1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
|
# Owner(s): ["module: functorch"]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import functools
import itertools
import os
import random
import types
import unittest
import warnings
from collections import namedtuple
from typing import OrderedDict
from unittest.case import skipIf
from common_utils import (
check_vmap_fallback,
compute_quantities_for_vmap_test,
decorate,
DisableVmapFallback,
generate_vmap_inputs,
get_fallback_and_vmap_exhaustive,
is_batch_norm_training,
is_valid_inplace_sample_input,
opsToleranceOverride,
skip,
skipOps,
tol1,
xfail,
xfailIf,
)
from functorch_additional_op_db import additional_op_db
import functorch
import torch
import torch.nn.functional as F
from functorch import grad, grad_and_value, jacfwd, jvp, vjp, vmap
from functorch.experimental import chunk_vmap
from torch import Tensor
from torch._C._functorch import reshape_dim_into, reshape_dim_outof
from torch._functorch.make_functional import functional_init_with_buffers
from torch._functorch.vmap import restore_vmap
from torch.nn.attention import sdpa_kernel, SDPBackend
from torch.testing._internal.autograd_function_db import autograd_function_db
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
tf32_on_and_off,
with_tf32_off,
)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCUDA,
OpDTypes,
ops,
tol,
toleranceOverride,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
markDynamoStrictTest,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
unMarkDynamoStrictTest,
xfailIfTorchDynamo,
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.utils import _pytree as pytree
def get_platform_specific_sdpa():
ret = [SDPBackend.MATH]
if PLATFORM_SUPPORTS_FLASH_ATTENTION:
ret.append(SDPBackend.FLASH_ATTENTION)
if PLATFORM_SUPPORTS_MEM_EFF_ATTENTION:
ret.append(SDPBackend.EFFICIENT_ATTENTION)
if PLATFORM_SUPPORTS_CUDNN_ATTENTION:
ret.append(SDPBackend.CUDNN_ATTENTION)
return ret
PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa()
FALLBACK_REGEX = "There is a performance drop"
class EnableVmapFallbackWarnings:
def __enter__(self):
self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled()
torch._C._debug_only_display_vmap_fallback_warnings(True)
def __exit__(self, *ignored):
torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state)
@markDynamoStrictTest
class TestVmapAPI(TestCase):
def test_non_tensor_output_raises(self):
with self.assertRaisesRegex(ValueError, "got type <class 'float'>"):
vmap(lambda x: 3.14)(torch.ones(3))
def multiple_outputs(x):
return x, 3
with self.assertRaisesRegex(ValueError, "got type <class 'int'>"):
vmap(multiple_outputs)(torch.ones(3))
def test_different_map_dim_size_raises(self):
x = torch.randn(2)
y = torch.randn(3)
expected_msg = (
"Expected all tensors to have the same size in the mapped dimension"
)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(torch.mul)(x, y)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z["x"] + z["y"], in_dims=({"x": 0, "y": 0},))(
{"x": x, "y": y}
)
def test_func_with_no_inputs(self):
expected_msg = "got no inputs"
def foo():
return torch.randn(3)
def bar(x):
return torch.randn(3)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(foo)()
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(bar)()
def test_func_with_no_tensors(self):
def foo(x):
return torch.randn(3)
with self.assertRaisesRegex(ValueError, "at least one Tensor"):
vmap(foo, (None,))(1)
def test_constant_function(self):
output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3))
self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14]))
def test_single_input(self):
x = torch.randn(2, 3)
def square(x):
return x * x
output = vmap(square)(x)
self.assertEqual(output, x * x)
def test_multiple_inputs(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
output = vmap(torch.mul)(x, y)
self.assertEqual(output, x * y)
def test_multiple_outputs(self):
def foo(x):
return x * x, x * x * x
x = torch.randn(3)
outputs = vmap(foo)(x)
self.assertEqual(outputs[0], x * x)
self.assertEqual(outputs[1], x * x * x)
def test_multiple_outputs2(self):
# This is the same thing as
# def returns_tuple_of_tensors(x):
# return x, x
def returns_tuple_of_tensors(x):
return (x, x)
def returns_list_of_two_tensors(x):
return [x, x]
def returns_list_of_one_tensor(x):
return [x]
x = torch.randn(3)
# should not throw
vmap(returns_tuple_of_tensors)(x)
vmap(returns_list_of_two_tensors)(x)
vmap(returns_list_of_one_tensor)(x)
def test_nested_with_same_map_dim(self):
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
output = vmap(vmap(torch.mul))(x, y)
self.assertEqual(output, x * y)
output = vmap(vmap(vmap(torch.mul)))(x, y)
self.assertEqual(output, x * y)
def test_nested_with_diag_embed(self):
