1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
# Owner(s): ["oncall: export"]
# flake8: noqa
import unittest
from typing import Dict, List, Tuple
import torch
import torch._dynamo
from torch._dynamo.test_case import run_tests, TestCase
from torch._functorch.aot_autograd import aot_export_module
from torch.export import export, export_for_training
from torch.export._trace import _convert_ts_to_export_experimental
from torch.export.experimental import _export_forward_backward
from torch.testing import FileCheck
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't supported")
class TestExperiment(TestCase):
def test_torchscript_module_export(self):
class M(torch.nn.Module):
def forward(self, x):
return x.cos() + x.sin()
model_to_trace = M()
inps = (torch.randn(4, 4),)
traced_module_by_torchscript = torch.jit.trace(M(), example_inputs=inps)
exported_module = _convert_ts_to_export_experimental(
traced_module_by_torchscript, inps
)
self.assertTrue(torch.allclose(exported_module(*inps), model_to_trace(*inps)))
def test_torchscript_module_export_single_input(self):
class M(torch.nn.Module):
def forward(self, x):
return x.cos() + x.sin()
model_to_trace = M()
inps = torch.randn(4, 4)
traced_module_by_torchscript = torch.jit.trace(M(), example_inputs=inps)
exported_module = _convert_ts_to_export_experimental(
traced_module_by_torchscript, inps
)
self.assertTrue(torch.allclose(exported_module(inps), model_to_trace(inps)))
def test_torchscript_module_export_various_inputs_with_annotated_input_names(self):
def _check_equality_and_annotations(m_func, inps):
# Original module.
model_to_trace = m_func()
# ExportedProgram from TorchScript module.
traced_module_by_torchscript = torch.jit.trace(
m_func(), example_inputs=inps
)
exported_module = _convert_ts_to_export_experimental(
traced_module_by_torchscript, inps
)
# ExportedProgram from original module.
original_exported_module = torch.export.export_for_training(m_func(), inps)
# Check whether input annotations are the same as tracing the original module.
orig_ph_name_list = [
n.name
for n in original_exported_module.graph.nodes
if n.op == "placeholder"
]
ph_name_list = [
n.name for n in exported_module.graph.nodes if n.op == "placeholder"
]
self.assertEqual(orig_ph_name_list, ph_name_list)
# Check results equality.
self.assertTrue(
torch.allclose(exported_module(*inps), model_to_trace(*inps))
)
# Tuple
class MTuple(torch.nn.Module):
def forward(self, x: Tuple[torch.Tensor]):
return x[0] + x[1]
_check_equality_and_annotations(MTuple, ((torch.randn(4), torch.randn(4)),))
# List
class MList(torch.nn.Module):
def forward(self, x: List[torch.Tensor]):
return x[0] + x[1]
_check_equality_and_annotations(MList, ([torch.randn(4), torch.randn(4)],))
# Dict
class MDict(torch.nn.Module):
def forward(self, x: Dict[str, torch.Tensor]):
return x["0"] + x["1"]
_check_equality_and_annotations(
MDict, ({"0": torch.randn(4), "1": torch.randn(4)},)
)
def test_joint_basic(self) -> None:
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(3, 3)
self.loss = torch.nn.CrossEntropyLoss()
def forward(self, x):
return self.loss(
self.linear(x).softmax(dim=0), torch.tensor([1.0, 0.0, 0.0])
)
m = Module()
example_inputs = (torch.randn(3),)
m(*example_inputs)
ep = torch.export.export_for_training(m, example_inputs)
joint_ep = _export_forward_backward(ep)
self.assertExpectedInline(
str(joint_ep.graph_module.code).strip(),
"""\
def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x):
view = torch.ops.aten.view.default(x, [1, 3]); x = None
permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None
addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None
view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None
_softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None
alias = torch.ops.aten.alias.default(_softmax)
alias_1 = torch.ops.aten.alias.default(alias); alias = None
clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None
_log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None
alias_2 = torch.ops.aten.alias.default(_log_softmax)
alias_3 = torch.ops.aten.alias.default(alias_2); alias_2 = None
mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None
sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None
neg = torch.ops.aten.neg.default(sum_1); sum_1 = None
div = torch.ops.aten.div.Scalar(neg, 1); neg = None
full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format)
div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None
neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None
expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None
mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None
alias_4 = torch.ops.aten.alias.default(alias_3); alias_3 = None
alias_5 = torch.ops.aten.alias.default(alias_4); alias_4 = None
exp = torch.ops.aten.exp.default(alias_5); alias_5 = None
sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True)
mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None
sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None
