File: test_serialize.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1482 lines) | stat: -rw-r--r-- 53,033 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
"""
PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes
with test_sym_bool)
"""


# Owner(s): ["oncall: export"]
import copy
import io
import math
import tempfile
import unittest
import zipfile
from pathlib import Path

import torch
import torch._dynamo as torchdynamo
import torch.export._trace
import torch.utils._pytree as pytree
from torch._export.db.case import ExportCase, SupportLevel
from torch._export.db.examples import all_examples
from torch._export.serde.serialize import (
    canonicalize,
    deserialize,
    ExportedProgramDeserializer,
    ExportedProgramSerializer,
    serialize,
    SerializeError,
)
from torch._higher_order_ops.torchbind import enable_torchbind_tracing
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch.export import Dim, export_for_training, load, save
from torch.fx.experimental.symbolic_shapes import is_concrete_int, ValueRanges
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    IS_WINDOWS,
    parametrize,
    run_tests,
    TemporaryFileName,
    TestCase,
)
from torch.testing._internal.torchbind_impls import init_torchbind_implementations


def get_filtered_export_db_tests():
    return [
        (name, case)
        for name, case in all_examples().items()
        if case.support_level == SupportLevel.SUPPORTED
    ]


@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerialize(TestCase):
    def test_export_with_extension_op_serialization(self):
        class TestModule(torch.nn.Module):
            def forward(self, x):
                return x + x

        class FooExtensionOp:
            def __hash__(self):
                return 0

            def __eq__(self, other):
                return type(other) == type(self)

            def __call__(self, *args, **kwargs):
                return torch.ops.aten.add.Tensor(*args, **kwargs)

            @property
            def __name__(self):
                return "foo.my_op"

        class ExtensionVerifier(torch._export.verifier.Verifier):
            dialect = "FOO"

            def allowed_op_types(self):
                return super().allowed_op_types() + (FooExtensionOp,)

        class FooExtensionHandler(torch._export.serde.serialize.ExtensionHandler):
            @classmethod
            def namespace(cls):
                return "foo"

            @classmethod
            def to_op_name(cls, op):
                return "my_op"

            @classmethod
            def from_op_name(cls, name: str):
                self.assertEqual(name, "my_op")
                return FooExtensionOp()

            @classmethod
            def op_schema(cls, op):
                return torch.ops.aten.add.Tensor._schema

        inp = (torch.ones(10),)
        ep = export_for_training(TestModule(), inp)

        # Register the custom op handler.
        foo_custom_op = FooExtensionOp()
        torch._export.serde.serialize.register_extension(
            FooExtensionOp, FooExtensionHandler
        )

        new_gm = copy.deepcopy(ep.graph_module)
        # Inject the custom operator.
        for node in new_gm.graph.nodes:
            if node.name == "add":
                node.target = foo_custom_op

        new_ep = ep._update(new_gm, ep.graph_signature, verifiers=[ExtensionVerifier])
        serialized = serialize(new_ep)
        deserialized = deserialize(serialized)
        self.assertEqual(
            len(
                deserialized.graph.find_nodes(op="call_function", target=foo_custom_op)
            ),
            1,
        )

    def test_predispatch_export_with_autograd_op(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                with torch.enable_grad():
                    return x + x

        inp = (torch.ones(10),)
        with torch.no_grad():
            from torch.export._trace import _export

            ep = _export(Foo(), inp, pre_dispatch=True)

        buffer = io.BytesIO()
        torch.export.save(ep, buffer)
        buffer.seek(0)
        loaded_ep = torch.export.load(buffer)

        exp_out = ep.module()(*inp)
        actual_out = loaded_ep.module()(*inp)
        self.assertEqual(exp_out, actual_out)
        self.assertEqual(exp_out.requires_grad, actual_out.requires_grad)

    def test_export_example_inputs_preserved(self):
        class MyModule(torch.nn.Module):
            """A test module with that has multiple args and uses kwargs"""

            def __init__(self) -> None:
                super().__init__()
                self.p = torch.nn.Parameter(torch.ones(2, 3))

            def forward(self, x, y, use_p=False):
                out = x + y
                if use_p:
                    out += self.p
                return out

        model = MyModule().eval()
        random_inputs = (torch.rand([2, 3]), torch.rand([2, 3]))
        exp_program = export_for_training(model, random_inputs, {"use_p": True})

        output_buffer = io.BytesIO()
        # Tests that example inputs are preserved when saving and loading module.
        torch.export.save(exp_program, output_buffer)
        loaded_model = torch.export.load(output_buffer)
        # Extract the example inputs from before and after saving.
        orig_args, orig_kwargs = exp_program.example_inputs
        loaded_args, loaded_kwargs = loaded_model.example_inputs
        # Run both modules and confirm that outputs match.
        orig_out = exp_program.module()(*orig_args, **orig_kwargs)
        loaded_out = loaded_model.module()(*loaded_args, **loaded_kwargs)
        self.assertEqual(orig_out, loaded_out)

    def test_metadata_run_decomp_serder(self):
        class M(torch.nn.Module):
            def forward(self, x):
                return x.sin()

        exp_program = export_for_training(M(), (torch.randn(4, 4),))

        output_buffer = io.BytesIO()
        # Tests that example forward arg names are preserved when saving and loading module.
        torch.export.save(exp_program, output_buffer)
        loaded_model = torch.export.load(output_buffer)

