File: test_lift_unlift.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (417 lines) | stat: -rw-r--r-- 16,662 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Owner(s): ["oncall: export"]
import unittest
from typing import Any, Dict, Optional, OrderedDict, Tuple

import torch
from torch._export.passes.lift_constants_pass import (
    ConstantAttrMap,
    lift_constants_pass,
)
from torch.export._unlift import _unlift_exported_program_lifted_states
from torch.export.exported_program import (
    ExportGraphSignature,
    InputKind,
    InputSpec,
    OutputKind,
    OutputSpec,
    TensorArgument,
)
from torch.export.graph_signature import CustomObjArgument
from torch.testing._internal.common_utils import (
    find_library_location,
    IS_FBCODE,
    IS_MACOS,
    IS_SANDCASTLE,
    IS_WINDOWS,
    run_tests,
    TestCase,
)


class GraphBuilder:
    def __init__(self) -> None:
        self.graph = torch.fx.Graph()
        self.nodes = {}
        self.values = {}
        self.nn_module_stack_key: Dict[str, int] = {}
        self.latest_id = 0
        self.input_to_kind: Dict[torch.fx.Node, InputKind] = {}

    def input(self, name: str, value: torch.Tensor, kind: InputKind):
        node = self.graph.placeholder(name)
        node.meta["val"] = value
        self.nodes[name] = node
        self.values[name] = value
        self.input_to_kind[node] = kind

    def add(self, x: str, y: str, out: str, module_fqn: str = ""):
        node = self.graph.create_node(
            "call_function",
            torch.ops.aten.add.Tensor,
            (self.nodes[x], self.nodes[y]),
            name=out,
        )
        self.values[out] = self.values[x] + self.values[y]
        node.meta["val"] = self.values[out]
        node.meta["nn_module_stack"] = self.create_nn_module_stack(module_fqn)
        self.nodes[out] = node

    def call_function(self, target, args, out: str, module_fqn: str = ""):
        arg_nodes = tuple(self.nodes[arg] for arg in args)
        arg_values = tuple(self.values[arg] for arg in args)
        node = self.graph.create_node(
            "call_function",
            target,
            arg_nodes,
            name=out,
        )
        self.values[out] = target(*arg_values)
        node.meta["val"] = self.values[out]
        node.meta["nn_module_stack"] = self.create_nn_module_stack(module_fqn)
        self.nodes[out] = node

    def constant(
        self, name: str, value: Any, target: Optional[str] = None, module_fqn: str = ""
    ):
        if target is None:
            target = name
        node = self.graph.get_attr(target)
        node.meta["val"] = value
        node.meta["nn_module_stack"] = self.create_nn_module_stack(module_fqn)
        self.nodes[name] = node
        self.values[name] = value

    def output(self, out: str):
        self.graph.output(self.nodes[out])

    def create_nn_module_stack(
        self, module_fqn: str
    ) -> OrderedDict[int, Tuple[str, type]]:
        cur_name = ""
        nn_module_stack = OrderedDict()
        for atom in module_fqn.split("."):
            if cur_name == "":
                cur_name = atom
            else:
                cur_name = cur_name + "." + atom

            if cur_name not in self.nn_module_stack_key:
                id_counter = self.latest_id
                self.latest_id += 1
                self.nn_module_stack_key[cur_name] = id_counter
            else:
                id_counter = self.nn_module_stack_key[cur_name]

            nn_module_stack[id_counter] = (cur_name, torch.nn.Module)
        return nn_module_stack

    def create_input_specs(self):
        input_specs = []
        for node in self.graph.nodes:
            if node.op == "placeholder":
                input_specs.append(
                    InputSpec(
                        kind=self.input_to_kind[node],
                        arg=TensorArgument(name=node.name),
                        target=None,
                        persistent=(
                            True
                            if self.input_to_kind[node] == InputKind.BUFFER
                            else None
                        ),
                    )
                )
        return input_specs