# diag_embed requires special testing because it is registered with conditional functionalization.
x = torch.randn(3, 3, 5)
output = vmap(vmap(torch.diag_embed))(x)
self.assertEqual(output, torch.diag_embed(x))
def test_nested_with_different_map_dim(self):
x = torch.randn(2, 3)
y = torch.randn(5, 3)
output = vmap(lambda x: vmap(lambda y: x * y)(y))(x)
self.assertEqual(output.shape, (2, 5, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
z = torch.randn(7, 3)
output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x)
self.assertEqual(output.shape, (2, 5, 7, 3))
self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z)
def test_noop_in_inner_vmap(self):
x = torch.randn(3)
y = torch.randn(5)
output = vmap(lambda x: vmap(lambda y: x)(y))(x)
self.assertEqual(output, x.view(3, 1).expand(3, 5))
def test_checkpoint(self):
A = torch.randn((3, 8, 8), dtype=torch.float64, requires_grad=True)
def get_grad(checkpoint):
A.grad = None
def get_loss(A):
ortho_A, _ = torch.func.vmap(torch.linalg.qr)(A)
return torch.sum(ortho_A)
if checkpoint:
loss = torch.utils.checkpoint.checkpoint(
get_loss, A, use_reentrant=False
)
else:
loss = get_loss(A)
loss.backward()
return A.grad
expected = get_grad(checkpoint=False)
result = get_grad(checkpoint=True)
self.assertEqual(result, expected)
def test_unsupported_op_err_msg(self):
# Unsupported view op
tensor = torch.randn(2, 3)
msg = (
r"Batching rule not implemented for aten::.+; the "
r"fallback path doesn't work on out= or view ops"
)
# TODO: find a view op
# with self.assertRaisesRegex(RuntimeError, msg):
# vmap(torch.ravel)(tensor)
def out_op(x, y):
return torch.abs(x, out=y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(out_op)(tensor, tensor)
# Don't support non-tensor returns. This is a limitation of vmap;
# functions that don't return tensors must be special cased
with self.assertRaisesRegex(RuntimeError, "Batching rule not implemented"):
vmap(torch.equal)(tensor, tensor)
def test_nonzero_out_dims(self):
# Basic test
tensor = torch.randn(2, 3)
result = vmap(lambda x: x, out_dims=1)(tensor)
self.assertEqual(result, tensor.permute(1, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# Test that the batch dimension gets permuted to dim 2
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 0, 3))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# negative out_dim
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=-1)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 3, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# check that out_dims works on ALL outputs
tensor = torch.randn(2, 3, 5, 7)
other = torch.randn(2, 3, 5, 7)
result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other)
self.assertEqual(
result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3))
)
# use out_dims with the maximum vmap-able tensor dims (64 dims)
ndims = 64
shape = [2] + [1] * (ndims - 1)
expected_shape = [1, 1, 2] + [1] * (ndims - 3)
tensor = torch.randn(shape)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result.shape, expected_shape)
# test something that is not the identity function
def foo(x, y):
return x, x * y, x * y * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=1)(x, y)
self.assertEqual(
result,
(
x.permute(1, 0, 2),
(x * y).permute(1, 0, 2),
(x * y * y).permute(1, 0, 2),
),
)
def test_multiple_out_dims(self):
def foo(x):
return x, x
def bar(x, y):
return x, x, x, x * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=(0, 1))(x)
self.assertEqual(result, (x, x.permute(1, 0, 2)))
result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y)
expected = (
x.permute(1, 2, 0),
x,
x.permute(1, 0, 2),
(x * y).permute(1, 2, 0),
)
self.assertEqual(result, expected)
def test_nested_out_dims(self):
y = torch.randn(2, 3, 5, 7)
# Inner vmap has non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y)
self.assertEqual(result.shape, (2, 5, 3, 7))
self.assertEqual(result, y.permute(0, 2, 1, 3))
# all vmaps have non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y)
self.assertEqual(result.shape, (5, 2, 3, 7))
self.assertEqual(result, y.permute(2, 0, 1, 3))
# throwing in some negative out_dims
result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y)
self.assertEqual(result.shape, (5, 7, 3, 2))
self.assertEqual(result, y.permute(2, 3, 1, 0))
# testing fn that isn't the identity
x = torch.randn(2, 3)
y = torch.randn(5, 3)
result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y)
self.assertEqual(result.shape, (3, 2, 5))
self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0))
def test_out_dims_edge_case(self):
def foo(x):