        ep = loaded_model.run_decompositions({})
        # We should preserve the original module name
        self.assertExpectedInline(
            str(ep.graph_module.code).strip(),
            """\
def forward(self, x):
    sin = torch.ops.aten.sin.default(x);  x = None
    return (sin,)""",
        )

    def test_metadata_parsing_with_layer_split(self):
        # Tests that modules with more complicated layer patterns can be serialized
        # and deserialized correctly.
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.layers = torch.nn.Sequential(
                    torch.nn.SiLU(),
                    torch.nn.SiLU(),
                    torch.nn.SiLU(),
                )

            def forward(self, x):
                # Splitting layers of a sequential stack introduces commas and parens
                # into metadata trace.
                out_start, out_rest = self.layers[0], self.layers[1:]
                h = out_start(x)
                h = out_rest(h)
                return h

        inp = (torch.ones(10),)
        # Module will only be able to roundtrip if metadata
        # can be correctly parsed.
        ep = export_for_training(MyModule(), inp)
        buffer = io.BytesIO()
        save(ep, buffer)
        loaded_ep = load(buffer)

        # Check that both modules run to confirm load was successful.
        exp_out = ep.module()(*inp)
        actual_out = loaded_ep.module()(*inp)
        self.assertEqual(exp_out, actual_out)

    def test_serialize_constant_outputs(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                # Along with tensor output, return Nonetype
                # and constant. Although these outputs aren't
                # very useful, they do show up in graphs.
                return x + 1, None, 1024

        # Check that module can be roundtripped, thereby confirming proper deserialization.
        inp = (torch.ones(10),)
        ep = export_for_training(MyModule(), inp)
        buffer = io.BytesIO()
        save(ep, buffer)
        loaded_ep = load(buffer)

        exp_out = ep.module()(*inp)
        actual_out = loaded_ep.module()(*inp)
        self.assertEqual(exp_out, actual_out)

    def test_serialize_multiple_returns_from_node(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, w, b):
                return torch.nn.functional.layer_norm(
                    x,
                    x.size()[1:],
                    weight=w,
                    bias=b,
                    eps=1e-5,
                )

        exported_module = export_for_training(
            MyModule(),
            (
                torch.ones([512, 512], requires_grad=True),
                torch.ones([512]),
                torch.ones([512]),
            ),
        ).run_decompositions()

        serialized = ExportedProgramSerializer().serialize(exported_module)
        node = serialized.exported_program.graph_module.graph.nodes[-1]
        self.assertEqual(node.target, "torch.ops.aten.native_layer_norm.default")
        # aten::native_layer_norm returns 3 tensors
        self.assertEqual(len(node.outputs), 3)

        # check the names are unique
        seen = set()
        for output in node.outputs:
            name = output.as_tensor.name
            self.assertNotIn(name, seen)
            seen.add(name)

    def test_serialize_sym_int(self) -> None:
        class DynamicShapeSimpleModel(torch.nn.Module):
            def __init__(self):
                super().__init__()

            def forward(self, a, b, c) -> torch.Tensor:
                d = (torch.matmul(a, b) + c) / 2
                d_s0 = d.shape[0]
                d_s1 = d.shape[1]
                d_s3 = d_s0 * d_s1
                e = d.view(d_s3)
                return torch.cat([e, e])

        inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
        dim0_ac = torch.export.Dim("dim0_ac")
        dim1_bc = torch.export.Dim("dim1_b")
        dynamic_shapes = {
            "a": {0: dim0_ac},
            "b": {1: dim1_bc},
            "c": {0: dim0_ac, 1: dim1_bc},
        }
        exported_module = export_for_training(
            DynamicShapeSimpleModel(), inputs, dynamic_shapes=dynamic_shapes
        ).run_decompositions()
        serialized = ExportedProgramSerializer().serialize(exported_module)
        sym_size_nodes = [
            node
            for node in serialized.exported_program.graph_module.graph.nodes
            if node.target == "torch.ops.aten.sym_size.int"
        ]
        for node in sym_size_nodes:
            self.assertEqual(node.inputs[0].name, "self")
            self.assertEqual(node.inputs[1].name, "dim")

    def test_serialize_sym_float(self) -> None:
        class DynamicFloatSimpleModel(torch.nn.Module):
            def __init__(self, multiplier: torch.SymFloat):
                super().__init__()
                self.multiplier = multiplier

            def forward(self, a, b, c) -> torch.Tensor:
                d = (torch.matmul(a, b) + c) / 2
                e = d * self.multiplier
                e_s0 = e.shape[0]
                e_s1 = e.shape[1]
                e_s3 = e_s0 * e_s1
                f = e.view(e_s3)
                return torch.cat([f, f])

        multiplier_sym = torch.SymFloat("multiplier_sym")
        model = DynamicFloatSimpleModel(multiplier_sym)
        inputs = (
            torch.randn(2, 4),
            torch.randn(4, 7),
            torch.randn(2, 7),
        )
        dim0_ac = Dim("dim0_ac")
        dim1_bc = Dim("dim1_b")

    def test_serialize_infinite_sym_int(self) -> None:
        class DynamicShapeSimpleModel(torch.nn.Module):
            def __init__(self):
                super().__init__()

            def forward(self, a, b, c) -> torch.Tensor:
                d = (torch.matmul(a, b) + c) / 2
                d_s0 = d.shape[0]
                d_s1 = d.shape[1]
                d_s3 = d_s0 * d_s1
                e = d.view(d_s3)
                return torch.cat([e, e])

        inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
        dim0_ac = torch.export.Dim("dim0_ac")
        dim1_bc = torch.export.Dim("dim1_b")
        dynamic_shapes = {
            "a": {0: dim0_ac},
            "b": {1: dim1_bc},
            "c": {0: dim0_ac, 1: dim1_bc},
        }
        exported_module = export_for_training(
            DynamicShapeSimpleModel(), inputs, dynamic_shapes=dynamic_shapes
        ).run_decompositions()
        serialized = ExportedProgramSerializer().serialize(exported_module)
        for v in serialized.exported_program.range_constraints.values():
            self.assertEqual(v.max_val, None)

    def test_serialize_list_returns(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                return torch.split(x, 2)

        input = torch.arange(10.0).reshape(5, 2)
        exported_module = export_for_training(MyModule(), (input,)).run_decompositions()

        serialized = ExportedProgramSerializer().serialize(exported_module)
        node = serialized.exported_program.graph_module.graph.nodes[-1]
        # split.Tensor gets decomposed to split_with_sizes by the core ATen decomposition table
        self.assertEqual(node.target, "torch.ops.aten.split_with_sizes.default")
        self.assertEqual(len(node.outputs), 1)
        # Input looks like:
        # tensor([[0, 1],
        #         [2, 3],
        #         [4, 5],
        #         [6, 7],
        #         [8, 9]])
        # Output looks like:
        # (tensor([[0, 1],
        #          [2, 3]]),
        #  tensor([[4, 5],
        #          [6, 7]]),
        #  tensor([[8, 9]]))
        self.assertEqual(len(node.outputs[0].as_tensors), 3)

        # check the names are unique
        seen = set()
        for output in node.outputs[0].as_tensors:
            name = output.name
            self.assertNotIn(name, seen)
            seen.add(name)

    def test_multi_return_some_unused(self) -> None:
        """
        Make sure the serialized output matches the op schema, even if some of
        the arguments are never used in the graph.
        """

        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                return torch.ops.aten.var_mean.correction(x, [1])[0]

        exported_module = export_for_training(
            MyModule(),
            (torch.ones([512, 512], requires_grad=True),),
        ).run_decompositions()

        serialized = ExportedProgramSerializer().serialize(exported_module)
        node = serialized.exported_program.graph_module.graph.nodes[-1]
        self.assertEqual(node.target, "torch.ops.aten.var_mean.correction")
        self.assertEqual(len(node.outputs), 2)

        # check the names are unique
        seen = set()
        for output in node.outputs:
            name = output.as_tensor.name
            self.assertNotIn(name, seen)
            seen.add(name)

    def test_rational_ranges(self) -> None:
        class M(torch.nn.Module):
            def forward(self, x):
                return x + x

        ep = export_for_training(
            M(), (torch.randn(4),), dynamic_shapes=({0: Dim("temp")},)
        )

        range_constraints = list(ep.range_constraints.keys())
        assert len(range_constraints) == 1
        symint = range_constraints[0]

        import sympy

        upper_range = sympy.Rational(10, 3)
        lower_range = sympy.Rational(10, 6)
        ep.range_constraints[symint] = ValueRanges(lower=lower_range, upper=upper_range)

        serialized = ExportedProgramSerializer().serialize(ep)
        self.assertEqual(serialized.exported_program.range_constraints["s0"].min_val, 2)
        self.assertEqual(serialized.exported_program.range_constraints["s0"].max_val, 3)

    def test_kwargs_default(self) -> None:
        """
        Tests that the kwargs default values are serialized even if they are not
        specified
        """

        class Foo(torch.nn.Module):
            def forward(self, x: torch.Tensor) -> torch.Tensor:
                values = torch.randn(3, 2)
                return torch.searchsorted(x, values, side="right", right=True)

        f = Foo()

        x, _ = torch.sort(torch.randn(3, 4))
        exported_module = export_for_training(f, (x,)).run_decompositions()
        serialized = ExportedProgramSerializer().serialize(exported_module)

        node = serialized.exported_program.graph_module.graph.nodes[-1]
        self.assertEqual(node.target, "torch.ops.aten.searchsorted.Tensor")
        self.assertEqual(len(node.inputs), 4)
        self.assertEqual(node.inputs[2].name, "right")
        self.assertEqual(node.inputs[2].arg.as_bool, True)
        self.assertEqual(node.inputs[3].name, "side")
        self.assertEqual(node.inputs[3].arg.as_string, "right")

    def test_canonicalize(self) -> None:
        class Module(torch.nn.Module):
            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                a = y + x
                b = x + y
                return b + a

        ep = export_for_training(Module(), (torch.randn(3, 2), torch.randn(3, 2)))
        s = ExportedProgramSerializer().serialize(ep)
        c = canonicalize(s.exported_program)
        g = c.graph_module.graph
        self.assertLess(
            g.nodes[0].inputs[0].arg.as_tensor.name,
            g.nodes[1].inputs[0].arg.as_tensor.name,
        )

    def test_int_list(self) -> None:
        class M(torch.nn.Module):
            def forward(self, x):
                return torch.ops.aten.sum.dim_IntList(x, [])

        ep = torch.export.export_for_training(M(), (torch.randn(3, 2),))
        serialized = ExportedProgramSerializer().serialize(ep)
        for node in serialized.exported_program.graph_module.graph.nodes:
            if "aten.sum.dim_IntList" in node.target:
                self.assertEqual(node.inputs[1].arg.type, "as_ints")