    # NOTE: does not handle non-user-outputs atm
    def gen_graph_signature(self) -> ExportGraphSignature:
        output = [n for n in self.graph.nodes if n.op == "output"]
        assert len(output) == 1
        output = output[0]
        assert len(output.args) == 1, "multiple outputs NYI"

        return ExportGraphSignature(
            input_specs=self.create_input_specs(),
            output_specs=[
                OutputSpec(
                    kind=OutputKind.USER_OUTPUT,
                    arg=TensorArgument(name=n.name),
                    target=None,
                )
                for n in output.args
            ],
        )


class TestLift(TestCase):
    def setUp(self):
        if IS_MACOS:
            raise unittest.SkipTest("non-portable load_library call used in test")
        elif IS_SANDCASTLE or IS_FBCODE:
            torch.ops.load_library(
                "//caffe2/test/cpp/jit:test_custom_class_registrations"
            )
        elif IS_WINDOWS:
            lib_file_path = find_library_location("torchbind_test.dll")
            torch.ops.load_library(str(lib_file_path))
        else:
            lib_file_path = find_library_location("libtorchbind_test.so")
            torch.ops.load_library(str(lib_file_path))

    def test_lift_basic(self):
        builder = GraphBuilder()

        builder.input("param", torch.rand(2, 3), InputKind.PARAMETER)
        builder.input("buffer", torch.rand(2, 3), InputKind.BUFFER)
        builder.input("x", torch.rand(2, 3), InputKind.USER_INPUT)
        builder.input("y", torch.rand(2, 3), InputKind.USER_INPUT)

        builder.add("x", "y", out="foo")
        builder.add("foo", "param", out="bar")
        builder.add("bar", "buffer", out="baz")
        builder.constant("const_tensor", torch.rand(2, 3))
        builder.constant("const_obj", torch.classes._TorchScriptTesting._Foo(10, 20))
        builder.add("baz", "const_tensor", out="out")
        builder.call_function(
            torch.ops._TorchScriptTesting.takes_foo,
            ("const_obj", "x"),
            out="torchbind_out",
        )
        builder.add("out", "torchbind_out", out="final_out")
        builder.output("final_out")

        builder.graph.lint()
        graph = builder.graph
        const_tensor = builder.values["const_tensor"]
        const_obj = builder.values["const_obj"]

        root = {"const_tensor": const_tensor, "const_obj": const_obj}
        gm = torch.fx.GraphModule(root, graph)
        graph_signature = builder.gen_graph_signature()
        constants = lift_constants_pass(gm, graph_signature, {})
        gm.graph.lint()

        self.assertEqual(len(constants), 2)

        # The key of the constants table should match the fqn of the constant.
        # In this case, it's just the name of the constant, since the constant
        # is at the root submodule.
        # TODO(suo): we shouldn't hardcode these names in the test, this is an
        # internal detail of the pass.
        self.assertIn("lifted_tensor_0", constants)
        self.assertEqual(constants["lifted_tensor_0"], const_tensor)
        self.assertIn("lifted_custom_0", constants)
        self.assertEqual(constants["lifted_custom_0"], const_obj)

        # The constant node should be removed.
        getattr_nodes = [n for n in gm.graph.nodes if n.op == "get_attr"]
        self.assertEqual(len(getattr_nodes), 0)

        # The constant should be lifted to a placeholder node.
        placeholder_nodes = [n for n in gm.graph.nodes if n.op == "placeholder"]
        self.assertEqual(len(placeholder_nodes), 6)

        # The lifted constant should be placed before user inputs but after params/buffers
        lifted_tensor_placeholder = placeholder_nodes[2]
        self.assertEqual(lifted_tensor_placeholder.target, "lifted_tensor_0")
        # It should have a val equivalent to the constant
        self.assertEqual(lifted_tensor_placeholder.meta["val"], const_tensor)

        lifted_obj_placeholder = placeholder_nodes[3]
        self.assertEqual(lifted_obj_placeholder.target, "lifted_custom_0")
        # It should have a val equivalent to the constant
        self.assertEqual(
            lifted_obj_placeholder.meta["val"],
            CustomObjArgument(
                name="lifted_custom_0",
                class_fqn="__torch__.torch.classes._TorchScriptTesting._Foo",
            ),
        )