return x
# Test that we accept out_dims=(1,) for a function with one output.
tensor = torch.randn(2, 3)
expected = vmap(foo, out_dims=1)(tensor)
result = vmap(foo, out_dims=(1,))(tensor)
self.assertEqual(result, expected)
def test_out_dims_none_tuple(self):
def foo(x):
return x, "hello world"
tensor = torch.randn(2, 3)
result = vmap(foo, out_dims=(0, None))(tensor)
self.assertEqual(result[1], "hello world")
self.assertEqual(result[0], tensor)
def foo(x):
x.add_(1)
return None, "hello world"
result = vmap(foo, out_dims=(None, None))(tensor)
self.assertEqual(result, (None, "hello world"))
def test_out_dims_none(self):
def foo(x):
return x
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(
ValueError, "can not return a BatchedTensor when out_dim is None"
):
vmap(foo, out_dims=None)(tensor)
def foo(x):
x.add_(1)
return "hello world"
result = vmap(foo, out_dims=None)(tensor)
self.assertEqual(result, "hello world")
def test_out_dims_normal_tensor(self):
def foo(x):
return torch.arange(3)
tensor = torch.randn(2, 3)
result = vmap(foo)(tensor)
self.assertEqual(result.shape, [2, 3])
result = vmap(foo, out_dims=None)(tensor)
self.assertEqual(result, torch.arange(3))
def test_pytree_returns(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y), [y, (y, y)]
y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y0, y1)
self.assertEqual(y2, y1)
self.assertEqual(y2, y3)
self.assertEqual(y4, y3)
self.assertEqual(y5, y4)
def test_pytree_odict_returns(self):
x = torch.randn(2, 3)
def f(t):
y = t.sin()
return OrderedDict([("sin", y), ("cos", t.cos())])
out = vmap(f)(x)
assert isinstance(out, OrderedDict)
expected = f(x)
self.assertEqual(out["sin"], expected["sin"])
self.assertEqual(out["cos"], expected["cos"])
def test_pytree_returns_outdims(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, x.sin())
self.assertEqual(y2, x.sin().t())
def test_pytree_returns_broadcast_simple(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=1)(x)
self.assertEqual(y0, x.sin().t())
self.assertEqual(y1, y0)
self.assertEqual(y2, y0)
def test_pytree_returns_broadcast_nested(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, y0.t())
self.assertEqual(y2, y0.t())
def test_out_dims_must_be_int_or_collection_of_int_err_msg(self):
msg = "must be an int, None or a python collection of ints"
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims="lol")(tensor)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=("lol",))(tensor)
def test_out_dims_and_num_outputs_mismatch_err_msg(self):
msg = "not compatible"
x = torch.randn(2, 3, 5)
# Too many out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=(0, 0))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x)
# Too few out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x), out_dims=(0,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0))(x)
def test_out_dim_out_of_bounds_err_msg(self):
# TODO(rzou): This error message isn't that great. It comes straight
# from maybe_wrap_dim. Consider doing a try-catch-(add some context) to
# the error message in the future in C++
msg = "Dimension out of range"
x = torch.randn(2, 3, 5)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=3)(x)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=-4)(x)
def test_non_zero_in_dims(self):
tensor = torch.randn(2, 3, 5)
# Implicit out_dims = 0; vmap will move the batch dim to the front.
output = vmap(lambda x: x, (1,))(tensor)
self.assertEqual(output, tensor.permute(1, 0, 2))
self.assertEqual(output.data_ptr(), tensor.data_ptr())
x = torch.randn(2, 3)
y = torch.randn(3, 2)
output = vmap(torch.mul, (0, 1))(x, y)
self.assertEqual(output, x * y.t())
output = vmap(torch.mul, (1, 0))(x, y)
self.assertEqual(output, x.t() * y)
def test_none_in_dims(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# None in_dim for a Tensor means we don't map over it
output = vmap(torch.mul, (0, None))(x, y)
self.assertEqual(output.shape, (2, 2, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
# None in_dim for non-tensor arguments
output = vmap(torch.mul, (0, None))(x, 2)
self.assertEqual(output, x * 2)
def test_nested_non_default_in_dims(self):
x = torch.rand(5, 2, 3)
y = torch.rand(3, 5, 2)
result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y)
self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1))
def test_nested_negative_in_dims(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
output = vmap(torch.mul, (-1, -1))(x, y)
self.assertEqual(output.shape, (3, 2))
self.assertEqual(output, (x * y).permute(1, 0))
def test_non_default_in_dims_out_dims(self):
x = torch.randn(2, 3, 5)
# Same in_dim as out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x)
self.assertEqual(result.data_ptr(), x.data_ptr())
# Different in_dim from out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, x.transpose(1, 2))
self.assertEqual(result.data_ptr(), x.data_ptr())
def foo(x):
