File: test_verifier.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (223 lines) | stat: -rw-r--r-- 7,982 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Owner(s): ["oncall: export"]
import unittest

import torch
from functorch.experimental import control_flow
from torch import Tensor
from torch._dynamo.eval_frame import is_dynamo_supported
from torch._export.verifier import SpecViolationError, Verifier
from torch.export import export_for_training
from torch.export.exported_program import InputKind, InputSpec, TensorArgument
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase


@unittest.skipIf(not is_dynamo_supported(), "dynamo isn't supported")
class TestVerifier(TestCase):
    def test_verifier_basic(self) -> None:
        class Foo(torch.nn.Module):
            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                return x + y

        f = Foo()

        ep = export_for_training(f, (torch.randn(100), torch.randn(100)))

        verifier = Verifier()
        verifier.check(ep)

    def test_verifier_call_module(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(10, 10)

            def forward(self, x: Tensor) -> Tensor:
                return self.linear(x)

        gm = torch.fx.symbolic_trace(M())

        verifier = Verifier()
        with self.assertRaises(SpecViolationError):
            verifier._check_graph_module(gm)

    def test_verifier_no_functional(self) -> None:
        class Foo(torch.nn.Module):
            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                return x + y

        f = Foo()

        ep = export_for_training(
            f, (torch.randn(100), torch.randn(100))
        ).run_decompositions({})
        for node in ep.graph.nodes:
            if node.target == torch.ops.aten.add.Tensor:
                node.target = torch.ops.aten.add_.Tensor

        verifier = Verifier()
        with self.assertRaises(SpecViolationError):
            verifier.check(ep)

    @unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
    def test_verifier_higher_order(self) -> None:
        class Foo(torch.nn.Module):
            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                def true_fn(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                    return x + y

                def false_fn(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                    return x - y

                return control_flow.cond(x.sum() > 2, true_fn, false_fn, [x, y])

        f = Foo()

        ep = export_for_training(f, (torch.randn(3, 3), torch.randn(3, 3)))

        verifier = Verifier()
        verifier.check(ep)

    @unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
    def test_verifier_nested_invalid_module(self) -> None:
        class Foo(torch.nn.Module):
            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                def true_fn(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                    return x + y

                def false_fn(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                    return x - y

                return control_flow.cond(x.sum() > 2, true_fn, false_fn, [x, y])

        f = Foo()

        ep = export_for_training(
            f, (torch.randn(3, 3), torch.randn(3, 3))
        ).run_decompositions({})
        for node in ep.graph_module.true_graph_0.graph.nodes:
            if node.target == torch.ops.aten.add.Tensor:
                node.target = torch.ops.aten.add_.Tensor

        verifier = Verifier()
        with self.assertRaises(SpecViolationError):
            verifier.check(ep)

    def test_ep_verifier_basic(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(10, 10)

            def forward(self, x: Tensor) -> Tensor:
                return self.linear(x)

        ep = export_for_training(M(), (torch.randn(10, 10),))
        ep.validate()

    def test_ep_verifier_invalid_param(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.register_parameter(
                    name="a", param=torch.nn.Parameter(torch.randn(100))
                )

            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                return x + y + self.a

        ep = export_for_training(M(), (torch.randn(100), torch.randn(100)))

        # Parameter doesn't exist in the state dict
        ep.graph_signature.input_specs[0] = InputSpec(
            kind=InputKind.PARAMETER, arg=TensorArgument(name="p_a"), target="bad_param"
        )
        with self.assertRaisesRegex(SpecViolationError, "not in the state dict"):
            ep.validate()

        # Add non-torch.nn.Parameter parameter to the state dict
        ep.state_dict["bad_param"] = torch.randn(100)
        with self.assertRaisesRegex(
            SpecViolationError, "not an instance of torch.nn.Parameter"
        ):
            ep.validate()

    def test_ep_verifier_invalid_buffer(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.tensor(3.0)

            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                return x + y + self.a

        ep = export_for_training(M(), (torch.randn(100), torch.randn(100)))

        # Buffer doesn't exist in the state dict
        ep.graph_signature.input_specs[0] = InputSpec(
            kind=InputKind.BUFFER,
            arg=TensorArgument(name="c_a"),
            target="bad_buffer",
            persistent=True,
        )
        with self.assertRaisesRegex(SpecViolationError, "not in the state dict"):
            ep.validate()

    def test_ep_verifier_buffer_mutate(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

                self.my_parameter = torch.nn.Parameter(torch.tensor(2.0))

                self.my_buffer1 = torch.nn.Buffer(torch.tensor(3.0))
                self.my_buffer2 = torch.nn.Buffer(torch.tensor(4.0))

            def forward(self, x1, x2):
                # Use the parameter, buffers, and both inputs in the forward method
                output = (
                    x1 + self.my_parameter
                ) * self.my_buffer1 + x2 * self.my_buffer2

                # Mutate one of the buffers (e.g., increment it by 1)
                self.my_buffer2.add_(1.0)
                return output

        ep = export_for_training(M(), (torch.tensor(5.0), torch.tensor(6.0)))
        ep.validate()

    def test_ep_verifier_invalid_output(self) -> None:
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

                self.my_parameter = torch.nn.Parameter(torch.tensor(2.0))

                self.my_buffer1 = torch.nn.Buffer(torch.tensor(3.0))
                self.my_buffer2 = torch.nn.Buffer(torch.tensor(4.0))

            def forward(self, x1, x2):
                # Use the parameter, buffers, and both inputs in the forward method
                output = (
                    x1 + self.my_parameter
                ) * self.my_buffer1 + x2 * self.my_buffer2

                # Mutate one of the buffers (e.g., increment it by 1)
                self.my_buffer2.add_(1.0)
                return output

        ep = export_for_training(M(), (torch.tensor(5.0), torch.tensor(6.0)))

        output_node = list(ep.graph.nodes)[-1]
        output_node.args = (
            (
                output_node.args[0][0],
                next(iter(ep.graph.nodes)),
            ),
        )

        with self.assertRaisesRegex(SpecViolationError, "Number of output nodes"):
            ep.validate()


if __name__ == "__main__":
    run_tests()