        # Graph signature should have been mutated a way that reflects the placeholders.
        tensor_constant_input_spec = graph_signature.input_specs[2]
        self.assertEqual(tensor_constant_input_spec.kind, InputKind.CONSTANT_TENSOR)
        self.assertIsInstance(tensor_constant_input_spec.arg, TensorArgument)
        self.assertEqual(
            tensor_constant_input_spec.arg.name, lifted_tensor_placeholder.name
        )

        obj_constant_input_spec = graph_signature.input_specs[3]
        self.assertEqual(obj_constant_input_spec.kind, InputKind.CUSTOM_OBJ)
        self.assertIsInstance(obj_constant_input_spec.arg, CustomObjArgument)
        self.assertEqual(obj_constant_input_spec.arg.name, lifted_obj_placeholder.name)

    def test_lift_nested(self):
        builder = GraphBuilder()
        builder.input("x", torch.rand(2, 3), InputKind.USER_INPUT)
        builder.input("y", torch.rand(2, 3), InputKind.USER_INPUT)
        builder.input("z", torch.rand(2, 3), InputKind.USER_INPUT)

        builder.add("x", "y", out="foo")
        builder.add("foo", "z", out="bar", module_fqn="foo")
        builder.constant("const_tensor", torch.rand(2, 3), module_fqn="foo")
        builder.add("bar", "const_tensor", "out")
        builder.output("out")

        graph = builder.graph
        graph.lint()

        const_tensor = builder.values["const_tensor"]
        root = {"const_tensor": builder.values["const_tensor"]}

        graph_signature = builder.gen_graph_signature()
        gm = torch.fx.GraphModule(root, graph)

        constants = lift_constants_pass(gm, graph_signature, {})
        gm.graph.lint()

        self.assertEqual(len(constants), 1)

        # The key of the constants table should match the fqn of the constant.
        self.assertIn("foo.lifted_tensor_0", constants)
        self.assertEqual(constants["foo.lifted_tensor_0"], const_tensor)

        # The constant node should be removed.
        getattr_nodes = [n for n in gm.graph.nodes if n.op == "get_attr"]
        self.assertEqual(len(getattr_nodes), 0)

        # The constant should be lifted to a placeholder node.
        placeholder_nodes = [n for n in gm.graph.nodes if n.op == "placeholder"]
        self.assertEqual(len(placeholder_nodes), 4)

        # The lifted constant should be placed before user inputs but after params/buffers
        lifted_constant_placeholder = placeholder_nodes[0]
        self.assertEqual(lifted_constant_placeholder.target, "lifted_tensor_0")

        # Graph signature should have been mutated a way that reflects the placeholders.
        constant_input_spec = graph_signature.input_specs[0]
        self.assertEqual(constant_input_spec.kind, InputKind.CONSTANT_TENSOR)
        self.assertIsInstance(constant_input_spec.arg, TensorArgument)
        self.assertEqual(constant_input_spec.arg.name, lifted_constant_placeholder.name)

    def test_duplicate_constant_access(self):
        const = torch.rand(2, 3)
        const_obj = torch.classes._TorchScriptTesting._Foo(10, 20)

        builder = GraphBuilder()
        builder.input("x", torch.rand(2, 3), InputKind.USER_INPUT)
        builder.constant("const_tensor", const, target="const_tensor")
        # loading the same target twice
        builder.constant("const_tensor2", const, target="const_tensor")

        # loading the same object twice with different targets
        builder.constant("const_obj", const_obj)
        builder.constant("const_obj2", const_obj)
        builder.call_function(
            torch.ops._TorchScriptTesting.takes_foo,
            ("const_obj", "x"),
            out="torchbind_out",
        )
        builder.call_function(
            torch.ops._TorchScriptTesting.takes_foo,
            ("const_obj2", "x"),
            out="torchbind_out2",
        )
        builder.add("x", "const_tensor", out="foo")
        builder.add("foo", "const_tensor2", out="tensor_out")
        builder.add("torchbind_out", "torchbind_out2", out="obj_out")
        builder.add("tensor_out", "obj_out", out="out")
        builder.output("out")
        graph = builder.graph
        graph.lint()

        input_specs = builder.create_input_specs()
        output_specs = [
            OutputSpec(
                kind=OutputKind.USER_OUTPUT,
                arg=TensorArgument(name=builder.nodes["out"].name),
                target=None,
            )
        ]
        graph_signature = ExportGraphSignature(input_specs, output_specs)

        root = {"const_tensor": const, "const_obj": const_obj, "const_obj2": const_obj}
        gm = torch.fx.GraphModule(root, graph)

        constants = lift_constants_pass(gm, graph_signature, {})
        gm.graph.lint()

        self.assertEqual(len(constants), 2)