@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestDeserialize(TestCase):
    def setUp(self):
        super().setUp()
        init_torchbind_implementations()

    def _check_graph_nodes(self, gm1, gm2, _check_meta=True):
        # TODO: The _check_meta flag bypasses checking for
        # source_fn/nn_module_stack as there is an issue with
        # roundtripping the source_fn value on torch.ops.map nodes
        # original source_fn: <functorch.experimental._map.MapWrapper object at 0x7f80a0549930>
        # deserialized source_fn: 'functorch.experimental._map.map'

        self.assertEqual(len(gm1.graph.nodes), len(gm2.graph.nodes))

        for node1, node2 in zip(gm1.graph.nodes, gm2.graph.nodes):
            self.assertEqual(node1.op, node2.op)
            if node1.op == "call_function":
                # Check "val" metadata
                val1 = node1.meta.get("val", None)
                val2 = node2.meta.get("val", None)
                if val1 is None or val2 is None:
                    # Either both are None
                    self.assertEqual(val1, val2)
                elif isinstance(val1, FakeTensor) and isinstance(val2, FakeTensor):
                    # Or both are fake tensors with the same shape/dtype
                    self.assertEqual(len(val1.shape), len(val2.shape))
                    for s1, s2 in zip(val1.shape, val2.shape):
                        if is_concrete_int(s1) and is_concrete_int(s2):
                            self.assertEqual(s1, s2)
                        else:
                            self.assertEqual(str(s1), str(s2))
                    self.assertEqual(val1.dtype, val2.dtype)
                elif isinstance(val1, (list, tuple)) and isinstance(
                    val2, (list, tuple)
                ):
                    # Or both are fake tensors lists with one element and with the
                    # same shape/dtype
                    for v1, v2 in zip(
                        pytree.tree_leaves(val1), pytree.tree_leaves(val2)
                    ):
                        if isinstance(v1, FakeTensor):
                            self.assertEqual(v1.shape, v2.shape)
                            self.assertEqual(v1.dtype, v2.dtype)
                else:
                    # For expressions like 's0 < 10' can only compare through string
                    self.assertEqual(str(val1), str(val2))

                # Check "stack_trace" metadata
                self.assertEqual(
                    node1.meta.get("stack_trace", None),
                    node2.meta.get("stack_trace", None),
                )

                if node1.target == torch.ops.higher_order.cond:
                    true_graph1 = getattr(gm1, node1.args[1].target)
                    true_graph2 = getattr(gm2, node2.args[1].target)
                    self._check_graph_nodes(true_graph1, true_graph2)

                    false_graph1 = getattr(gm1, node1.args[2].target)
                    false_graph2 = getattr(gm2, node2.args[2].target)
                    self._check_graph_nodes(false_graph1, false_graph2)
                elif node1.target == torch.ops.higher_order.map_impl:
                    map_graph1 = getattr(gm1, node1.args[0].target)
                    map_graph2 = getattr(gm2, node2.args[0].target)
                    self._check_graph_nodes(map_graph1, map_graph2, False)

            if _check_meta and node1.op not in ("get_attr", "placeholder", "output"):
                # Check "nn_module_stack" metadata
                self.assertEqual(
                    node1.meta.get("nn_module_stack", None),
                    node2.meta.get("nn_module_stack", None),
                )
                # Check "source_fn_stack" metadata
                self.assertEqual(
                    node1.meta.get("source_fn_stack", None),
                    node2.meta.get("source_fn_stack", None),
                )

    def check_graph(
        self,
        fn,
        inputs,
        dynamic_shapes=None,
        _check_meta=True,
        use_pre_dispatch=True,
        strict=True,
    ) -> None:
        """Export a graph, serialize it, deserialize it, and compare the results."""

        def _deepcopy_inputs(inputs):
            # copy.deepcopy(deepcopy) can fail if tensor inputs have attribute (i.e. __dict__).
            # we remove __dict__ when deepcopying.
            dict_mapping = dict()
            inputs_clone = ()
            for idx, i in enumerate(inputs):
                if isinstance(i, torch.Tensor) and hasattr(inputs[0], "__dict__"):
                    dict_mapping[idx] = i.__dict__
                    i.__dict__ = {}
                inputs_clone += (copy.deepcopy(i),)

            # Add __dict__ back.
            for k, v in dict_mapping.items():
                inputs[k].__dict__ = v
                inputs_clone[k].__dict__ = v
            return inputs_clone

        def _check_graph(pre_dispatch):
            if pre_dispatch:
                ep = torch.export.export_for_training(
                    fn,
                    _deepcopy_inputs(inputs),
                    {},
                    dynamic_shapes=dynamic_shapes,
                    strict=strict,
                )
            else:
                # We should have this branch because
                # PT2 Inference goes through this private
                # export API.
                ep = torch.export._trace._export(
                    fn,
                    _deepcopy_inputs(inputs),
                    {},
                    dynamic_shapes=dynamic_shapes,
                    strict=strict,
                    pre_dispatch=False,
                )
            ep.graph.eliminate_dead_code()

            serialized_artifact = serialize(ep, opset_version={"aten": 0})
            deserialized_ep = deserialize(
                serialized_artifact, expected_opset_version={"aten": 0}
            )
            deserialized_ep.graph.eliminate_dead_code()

            orig_outputs = ep.module()(*_deepcopy_inputs(inputs))
            loaded_outputs = deserialized_ep.module()(*_deepcopy_inputs(inputs))

            flat_orig_outputs = pytree.tree_leaves(orig_outputs)
            flat_loaded_outputs = pytree.tree_leaves(loaded_outputs)

            for orig, loaded in zip(flat_orig_outputs, flat_loaded_outputs):
                self.assertEqual(type(orig), type(loaded))
                if isinstance(orig, torch.Tensor):
                    if orig.is_meta:
                        self.assertEqual(orig, loaded)
                    else:
                        self.assertTrue(torch.allclose(orig, loaded))
                else:
                    self.assertEqual(orig, loaded)
            self._check_graph_nodes(
                ep.graph_module, deserialized_ep.graph_module, _check_meta
            )

        if use_pre_dispatch:
            _check_graph(pre_dispatch=True)
            _check_graph(pre_dispatch=False)
        else:
            _check_graph(pre_dispatch=False)

    def test_optional_tuple(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
            torch.library.define(
                "mylib::foo",
                "(Tensor a, Tensor b, Tensor? c) -> (Tensor, Tensor?)",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )

            @torch.library.impl("mylib::foo", "cpu", lib=lib)
            @torch.library.impl_abstract("mylib::foo")
            def foo_impl(a, b, c):
                res2 = None
                if c is not None:
                    res2 = c + a + b
                return a + b, res2

            class M(torch.nn.Module):
                def forward(self, a, b, c):
                    return torch.ops.mylib.foo(a, b, c)

            self.check_graph(M(), (torch.randn(3), torch.randn(3), torch.randn(3)))

    def test_sym_bool_dynamic_shapes(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, y):
                z = x[:, -y.shape[0] :, :]
                return z

        inputs = (torch.ones(4, 5, 10), torch.ones(3))
        dynamic_shapes = {"x": {}, "y": {0: Dim("seqlen", max=4)}}
        # Compile with dynamic_shapes set to get operator.neg involved
        self.check_graph(MyModule(), inputs, dynamic_shapes=dynamic_shapes)

    def test_auto_functionalize(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
            torch.library.define(
                "mylib::foo1",
                "(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> Tensor",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )
            torch.library.define(
                "mylib::foo2",
                "(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> (Tensor, Tensor)",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )
            torch.library.define(
                "mylib::foo3",
                "(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> ()",
                tags=torch.Tag.pt2_compliant_tag,
                lib=lib,
            )

            @torch.library.impl("mylib::foo1", "cpu", lib=lib)
            @torch.library.impl_abstract("mylib::foo1")
            def foo1_impl(x, y, z, w, n):
                x.add_(y[0] + w)
                z.add_(y[1] + n)
                return n + n

            @torch.library.impl("mylib::foo2", "cpu", lib=lib)
            @torch.library.impl_abstract("mylib::foo2")
            def foo2_impl(x, y, z, w, n):
                x.add_(y[0] + w)
                z.add_(y[1] + n)
                return (n + n, n * n)

            @torch.library.impl("mylib::foo3", "cpu", lib=lib)
            @torch.library.impl_abstract("mylib::foo3")
            def foo3_impl(x, y, z, w, n):
                x.add_(y[0] + w)
                z.add_(y[1] + n)
                return

            class M(torch.nn.Module):
                def forward(self, x, y, z, n):
                    n = torch.ops.mylib.foo1(x, y, z, 2, n)
                    torch.ops.mylib.foo3(x, y, z, 2, n)
                    return torch.ops.mylib.foo2(x, y, z, 2, n)

            x = torch.randn(3)
            y = (torch.randn(3), torch.randn(3))
            z = torch.randn(3)
            n = torch.randn(3)
            orig_args = (x, y, z, n)

            # TODO Auto_functionalize is not supported on pre_dispatch IR
            self.check_graph(M(), orig_args, use_pre_dispatch=False)

    def test_multi_return(self) -> None:
        """
        Test multiple return from a single node (ex. layer_norm has 2 outputs)
        """

        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, w, b):
                return torch.nn.functional.layer_norm(
                    x,
                    x.size()[1:],
                    weight=w,
                    bias=b,
                    eps=1e-5,
                )

        inputs = (
            torch.ones([512, 512], requires_grad=True),
            torch.ones([512]),
            torch.ones([512]),
        )
        self.check_graph(MyModule(), inputs)

    def test_basic(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                x = x + x
                x = x * x
                x = x / x
                return x, x.clone()

        inputs = (torch.ones([512], requires_grad=True),)
        self.check_graph(MyModule(), inputs)

    def test_dynamic(self) -> None:
        class DynamicShapeSimpleModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, a, b, c) -> torch.Tensor:
                d = (torch.matmul(a, b) + c) / 2
                d_s0 = d.shape[0]
                d_s1 = d.shape[1]
                d_s3 = d_s0 * d_s1
                e = d.view(d_s3)
                return torch.cat([e, e])

        inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
        dim0_ac = torch.export.Dim("dim0_ac")
        dynamic_shapes = {"a": {0: dim0_ac}, "b": None, "c": {0: dim0_ac}}
        self.check_graph(DynamicShapeSimpleModel(), inputs, dynamic_shapes)