return x * 2
# Same in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x * 2)
# Different in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, (x * 2).transpose(1, 2))
# Basic nested test.
result = vmap(vmap(foo, 1, 1), 1, 1)(x)
self.assertEqual(result, x * 2)
def test_item_throws(self):
def f(x):
return x.item()
with self.assertRaisesRegex(RuntimeError, r"item\(\) on a Tensor"):
vmap(f)(torch.randn(3))
def test_data_dependent_control_flow_throws(self):
def f(x):
if x:
return x
return 0
with self.assertRaisesRegex(RuntimeError, r"data-dependent control flow"):
vmap(f)(torch.randn(3))
def test_accepts_nested_inputs(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# Single layer of nesting
out = vmap(lambda z: z[0] + z[1])((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1])([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z["x"] + z["y"])({"x": x, "y": y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z["x"] + z["y"], in_dims=(0,))({"x": x, "y": y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z["x"] + z["y"], in_dims=({"x": 0, "y": 0},))(
{"x": x, "y": y}
)
self.assertEqual(out, x + y)
# Multiple layers of nesting
out_fn = vmap(lambda z: z["x"][0] + z["x"][1][0] + z["y"][0] + z["y"][1])
out = out_fn({"x": [x, (x,)], "y": [y, y]})
self.assertEqual(out, x + x + y + y)
def test_in_dims_wrong_type_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r"expected `in_dims` to be int or a \(potentially nested\) tuple"
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, [0, 0])(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, set({0}))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, "lol")(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_not_enough_in_dims_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r"in_dims is not compatible with the structure of `inputs`"
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0,))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0, 0, 0))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y])
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_integer_in_dim_but_not_tensor_input_err_msg(self):
def foo(xy):
return xy[0] * xy[1]
def bar(x, yz):
return x * yz[0] * yz[1]
x = torch.randn(2, 3)
# the following are errors in jax (and will always be errors)
msg = "Got in_dim=0 for an input but the input is of type"
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum)(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum, (0, 0))(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1])
# The following should not throw
vmap(torch.sum, (0, None))(x, 0)
def test_in_dim_not_in_tensor_err_msg(self):
def foo(x):
return x * x
x = torch.randn(2, 3)
y = torch.randn(2, 3)
msg = r"Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w"
with self.assertRaisesRegex(ValueError, msg):
vmap(foo)(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(0,))(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(-3,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(2,))(y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y])
# the following should not throw
vmap(foo, in_dims=(0,))(torch.randn(2, 3))
vmap(foo, in_dims=(1,))(torch.randn(2, 3))
def test_fallback_does_not_warn_by_default(self):
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
torch.vmap(op)(x, y)
# The single warning here is the "vmap is experimental"
# warning, not a warning from the vmap fallback path.
self.assertEqual(len(wa), 1)
@unittest.expectedFailure
def test_fallback_warns_when_warnings_are_enabled(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
with EnableVmapFallbackWarnings():
torch.vmap(op)(x, y)
self.assertEqual(len(wa), 2)
self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def _assert_uses_vmap_fallback(self, vmap_args, inputs):
return
# with warnings.catch_warnings(record=True) as wa:
# with EnableVmapFallbackWarnings():
# result = vmap(*vmap_args)(*inputs)
# self.assertEqual(len(wa), 2)
# self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def test_fallback_zero_dim(self):
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
self._assert_uses_vmap_fallback((op,), (x, y))
B0, B1 = 0, 3
x = torch.randn(B0, 11)
y = torch.randn(11)
msg = "The fallback path does not support vmap over dims of size 0"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
x = torch.randn(B0, B1, 11)
y = torch.randn(B1, 11)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
def test_fallback_warning(self):
# We use a dummy function _test_functorch_fallback
# defined in prim_native_functions.cpp for this
op = torch._test_functorch_fallback
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(op, (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# nested vmap
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# big batch size (total 10000)
x = torch.randn(100, 10, 10, 5)
y = torch.randn(100, 10, 10)
result = vmap(vmap(vmap(op)))(x, y)
self.assertEqual(result, op(x, y.view(100, 10, 10, 1)))
# TODO: No clue what is wrong here.
@unittest.skip
def test_fallback_masked_fill(self):
# NB: One day we will implement a batching rule for masked_fill
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
def run_test(batch_size):
B0 = batch_size
x = torch.randn(B0, 7, 11, 13)
dim = 0
index = torch.tensor([0, 4, 2])
values = torch.randn(B0, 3, 13)
self._assert_uses_vmap_fallback(
(torch.index_add, (0, None, None, 0)), (x, dim, index, values)
)
result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values)
expected = torch.index_add(x, dim + 1, index, values.view(B0, 3, 1, 13))
self.assertEqual(result, expected)
run_test(batch_size=5)
run_test(batch_size=1237)
def test_fallback_multiple_returns(self):
# NB: One day we will implement a batching rule for torch.var_mean
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
B0, B1, B2 = 2, 3, 1237
tensor = torch.randn(B0, 10)
self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,))
# fallback correctness on torch.var_mean
result = vmap(torch.var_mean)(tensor)
expected = torch.var_mean(tensor, dim=1)
self.assertEqual(result, expected)
# nested vmap
tensor = torch.randn(B0, B1, 10)
result = vmap(vmap(torch.var_mean))(tensor)
expected = torch.var_mean(tensor, dim=2)
self.assertEqual(result, expected)
# big batch size, nested vmap
tensor = torch.randn(B0, B1, B2, 10)
result = vmap(vmap(vmap(torch.var_mean)))(tensor)
expected = torch.var_mean(tensor, dim=3)
self.assertEqual(result, expected)
def test_inplace_fallback_unary(self):