alias_6 = torch.ops.aten.alias.default(alias_1); alias_1 = None
alias_7 = torch.ops.aten.alias.default(alias_6); alias_6 = None
mul_3 = torch.ops.aten.mul.Tensor(sub, alias_7); sub = None
sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True)
mul_4 = torch.ops.aten.mul.Tensor(alias_7, sum_3); alias_7 = sum_3 = None
sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None
view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None
permute_1 = torch.ops.aten.permute.default(view_2, [1, 0])
mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None
permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None
sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None
view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None
permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None
return (div, permute_3, view_3)""",
)
ep = joint_ep.run_decompositions()
self.assertExpectedInline(
str(ep.graph_module.code).strip(),
"""\
def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x):
view = torch.ops.aten.view.default(x, [1, 3]); x = None
permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None
addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None
view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None
_softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None
alias = torch.ops.aten.alias.default(_softmax)
alias_1 = torch.ops.aten.alias.default(alias); alias = None
clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None
_log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None
alias_2 = torch.ops.aten.alias.default(_log_softmax)
alias_3 = torch.ops.aten.alias.default(alias_2); alias_2 = None
mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None
sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None
neg = torch.ops.aten.neg.default(sum_1); sum_1 = None
div = torch.ops.aten.div.Scalar(neg, 1); neg = None
full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format)
div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None
neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None
expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None
mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None
alias_4 = torch.ops.aten.alias.default(alias_3); alias_3 = None
alias_5 = torch.ops.aten.alias.default(alias_4); alias_4 = None
exp = torch.ops.aten.exp.default(alias_5); alias_5 = None
sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True)
mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None
sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None
alias_6 = torch.ops.aten.alias.default(alias_1); alias_1 = None
alias_7 = torch.ops.aten.alias.default(alias_6); alias_6 = None
mul_3 = torch.ops.aten.mul.Tensor(sub, alias_7); sub = None
sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True)
mul_4 = torch.ops.aten.mul.Tensor(alias_7, sum_3); alias_7 = sum_3 = None
sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None
view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None
permute_1 = torch.ops.aten.permute.default(view_2, [1, 0])
mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None
permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None
sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None
view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None
permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None
return (div, permute_3, view_3)""",
)
def test_joint_dynamic(self) -> None:
from torch.export import Dim
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.y = torch.nn.Parameter(torch.randn(3))
def forward(self, x):
x = torch.ones(x.shape[0], 3)
return (self.y + x).sum()
m = Module()
example_inputs = (torch.randn(3),)
m(*example_inputs)
ep = torch.export.export_for_training(
m, example_inputs, dynamic_shapes={"x": {0: Dim("x0")}}
)
joint_ep = _export_forward_backward(ep)
def test_joint_cifar10_backwards(self) -> None:
import torch.nn as nn
import torch.nn.functional as F
# From Pytorch's CIFAR10 example:
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.loss = nn.CrossEntropyLoss()
def forward(self, x, labels):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return self.loss(x, labels)
net = Net()
x = torch.randn(4, 3, 32, 32)
labels = torch.ones(4, dtype=torch.int64)
inputs = (x, labels)
ep = export_for_training(net, inputs)
ep = _export_forward_backward(ep)
def test_joint_loss_index(self):
from torch.export.graph_signature import OutputKind
class Foo(torch.nn.Module):
def __init__(self, index):
super().__init__()
self.l = torch.nn.Linear(4, 4)
self.index = index
def forward(self, x):
x = self.l(x)
x = x.sum()
if self.index == 0:
return x, -x.detach()
else:
return x.detach(), x
inputs = (torch.randn(4, 4),)
for i in [0, 1]:
ep = export_for_training(Foo(i), inputs)
ep_joint = _export_forward_backward(ep, joint_loss_index=i)
for j, spec in enumerate(ep_joint.graph_signature.output_specs):
if i == j:
self.assertTrue(spec.kind == OutputKind.LOSS_OUTPUT)
else:
self.assertTrue(spec.kind != OutputKind.LOSS_OUTPUT)
if __name__ == "__main__":
run_tests()
|