    @unittest.expectedFailure  # T206587081
    def test_sym_bool(self):
        class Module(torch.nn.Module):
            def forward(self, x, y):
                assert x.size(0) in y
                return x + y

        f = Module()
        self.check_graph(f, (torch.ones(1), torch.ones(3)))

    def test_shape(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                z, y = x.size()
                return z + y + x[0], z

        inputs = (torch.ones(2, 3),)
        dim0_x, dim1_x = torch.export.dims("dim0_x", "dim1_x")
        dynamic_shapes = {"x": (dim0_x, dim1_x)}
        self.check_graph(Foo(), inputs, dynamic_shapes)

    def test_module(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear1 = torch.nn.Linear(3, 3)
                self.relu = torch.nn.ReLU()
                self.linear2 = torch.nn.Linear(3, 5)

            def forward(self, x):
                x = self.linear1(x)
                x = self.linear1(x)
                x = torch.nn.functional.relu(x)
                x = self.linear2(x)
                return x

        inputs = (torch.randn(3, 3),)
        self.check_graph(M(), inputs)

    def test_module_meta(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.p = torch.nn.Parameter(torch.ones(3, 3))

            def forward(self, x):
                return self.p + x

        with torch.device("meta"):
            mod = M()

        inputs = (torch.randn(3, 3, device="meta"),)
        self.check_graph(mod, inputs)

    def test_cond(self):
        from functorch.experimental.control_flow import cond

        inputs = torch.ones(4, 3), torch.zeros(4, 3)

        class M(torch.nn.Module):
            def forward(self, x, y):
                def t(x, y):
                    return x + y

                def f(x, y):
                    return x - y

                return cond(x[0][0] > 4, t, f, [x, y])

        self.check_graph(M(), inputs)

    def test_arg_from(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.register_buffer("compress_weight", torch.ones((10, 10)))
                self.register_buffer("compress_bias", torch.ones(10))

            def forward(self) -> None:
                if self.compress_weight is None or self.compress_bias is None:
                    return
                torch.nn.init.kaiming_uniform_(self.compress_weight, a=math.sqrt(5))
                fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(
                    self.compress_weight
                )
                bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
                torch.nn.init.uniform_(self.compress_bias, -bound, bound)

        with torch.no_grad():
            self.check_graph(M(), ())

    def test_map(self):
        from functorch.experimental import control_flow

        def f(x, y):
            return x + y

        class Module(torch.nn.Module):
            def forward(self, xs, y):
                return control_flow.map(f, xs, y)

        g = Module()
        inputs = (torch.ones(3, 2, 2), torch.ones(2))
        self.check_graph(g, inputs, _check_meta=False)

    def test_tensor_tensor_list(self):
        with torch.library._scoped_library("_export", "FRAGMENT") as lib:
            lib.define(
                "_test_tensor_tensor_list_output(Tensor x, Tensor y) -> (Tensor, Tensor[])",
                tags=torch.Tag.pt2_compliant_tag,
            )

            def _test_tensor_tensor_list_output(x, y):
                return y, [x]

            lib.impl(
                "_test_tensor_tensor_list_output",
                _test_tensor_tensor_list_output,
                "CPU",
            )
            lib.impl(
                "_test_tensor_tensor_list_output",
                _test_tensor_tensor_list_output,
                "Meta",
            )

            class M(torch.nn.Module):
                def forward(self, x, y):
                    a, b = torch.ops._export._test_tensor_tensor_list_output.default(
                        x, y
                    )
                    return a + b[0]

            self.check_graph(M(), (torch.rand(3, 2), torch.rand(3, 2)))

    def test_list_of_optional_tensors(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, y, z):
                indices = [None, None, torch.tensor([1, 3, 5, 7])]
                indexed = torch.ops.aten.index.Tensor(x + y, indices)
                return indexed + z

        inputs = (torch.rand(8, 8, 8), torch.rand(8, 8, 8), torch.rand(8, 8, 4))
        self.check_graph(MyModule(), inputs)

    def test_sym_ite(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                b = x.shape[0] == 5
                ret = torch.sym_ite(b, x.shape[0], x.shape[1])
                return ret

        dynamic_shapes = {"x": {0: Dim("dim0"), 1: Dim("dim1")}}
        self.check_graph(Foo(), (torch.ones(4, 5),), dynamic_shapes=dynamic_shapes)

    def test_multiple_getitem(self):
        class M(torch.nn.Module):
            def forward(self, x):
                a, b = torch.topk(x, 2)
                a = a * 2
                return a, b

        ep = torch.export.export_for_training(M(), (torch.ones(3),))

        # insert another getitem node
        for node in ep.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.mul.Tensor:
                getitem_0 = node.args[0]
                with ep.graph.inserting_before(getitem_0):
                    getitem_copy = ep.graph.node_copy(getitem_0)
                    mul_node = ep.graph.call_function(
                        torch.ops.aten.mul.Tensor, (getitem_copy, 2)
                    )
                    mul_node.meta = copy.copy(getitem_copy.meta)
                    node.args = (getitem_0, mul_node)

        deserialized_ep = deserialize(serialize(ep))

        inp = (torch.randn(3),)
        orig_res = ep.module()(*inp)
        res = deserialized_ep.module()(*inp)
        self.assertTrue(torch.allclose(orig_res[0], res[0]))
        self.assertTrue(torch.allclose(orig_res[1], res[1]))

        # The deserialized graph should have deduped getitem calls
        self.assertExpectedInline(
            deserialized_ep.graph_module.code.strip("\n"),
            """\
def forward(self, x):
    topk_default = torch.ops.aten.topk.default(x, 2);  x = None
    getitem = topk_default[0]
    getitem_1 = topk_default[1];  topk_default = None
    mul_tensor = torch.ops.aten.mul.Tensor(getitem, 2)
    mul = torch.ops.aten.mul.Tensor(getitem, mul_tensor);  getitem = mul_tensor = None
    return (mul, getitem_1)
    """,
        )