# Test the in-place fallback on an in-place method that takes no
# additional Tensor arguments. This is the simplest case of the fallback.
# NB: One day we will implement a batching rule for acos_.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.acos_
B0, B1, B2 = 2, 3, 10000
x = torch.randn(B0, 5)
self._assert_uses_vmap_fallback((op,), (x,))
# Single vmap
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op)(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Single vmap + different out_dim produces a view(!)
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op, out_dims=(1,))(x)
self.assertTrue(result._base is x)
self.assertEqual(result, x_orig.t().acos())
# Nested vmap
x_orig = torch.randn(B0, B1, 5)
x = x_orig.clone()
result = vmap(vmap(op))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Nested vmap, large batch size
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
result = vmap(vmap(vmap(op)))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
def test_inplace_fallback_nary_same_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
# Single vmap
B0 = 5
x_orig = torch.randn(7, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, 7, 11)
vmap(op, (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2)))
# Nested vmap
B0, B1 = 5, 7
x_orig = torch.randn(B1, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, B1, 11)
vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0])))
# big batch size (total 10000)
B0, B1, B2 = 100, 10, 10
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
y = torch.randn(B0, B1, B2)
vmap(vmap(vmap(op)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1)))
# ("Fallback isInplaceVmapCompatible check is broken")
@unittest.expectedFailure
def test_inplace_fallback_nary_different_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
B0, B1 = 2, 3
x = torch.rand(B0, 7)
y = torch.rand(7)
self._assert_uses_vmap_fallback((op, (0, None)), (x, y))
# op(left, right): All of the levels in right are found in left
x_orig = torch.rand(B0, 7)
x = x_orig.clone()
y = torch.rand(7)
vmap(op, in_dims=(0, None))(x, y)
self.assertEqual(x, outplace_op(x_orig, y))
x_orig = torch.rand(B0, B1, 7)
x = x_orig.clone()
y = torch.rand(B0, 7)
vmap(vmap(op, in_dims=(0, None)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7)))
# op(left, right): Some of the levels in right are not found in left
msg = r"vmap: aten::atan2_\(self, \*extra_args\) is not possible"
x = torch.rand(7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(7, B0)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y)
x = torch.rand(B0, 7)
y = torch.rand(B0, B1, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(None, 0)))(x, y)
def test_backward_unsupported_interaction(self):
x = torch.randn(3, requires_grad=True)
y = torch.randn(5)
grad = torch.randn_like(x)
err_msg = r"backward\(\) called inside a functorch transform"
def backward_on_vmapped_tensor(x):
x.sum().backward()
# FIXME
return self.skipTest(
"error: element 0 of tensors does not require grad and does not have a grad_fn"
)
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_on_vmapped_tensor)(x)
def backward_with_vmapped_grad(x, grad):
x.backward(grad)
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_with_vmapped_grad)(x, grad)
def completely_unrelated_backward(y):
x.sum().backward()
return y
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(completely_unrelated_backward)(y)
@unittest.expectedFailure
def test_grad_unsupported_interaction(self):
input_tensor = torch.randn(3, requires_grad=True)
err_msg = "autograd.grad.* called inside torch.vmap"
captured = torch.randn(3, requires_grad=True)
def output_to_grad_is_vmapped(input_tensor):
output = (captured * input_tensor).sum()
return torch.autograd.grad([output], [captured])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(output_to_grad_is_vmapped)(input_tensor)
output = (input_tensor**2).sum()
def input_to_grad_is_vmapped(input_tensor):
return torch.autograd.grad([output], [input_tensor])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(input_to_grad_is_vmapped)(input_tensor)
def test_batched_gradient_basic(self):
N = 3
x = torch.randn(N, requires_grad=True)
y = torch.randn(N)
def vjp_mul(v):
return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0]
batched_v = torch.eye(N)
jacobian = vmap(vjp_mul)(batched_v)
self.assertEqual(jacobian, torch.diagflat(y))
def test_functools_partial(self):
x = torch.randn(3)
y = torch.randn(2, 3)
result = vmap(functools.partial(torch.mul, x))(y)
self.assertEqual(result, x * y)
def test_nn_module(self):
tensor = torch.randn(2, 3)
model = torch.nn.Linear(3, 3, bias=False)
result = vmap(model)(tensor)
self.assertEqual(result, model(tensor))
def test_fallback_with_undefined_grad(self):
B0 = 7
x = torch.randn(2, 3, 4, 5, requires_grad=True)
weight = torch.randn(3, 3, 1, 1)
v = torch.randn(B0, 2, 3, 4, 5)
def get_vjp(v):
result = torch.nn.functional.conv2d(x, weight)
(grad_x,) = torch.autograd.grad(result, x, v)