        # All get_attr nodes should be removed
        getattr_nodes = [n for n in gm.graph.nodes if n.op == "get_attr"]
        self.assertEqual(len(getattr_nodes), 0)

        # There should only be two additional inputs (plus the existing user input)
        placeholder_nodes = [n for n in gm.graph.nodes if n.op == "placeholder"]
        self.assertEqual(len(placeholder_nodes), 3)

        # Graph signature should have been mutated a way that reflects the placeholders.
        self.assertEqual(len(graph_signature.input_specs), 3)
        constant_input_spec = graph_signature.input_specs[0]
        self.assertEqual(constant_input_spec.kind, InputKind.CONSTANT_TENSOR)
        self.assertIsInstance(constant_input_spec.arg, TensorArgument)

    def test_unlift_nonpersistent_buffer(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.register_buffer(
                    "non_persistent_buf", torch.zeros(1), persistent=False
                )

            def forward(self, x):
                self.non_persistent_buf.add_(1)
                return x.sum() + self.non_persistent_buf.sum()

        foo = Foo()
        exported = torch.export.export(foo, (torch.ones(5, 5),), strict=False)
        stateful_gm = _unlift_exported_program_lifted_states(exported)

        # Check the unlifted stateful_gm contains the original non-persistent buffer
        self.assertTrue(hasattr(stateful_gm, "non_persistent_buf"))
        non_persistent_buf = stateful_gm.get_buffer("non_persistent_buf")
        self.assertEqual(non_persistent_buf, foo.get_buffer("non_persistent_buf"))
        self.assertIn("non_persistent_buf", stateful_gm._non_persistent_buffers_set)
        self.assertNotIn("non_persistent_buf", stateful_gm.state_dict())


class ConstantAttrMapTest(TestCase):
    def setUp(self):
        if IS_MACOS:
            raise unittest.SkipTest("non-portable load_library call used in test")
        elif IS_SANDCASTLE or IS_FBCODE:
            torch.ops.load_library(
                "//caffe2/test/cpp/jit:test_custom_class_registrations"
            )
        elif IS_WINDOWS:
            lib_file_path = find_library_location("torchbind_test.dll")
            torch.ops.load_library(str(lib_file_path))
        else:
            lib_file_path = find_library_location("libtorchbind_test.so")
            torch.ops.load_library(str(lib_file_path))

    def test_dict_api(self):
        constant_attr_map = ConstantAttrMap()
        const_obj = torch.classes._TorchScriptTesting._Foo(10, 20)
        const_tensor = torch.ones(2, 3)
        constant_attr_map.add(const_obj, "foo.bar")
        constant_attr_map.add(const_tensor, "foo.bar.baz")
        self.assertEqual(len(constant_attr_map), 2)
        self.assertEqual(list(constant_attr_map), [const_obj, const_tensor])
        self.assertEqual(list(constant_attr_map.keys()), [const_obj, const_tensor])
        self.assertEqual(
            list(constant_attr_map.values()), [["foo.bar"], ["foo.bar.baz"]]
        )
        self.assertEqual(constant_attr_map[const_obj], ["foo.bar"])
        self.assertEqual(constant_attr_map[const_tensor], ["foo.bar.baz"])
        self.assertTrue(const_obj in constant_attr_map)
        with self.assertRaises(TypeError):
            constant_attr_map.add(1, "foo.bar")

        del constant_attr_map[const_obj]
        self.assertEqual(len(constant_attr_map), 1)


if __name__ == "__main__":
    run_tests()