    @parametrize(
        "name,case",
        get_filtered_export_db_tests(),
        name_fn=lambda name, case: f"case_{name}",
    )
    def test_exportdb_supported(self, name: str, case: ExportCase) -> None:
        model = case.model
        _check_meta = "map" not in name
        self.check_graph(model, case.example_args, _check_meta=_check_meta)

    def test_constraints(self):
        class Module(torch.nn.Module):
            def forward(self, x, y):
                n = x.item()
                torch._check_is_size(n)
                return y.sum() + torch.ones(n, 5).sum()

        f = Module()
        self.check_graph(f, (torch.tensor(3), torch.randn(4, 5)))

    def test_get_attr(self) -> None:
        class Module(torch.nn.Module):
            def forward(self, x):
                return x + torch.tensor(3)

        f = Module()
        self.check_graph(f, (torch.tensor(3),))

    def test_get_attr_list(self) -> None:
        class Module(torch.nn.Module):
            def forward(self, x):
                return torch.cat([x, torch.tensor([1, 1])])

        f = Module()
        self.check_graph(f, (torch.tensor([1, 1]),))

    @unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
    def test_device(self) -> None:
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 16, 3, stride=1, bias=True)
                self.relu = torch.nn.ReLU()

            def forward(self, x):
                conv = self.conv(x)
                relu = self.relu(conv)
                mul = relu * 0.5
                return mul

        inp = torch.randn((1, 3, 224, 224), dtype=torch.float).to("cuda")
        model = MyModule().eval().cuda()
        self.check_graph(model, (inp,))

    def test_custom_obj_tuple_out(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)

            def forward(self, x):
                a = torch.ops._TorchScriptTesting.takes_foo_tuple_return(self.attr, x)
                y = a[0] + a[1]
                b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
                return x + b

        m = MyModule()
        inputs = (torch.ones(2, 3),)
        self.check_graph(m, inputs, strict=False)

    def test_custom_obj(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)

            def forward(self, x):
                a = torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
                b = torch.ops._TorchScriptTesting.takes_foo(self.attr, a)
                return x + b

        m = MyModule()
        inputs = (torch.ones(2, 3),)
        self.check_graph(m, inputs, strict=False)

    def test_custom_obj_list_out(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)

            def forward(self, x):
                a = torch.ops._TorchScriptTesting.takes_foo_list_return(self.attr, x)
                y = a[0] + a[1] + a[2]
                b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
                return x + b

        m = MyModule()
        inputs = (torch.ones(2, 3),)
        self.check_graph(m, inputs, strict=False)

    def test_export_no_inputs(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.p = torch.ones(3, 3)

            def forward(self):
                return self.p * self.p

        ep = torch.export.export_for_training(M(), ())
        ep._example_inputs = None
        roundtrip_ep = deserialize(serialize(ep))
        self.assertTrue(torch.allclose(ep.module()(), roundtrip_ep.module()()))


instantiate_parametrized_tests(TestDeserialize)


@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSchemaVersioning(TestCase):
    def test_error(self):
        class Module(torch.nn.Module):
            def forward(self, x):
                return x + x

        f = Module()
        ep = export_for_training(f, (torch.randn(1, 3),))

        serialized_program = ExportedProgramSerializer().serialize(ep)
        serialized_program.exported_program.schema_version.major = -1
        with self.assertRaisesRegex(
            SerializeError, r"Serialized schema version .* does not match our current"
        ):
            ExportedProgramDeserializer().deserialize(
                serialized_program.exported_program,
                serialized_program.state_dict,
                serialized_program.constants,
                serialized_program.example_inputs,
            )


# We didn't set up kwargs input yet
unittest.expectedFailure(TestDeserialize.test_exportdb_supported_case_fn_with_kwargs)


@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSaveLoad(TestCase):
    def test_save_buffer(self):
        inp = (torch.tensor([0.1, 0.1]),)

        class Module(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(2, 2)

            def forward(self, x):
                x = x + 1
                y = x.t()
                y = y.relu()
                y = self.linear(y)
                return y

        ep = export_for_training(Module(), inp)

        buffer = io.BytesIO()
        save(ep, buffer)
        buffer.seek(0)
        loaded_ep = load(buffer)

        self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))

    def test_save_file(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                return x * x

        f = Foo()

        inp = (torch.randn(2, 2),)
        ep = export_for_training(f, inp)

        with tempfile.NamedTemporaryFile() as f:
            save(ep, f)
            f.seek(0)
            loaded_ep = load(f)

        self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))

    def test_save_path(self):
        class Foo(torch.nn.Module):
            def forward(self, x, y):
                return x + y

        f = Foo()

        inp = (torch.tensor([6]), torch.tensor([7]))
        ep = export_for_training(f, inp)

        with TemporaryFileName() as fname:
            path = Path(fname)
            save(ep, path)
            loaded_ep = load(path)

        self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))

    def test_save_extra(self):
        inp = (torch.tensor([0.1, 0.1]),)

        class Foo(torch.nn.Module):
            def forward(self, x):
                return x * x + x

        f = Foo()

        ep = export_for_training(f, inp)

        buffer = io.BytesIO()
        save(ep, buffer, extra_files={"extra.txt": "moo"})
        buffer.seek(0)
        extra_files = {"extra.txt": ""}
        loaded_ep = load(buffer, extra_files=extra_files)

        self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
        self.assertEqual(extra_files["extra.txt"], "moo")

    def test_version_error(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                return x + x

        f = Foo()

        ep = export_for_training(f, (torch.randn(1, 3),))

        with tempfile.NamedTemporaryFile() as f:
            save(ep, f)
            f.seek(0)