return grad_x
# Runs vmap(get_vjp)(v), which should not error out.
# The backward formula for convolution returns an undefined
# Tensor for grad_bias because the original bias does not exist.
#
# In the future we'll probably add a batching rule for convolution
# backward. When this happens, we should modify this test to use a
# different op (and/or create and use a dummy operator) to avoid bitrot.
self._assert_uses_vmap_fallback([get_vjp], [v])
def test_reshape_dim_into(self):
x = torch.randn(2, 3, 5, 7)
y = reshape_dim_into(0, 0, x)
self.assertEqual(y, x.reshape(6, 5, 7))
y = reshape_dim_into(0, 1, x)
self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))
y = reshape_dim_into(0, 2, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
y = reshape_dim_into(1, 2, x)
self.assertEqual(y, x.movedim(1, 2).reshape(2, 5, 3 * 7))
y = reshape_dim_into(0, -2, x)
self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))
y = reshape_dim_into(0, -1, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
y = reshape_dim_into(-4, -1, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
def test_reshape_dim_outof(self):
x = torch.randn(12, 12, 12).permute(2, 1, 0)
y = reshape_dim_outof(0, 2, x)
self.assertEqual(y, x.reshape(2, 6, 12, 12))
y = reshape_dim_outof(1, 4, x)
self.assertEqual(y, x.reshape(12, 4, 3, 12))
y = reshape_dim_outof(2, 6, x)
self.assertEqual(y, x.reshape(12, 12, 6, 2))
y = reshape_dim_outof(-1, 6, x)
self.assertEqual(y, x.reshape(12, 12, 6, 2))
# Case: `0` sized dim.
x = torch.randn(12, 12, 0)
y = reshape_dim_outof(-1, 6, x)
self.assertEqual(y.shape, torch.Size((12, 12, 6, 0)))
def test_batch_rule_does_not_need_to_handle_no_batched_input(self):
def f(x, y):
res = torch.dot(y, torch.ones(2))
return x + res
x = torch.randn(7, 5)
y = torch.randn(3, 2)
out = vmap(vmap(f, in_dims=(0, None)), in_dims=(None, 0))(x, y)
expected = torch.mv(y, torch.ones(2)).view(3, 1, 1) + x
self.assertEqual(out, expected)
def test_decomposition_under_python_dispatcher(self):
# This test will raise an error if the vmap fallback gets invoked.
# Here we test that decomps registered to FuncTorchBatchedDecomposition
# are respected by the Python Dispatcher.
t = torch.ones(3, 3) * 5
with DisableVmapFallback():
with torch._dispatch.python.enable_python_dispatcher():
o = torch.vmap(torch.square)(t)
self.assertEqual(o, torch.square(t))
def _test_vmap_autocast(self, device):
if torch.device(device).type == "cpu":
amp_dtype = torch.bfloat16
else:
amp_dtype = torch.float16
a_float32 = torch.rand(4, 2, 3, device=device)
b_float32 = torch.rand(4, 3, 2, device=device)
c_float32 = torch.rand(4, 2, 2, device=device)
d_float32 = torch.rand(4, 3, 2, device=device)
# Case 1, autocast inside vmapped function
def func1(x, y, z, w):
with torch.autocast(dtype=amp_dtype, device_type=device):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16.float())
expected = func1(a_float32, b_float32, c_float32, d_float32)
out = vmap(func1)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
# Case 2, autocast decorator inside vmapped function
@torch.autocast(dtype=amp_dtype, device_type=device)
def func2(x, y, z, w):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16)
expected = func2(a_float32, b_float32, c_float32, d_float32)
out = vmap(func2)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
# Case 3, autocast is outside vmapped function
def func3(x, y, z, w):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16)
with torch.autocast(dtype=amp_dtype, device_type=device):
expected = func3(a_float32, b_float32, c_float32, d_float32)
out = vmap(func3)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
@unittest.skip("Somehow, vmap and autocast do not work on CPU")
def test_vmap_autocast_cpu(self):
self._test_vmap_autocast("cpu")
@skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
def test_vmap_autocast_cuda(self):
self._test_vmap_autocast("cuda")
def test_restore_vmap_pytree_input_output(self):
def f(x, y):
output0 = x[0] + x[1]
output1 = y
return {"a": output0, "b": output1}
B = 2
x0 = torch.randn(B, 3)
x1 = torch.randn(B)
y = torch.randn(4, B)
out, out_dims = restore_vmap(f, ((0, 0), 1), B, "error")((x0, x1), y)
expected = vmap(f, in_dims=((0, 0), 1), out_dims={"a": 0, "b": 1})((x0, x1), y)
self.assertEqual(out, expected)
self.assertEqual(out_dims, {"a": 0, "b": 1})
