File: test_pass_infra.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (195 lines) | stat: -rw-r--r-- 7,017 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Owner(s): ["oncall: export"]
import copy
import unittest

import torch
from functorch.experimental import control_flow
from torch._dynamo.eval_frame import is_dynamo_supported
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
from torch.export import export
from torch.fx.passes.infra.pass_base import PassResult
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase


@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
class TestPassInfra(TestCase):
    def test_export_pass_base(self) -> None:
        class Foo(torch.nn.Module):
            def forward(self, x):
                y = torch.cat([x, x])
                return torch.ops.aten.tensor_split.sections(y, 2)

        f = Foo()

        class NullPass(_ExportPassBaseDeprecatedDoNotUse):
            pass

        ep = export(f, (torch.ones(3, 2),))
        old_nodes = ep.graph.nodes

        ep = ep._transform_do_not_use(NullPass())
        new_nodes = ep.graph.nodes

        for node in new_nodes:
            if node.op != "call_function":
                continue
            self.assertTrue(hasattr(node, "stack_trace"))
            self.assertIsNotNone(node.stack_trace)

        self.assertEqual(len(new_nodes), len(old_nodes))
        for new_node, old_node in zip(new_nodes, old_nodes):
            self.assertEqual(new_node.op, old_node.op)
            self.assertEqual(new_node.target, old_node.target)

    @unittest.skipIf(IS_WINDOWS, "Windows not supported")
    def test_cond(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, pred, x, y):
                def true_fn(x, y):
                    b = x.item()
                    torch._check(b >= 2)
                    torch._check(b <= 5)
                    return x - y

                def false_fn(x, y):
                    c = y.item()
                    torch._check(c >= 2)
                    torch._check(c <= 5)
                    return x + y

                ret = control_flow.cond(pred, true_fn, false_fn, [x, y])
                return ret

        x = torch.tensor([2])
        y = torch.tensor([5])
        mod = M()
        _ = export(mod, (torch.tensor(True), x, y))._transform_do_not_use(
            _ExportPassBaseDeprecatedDoNotUse()
        )

    def test_node_name_stability(self) -> None:
        # Tests that graph nodes stay the same for nodes that are not touched
        # during transformation
        class CustomModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

                # Define a parameter
                self.my_parameter = torch.nn.Parameter(torch.tensor(2.0))

                # Define two buffers
                self.my_buffer1 = torch.nn.Buffer(torch.tensor(3.0))
                self.my_buffer2 = torch.nn.Buffer(torch.tensor(4.0))

            def forward(self, x1, x2):
                # Use the parameter, buffers, and both inputs in the forward method
                output = (
                    x1 + self.my_parameter
                ) * self.my_buffer1 + x2 * self.my_buffer2

                # Mutate one of the buffers (e.g., increment it by 1)
                self.my_buffer2.add_(1.0)

                return output

        inps = (torch.rand(1), torch.rand(1))
        m = CustomModule()

        ep_before = export(m, inps)

        # No op transformation that doesn't perform any meaningful changes to node
        ep_after = ep_before._transform_do_not_use(_ExportPassBaseDeprecatedDoNotUse())

        for before_node, after_node in zip(ep_before.graph.nodes, ep_after.graph.nodes):
            self.assertEqual(before_node.name, after_node.name)

    def test_graph_signature_updated_after_transformation(self) -> None:
        # Checks that pass infra correctly updates graph signature
        # after transformations.
        class CustomModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

                self.my_parameter = torch.nn.Parameter(torch.tensor(2.0))

                self.my_buffer1 = torch.nn.Buffer(torch.tensor(3.0))
                self.my_buffer2 = torch.nn.Buffer(torch.tensor(4.0))

            def forward(self, x1, x2):
                # Use the parameter, buffers, and both inputs in the forward method
                output = (
                    x1 + self.my_parameter
                ) * self.my_buffer1 + x2 * self.my_buffer2
                return output

        my_module = CustomModule()

        # Test the custom module with two input tensors
        input_tensor1 = torch.tensor(5.0)
        input_tensor2 = torch.tensor(6.0)

        ep_before = torch.export.export(my_module, (input_tensor1, input_tensor2))
        from torch.fx.passes.infra.pass_base import PassResult

        def modify_input_output_pass(gm):
            for node in gm.graph.nodes:
                if node.op == "call_function":
                    node.name = node.name + "_modified"
            gm.recompile()
            return PassResult(gm, True)

        ep_after = ep_before._transform_do_not_use(modify_input_output_pass)
        new_signature = ep_after.graph_signature

        for node_name in new_signature.user_outputs:
            self.assertTrue("_modified" in node_name)

        old_signature = ep_before.graph_signature
        self.assertNotEqual(new_signature.user_outputs, old_signature.user_outputs)

    def test_replace_hook_basic(self) -> None:
        class CustomModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

                self.my_parameter = torch.nn.Parameter(torch.tensor(2.0))

                self.my_buffer1 = torch.nn.Buffer(torch.tensor(3.0))
                self.my_buffer2 = torch.nn.Buffer(torch.tensor(4.0))

            def forward(self, x1, x2):
                # Use the parameter, buffers, and both inputs in the forward method
                output = (
                    x1 + self.my_parameter
                ) * self.my_buffer1 + x2 * self.my_buffer2
                return output

        my_module = CustomModule()
        inputs = (torch.tensor(6.0), torch.tensor(7.0))
        ep_before = export(my_module, inputs)

        def replace_pass(gm):
            for node in gm.graph.nodes:
                if node.op == "call_function":
                    node.name = node.name + "_modified"
            gm.recompile()
            return PassResult(gm, True)

        gm = copy.deepcopy(ep_before.graph_module)
        sig = copy.deepcopy(ep_before.graph_signature)

        with gm._set_replace_hook(sig.get_replace_hook()):
            replace_pass(gm)

        for node_name in sig.user_outputs:
            self.assertTrue("_modified" in node_name)

        old_signature = ep_before.graph_signature
        self.assertNotEqual(sig.user_outputs, old_signature.user_outputs)


if __name__ == "__main__":
    run_tests()