            # Modify the version
            with zipfile.ZipFile(f, "a") as zipf:
                zipf.writestr("version", "-1.1")

            with self.assertRaisesRegex(
                RuntimeError, r"Serialized version .* does not match our current"
            ):
                f.seek(0)
                load(f)

    def test_save_constants(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.tensor(3)

            def forward(self, x):
                list_tensor = [torch.tensor(3), torch.tensor(4)]
                return x + self.a + list_tensor[0] + list_tensor[1]

        ep = export_for_training(Foo(), (torch.tensor(1),))
        buffer = io.BytesIO()
        save(ep, buffer)
        buffer.seek(0)
        loaded_ep = load(buffer)

        inp = (torch.tensor(1),)
        self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))


@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerializeCustomClass(TestCase):
    def setUp(self):
        super().setUp()
        init_torchbind_implementations()

    def test_custom_class(self):
        custom_obj = torch.classes._TorchScriptTesting._PickleTester([3, 4])

        class Foo(torch.nn.Module):
            def forward(self, x):
                return x + x

        f = Foo()

        inputs = (torch.zeros(4, 4),)
        ep = export_for_training(f, inputs)

        # Replace one of the values with an instance of our custom class
        for node in ep.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
                with ep.graph.inserting_before(node):
                    custom_node = ep.graph.call_function(
                        torch.ops._TorchScriptTesting.take_an_instance.default,
                        (custom_obj,),
                    )
                    custom_node.meta["val"] = torch.ones(4, 4)
                    custom_node.meta["torch_fn"] = (
                        "take_an_instance",
                        "take_an_instance",
                    )
                    arg0, _ = node.args
                    node.args = (arg0, custom_node)

        serialized_vals = serialize(ep)

        ep_str = serialized_vals.exported_program.decode("utf-8")
        assert "class_fqn" in ep_str
        assert custom_obj._type().qualified_name() in ep_str

        deserialized_ep = deserialize(serialized_vals)

        for node in deserialized_ep.graph.nodes:
            if (
                node.op == "call_function"
                and node.target
                == torch.ops._TorchScriptTesting.take_an_instance.default
            ):
                arg = node.args[0]
                self.assertTrue(isinstance(arg, torch._C.ScriptObject))
                self.assertEqual(arg._type(), custom_obj._type())
                self.assertEqual(arg.__getstate__(), custom_obj.__getstate__())
                self.assertEqual(arg.top(), 7)

    def test_custom_class_containing_fake_tensor(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.custom_obj = torch.classes._TorchScriptTesting._ContainsTensor(
                    torch.rand(2, 3)
                )

            def forward(self, x):
                return x + self.custom_obj.get()

        with FakeTensorMode():
            f = Foo()

        inputs = (torch.zeros(2, 3),)
        with enable_torchbind_tracing():
            ep = export_for_training(f, inputs, strict=False)

        serialized_vals = serialize(ep)
        ep = deserialize(serialized_vals)
        self.assertTrue(isinstance(ep.constants["custom_obj"].get(), FakeTensor))

    def test_custom_tag_metadata_serialization(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                return x + x

        f = Foo()

        inputs = (torch.zeros(4, 4),)
        ep = export_for_training(f, inputs)

        new_gm = copy.deepcopy(ep.graph_module)
        new_gm.meta["custom"] = {}
        new_gm.meta["custom"]["f"] = "bar"

        for node in new_gm.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
                node.meta["custom"] = {}
                node.meta["custom"]["quantization_tag"] = "foo"

        new_ep = ep._update(new_gm, ep.graph_signature)
        serialized_vals = serialize(new_ep)
        new_ep = deserialize(serialized_vals)

        self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar")
        counter = 0
        for node in new_ep.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
                counter += 1
                self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
        self.assertEqual(counter, 1)

    def test_custom_tag_metadata_decomp(self):
        class Foo(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(2, 2)

            def forward(self, x):
                return self.linear(x)

        f = Foo()

        inputs = (torch.ones(2, 2),)
        ep = export_for_training(f, inputs)

        new_gm = copy.deepcopy(ep.graph_module)
        new_gm.meta["custom"] = {}
        new_gm.meta["custom"]["f"] = "bar"

        counter = 0
        for node in new_gm.graph.nodes:
            if (
                node.op == "call_function"
                and node.target == torch.ops.aten.linear.default
            ):
                counter += 1
                node.meta["custom"] = {}
                node.meta["custom"]["quantization_tag"] = "foo"
        self.assertEqual(counter, 1)

        new_ep = ep._update(new_gm, ep.graph_signature)
        new_ep = new_ep.run_decompositions()

        self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar")
        counter = 0
        for node in new_ep.graph.nodes:
            if node.op == "call_function":
                counter += 1
                self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
        self.assertTrue(counter > 1)

    def test_custom_tag_metadata_copy(self):
        class Foo(torch.nn.Module):
            def forward(self, x):
                return x + x

        f = Foo()

        inputs = (torch.zeros(4, 4),)
        ep = export_for_training(f, inputs)

        new_gm = copy.deepcopy(ep.graph_module)
        new_gm.meta["custom"] = {}
        new_gm.meta["custom"]["f"] = "bar"

        for node in new_gm.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
                node.meta["custom"] = {}
                node.meta["custom"]["quantization_tag"] = "foo"

        new_gm = copy.deepcopy(new_gm)

        self.assertEqual(new_gm.meta["custom"]["f"], "bar")
        counter = 0
        for node in new_gm.graph.nodes:
            if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
                counter += 1
                self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
        self.assertEqual(counter, 1)


if __name__ == "__main__":
    run_tests()