def test_restore_vmap_no_vmapped_inputs(self):
def f(x, y, z):
return x, y * z, z
B = 2
# Mix of tensor and non-tensor inputs
x = torch.randn(3)
y = torch.randn(4)
z = 5
out, out_dims = restore_vmap(f, (None, None, None), B, "error")(x, y, z)
self.assertEqual(out, f(x, y, z))
self.assertEqual(out_dims, (None, None, None))
def test_restore_vmap_unexpanded_outputs(self):
def f(x, y):
# Mix of tensor and non-tensor outputs
return 3 * y, y.sum(), None
B = 2
x = torch.randn(B, 3)
y = torch.randn(4)
out, out_dims = restore_vmap(f, (0, None), B, "error")(x, y)
self.assertEqual(out, f(None, y))
self.assertEqual(out_dims, (None, None, None))
def test_data_attribute(self):
def foo(x):
y = x.data
return x
with self.assertRaisesRegex(
RuntimeError, "accessing `data` under vmap transform"
):
torch.func.vmap(foo)(torch.randn(3, 3))
def foo(x):
x.data = torch.ones(3, 3)
return x
with self.assertRaisesRegex(
RuntimeError, "mutating directly with `.data` under vmap"
):
torch.func.vmap(foo)(torch.randn(3, 3))
def slice_inputs(inputs, bdims, i):
result = []
for inp, bdim in zip(inputs, bdims):
if bdim is None:
result.append(inp)
else:
result.append(inp.select(bdim, i))
return tuple(result)
def reference_vmap(op, inputs, in_dims=0, out_dims=0, return_nt=False):
if isinstance(in_dims, int):
in_dims = (in_dims,) * len(inputs)
bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None]
assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes)
bdim_size = bdim_sizes[0]
results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size))
assert len(results) > 0
op_has_single_return = not isinstance(results[0], tuple)
if op_has_single_return:
assert all(isinstance(result, torch.Tensor) for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * 1
if return_nt:
return torch.nested.nested_tensor(list(results))
else:
return torch.stack(results, dim=out_dims[0])
assert all(isinstance(result, tuple) for result in results)
num_returns = len(results[0])
assert all(len(result) == num_returns for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * num_returns
if return_nt:
return tuple(
torch.nested.nested_tensor(list(result_shards))
for result_shards in zip(*results)
)
else:
return tuple(
torch.stack(result_shards, out_dim)
for result_shards, out_dim in zip(zip(*results), out_dims)
)
class TensorFactory:
@staticmethod
def rand(size, device="cpu", dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype)
@staticmethod
def randn(size, device="cpu", dtype=torch.float):
return torch.randn(size, device=device, dtype=dtype)
@staticmethod
def randp1(size, device="cpu", dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype) + 1
# Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a
# (slow) sequential map+stack fallback.
#
# check_view: Test if the first returned output is a view of the first input
# check_propagates_grad: Test if the operation propagates gradients.
def _vmap_test(
self,
op,
inputs,
in_dims=0,
out_dims=0,
check_view=False,
check_propagates_grad=True,
):
result = vmap(op, in_dims, out_dims)(*inputs)
are_nested = [t.is_nested for t in pytree.tree_leaves(result)]
reference_result = reference_vmap(
op, inputs, in_dims, out_dims, return_nt=any(are_nested)
)
self.assertEqual(result, reference_result)
op_has_single_return = not isinstance(result, tuple)
if check_view:
result_as_tuple = (result,) if op_has_single_return else result
for output in result_as_tuple:
input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base
self.assertTrue(
output._base is input0_base,
msg="result was not a view of the first input!",
)
if not check_propagates_grad:
return
# Assuming input[0] is a floating-point tensor. Check if the vmap
# operation propagates the requires_grad flag to the zeroth output.
# Some vmap operators are implemented in a way that assumes that
# they are composite with respect to autograd. If the operator ever is
# changed to not be composite with respect to autograd, then the
# following check should fail.
inputs_clone = list(inputs)
inputs_clone[0] = inputs[0].clone().requires_grad_()
result = vmap(op, in_dims, out_dims)(*inputs_clone)
result_as_tuple = (result,) if op_has_single_return else result
self.assertTrue(result[0].requires_grad)
def should_allow_vmap_fallback_usage(fn):
return getattr(fn, "_allow_vmap_fallback_usage", False)
def allowVmapFallbackUsage(fn):
