty(fake_shape, dtype=torch.float32, device="cpu")
class M(torch.nn.Module):
def forward(self, a, b, c):
res = torch.ops.mylib.foo1(a, b)
c_item = c.item()
return res[:c_item]
inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_dedup_data_dependent_failure(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
res = 0
for v in [x, y]:
if v.item() > 10:
res += v * v
else:
res += v + v
return z * res
inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_offsets(self):
class M(torch.nn.Module):
def forward(self, x):
a = x.item()
if a == 0:
raise RuntimeError("bad")
return x * a
inp = (torch.tensor(3),)
ep, report = draft_export(M(), inp)
def test_shape_failure(self):
class M(torch.nn.Module):
def forward(self, a):
assert a.shape[0] == 3
return a * a
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp, dynamic_shapes={"a": {0: Dim("a0")}})
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.CONSTRAINT_VIOLATION_ERROR
)
inp = (torch.randn(3, 3),)
self.assertEqual(ep.module()(*inp), M()(*inp))
inp = (torch.randn(4, 3),)
with self.assertRaises(RuntimeError):
ep.module()(*inp)
def test_side_effect1(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("a", torch.tensor(2))
def forward(self, b):
a_item = self.a.item()
if a_item == 2:
res = a_item * b
else:
res = (a_item + 1) * b
self.a.add_(1)
a_item = self.a.item()
if a_item == 3:
res = a_item * res
else:
res = (a_item + 1) * res
return res
inp = (torch.ones(3, 3),)
mod = M()
ep, report = draft_export(mod, inp)
self.assertEqual(mod.a, torch.tensor(2))
FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run(
ep.graph_module.code
)
def test_side_effect_inps(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x.sin_()
return x
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp)
self.assertTrue(report.successful())
self.assertEqual(inp[0], torch.ones(3, 3))
def test_torchbind(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, tq, x):
x_cos = tq.pop() + tq.float_size() + self.linear(x)
if tq.is_empty():
x_sin = self.linear(tq.pop()) - tq.size() + x
else:
x_sin = tq.pop() + tq.size() + x
return x_sin, x_cos, tq
mod = Model()
tq = _empty_tensor_queue()
tq2 = copy.deepcopy(tq)
a = torch.randn(2, 2)
b = torch.randn(2, 2)
tq.push(a)
tq.push(b)
tq3 = copy.deepcopy(tq)
inp = (tq, torch.randn(2, 2))
ep, report = draft_export(mod, inp)
self.assertTrue(report.successful())
self.assertEqual(tq2.size(), 0)
self.assertEqual(tq3.size(), 2)
self.assertEqual(tq.size(), 2)
def test_override_size_and_dtype_mismatched_fake_kernels(self):
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo(a)
@torch.library.custom_op("mylib::foo", mutates_args={})
def foo(a: torch.Tensor) -> List[torch.Tensor]:
x = a * 2
y = a.repeat(2, 2)
z = a.to(torch.bfloat16)
return [x, y, z]
@foo.register_fake
def foo_fake_impl(a):
x = torch.empty_like(a) # good
y = torch.empty_like(a) # size mismatch
z = torch.empty_like(a) # dtype mismatch
return [x, y, z]
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaises(RuntimeError):
with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
export(mod, inputs)
ep, report = draft_export(mod, inputs)
for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 2)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
report.failures[1].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
sorted([f.data["reason"] for f in report.failures]),
[
"Dtypes torch.bfloat16 and torch.float32 are not equal!",
"mismatch between fake value 3 and real value 6 ",
],
)
def test_override_incorrectly_aliasing_kernel(self):
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo(a)
@torch.library.custom_op("mylib::foo", mutates_args={})
def foo(a: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
return a * 2, a + 2
@foo.register_fake
def foo_fake_impl(a):
return a, torch.empty_like(a) # incorrectly aliasing
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaisesRegex(
RuntimeError,
"Real tensor propagation found an aliasing mismatch",
):
with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
export(mod, inputs)
ep, report = draft_export(mod, inputs)
for ep_out, eager_out in zip(
tree_leaves(ep.module()(*inputs)), tree_leaves(mod(*inputs))
):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertTrue(
"Mismatched aliasing spec between fake kernel and real kernel"
in report.failures[0].data["reason"]
)
# https://github.com/pytorch/pytorch/issues/140625
@unittest.skipIf(IS_WINDOWS, "aoti_compile_and_package not supported on Windows")
def test_constantify_unbacked_symbol(self):
class M(torch.nn.Module):
def forward(self, x, y):
xt = torch.tensor(x.shape)
u0 = xt[0].item()
return y * torch.arange(u0)
mod = M()
example_inputs = (torch.randn(3, 5), torch.randn(3))
draft_ep, _ = draft_export(mod, example_inputs)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
aoti_model_path = torch._inductor.aoti_compile_and_package(
draft_ep,
example_inputs,
package_path=f.name,
)
if __name__ == "__main__":
run_tests()
|