fn._allow_vmap_fallback_usage = True
return fn
# All tests of TestVmapBase check that the slow vmap fallback is never invoked.
# This is so that we can incrementally add batching rules for operators to
# replace the slow vmap fallback path for said operators. To skip this check,
# please use the allowVmapFallbackUsage decorator.
#
# NB: Don't add tests to TestVmapBase directly, unless you want them to run
# on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators.
#
# NB: TestVmapBase is a nested class. This prevents test runners from picking
# it up and running it.
class Namespace:
class TestVmapBase(TestCase):
def __init__(self, method_name="runTest"):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is None:
return
if not should_allow_vmap_fallback_usage(test_method):
setattr(
self,
method_name,
self._wrap_method_with_vmap_fallback_check(test_method),
)
def _wrap_method_with_vmap_fallback_check(self, method):
# msg = (
# 'Expected the test to not invoke the vmap fallback path, i.e., '
# 'all of the operators being tested in this test should have batching '
# 'rules implemented. If you are intentionally testing something to '
# 'do with the fallback path, use allowVmapFallbackUsage. Otherwise, '
# 'please make sure that batching rules are implemented for the '
# 'operator(s) being tested.'
# )
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
with EnableVmapFallbackWarnings():
method(*args, **kwargs)
# for captured_warning in wa:
# self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg)
return types.MethodType(wrapper, self)
@allowVmapFallbackUsage
def test_vmap_fallback_check_ok(self):
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
vmap(op_using_fallback)(torch.rand(3))
@unittest.expectedFailure
def test_vmap_fallback_check(self):
@self._wrap_method_with_vmap_fallback_check
def no_fallback(self):
pass
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
@self._wrap_method_with_vmap_fallback_check
def uses_fallback(self):
vmap(op_using_fallback)(torch.rand(3))
no_fallback(self)
with self.assertRaises(AssertionError):
uses_fallback(self)
def _make_case(op, input_getter=TensorFactory.randn):
return (op, input_getter)
@markDynamoStrictTest
class TestVmapOperators(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
def _vmap_view_test(self, *args, **kwargs):
self._vmap_test(*args, **kwargs, check_view=True)
def _test_unary(self, op, getter, device, *args, **kwargs):
test = functools.partial(self._vmap_test, *args, **kwargs)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [getter([B0, 3], device)])
test(op, [getter([2, 5, B0, 3], device)], in_dims=2)
test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [getter([B0, B1], device)])
test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2)
test(
vmap(op, in_dims=2),
[getter([2, 5, B0, B1, 3], device)],
in_dims=2,
out_dims=2,
)
@parametrize(
"case",
[
(torch.abs, TensorFactory.randn),
(torch.acos, TensorFactory.rand),
(torch.asin, TensorFactory.rand),
(torch.atan, TensorFactory.rand),
(torch.ceil, TensorFactory.randn),
(torch.cos, TensorFactory.rand),
(torch.cosh, TensorFactory.rand),
(torch.digamma, TensorFactory.rand),
(torch.exp, TensorFactory.randn),
(torch.expm1, TensorFactory.randn),
(torch.floor, TensorFactory.randn),
(torch.frac, TensorFactory.randn),
(torch.lgamma, TensorFactory.rand),
(torch.log, TensorFactory.randp1),
(torch.log10, TensorFactory.randp1),
(torch.log1p, TensorFactory.randp1),
(torch.log2, TensorFactory.randp1),
(torch.neg, TensorFactory.randn),
(torch.reciprocal, TensorFactory.randp1),
(torch.relu, TensorFactory.randn),
(torch.round, TensorFactory.randn),
(torch.rsqrt, TensorFactory.randp1),
(torch.sigmoid, TensorFactory.randn),
(torch.sign, TensorFactory.randn),
(torch.sin, TensorFactory.rand),
(torch.sinh, TensorFactory.rand),
(torch.sqrt, TensorFactory.rand),
(torch.tan, TensorFactory.rand),
(torch.tanh, TensorFactory.rand),
(torch.trunc, TensorFactory.randn),
],
name_fn=lambda x: x[0].__name__,
)
def test_unary_pointwise(self, case):
op, getter = case
self._test_unary(op, getter, "cpu")
# test in-place
method = getattr(Tensor, f'{op.__name__ + "_"}')
self._test_unary(method, getter, "cpu", check_propagates_grad=False)
def test_clone(self):
# Some basic tests
self._test_unary(lambda x: x.clone(), TensorFactory.randn, "cpu")
self._test_unary(
lambda x: x.clone(memory_format=torch.preserve_format),
TensorFactory.randn,
"cpu",
)
self._test_unary(
lambda x: x.clone(memory_format=torch.contiguous_format),
TensorFactory.randn,
"cpu",
)
# Test that the per-examples are contiguous when using torch.contiguous_format
def clone_contiguous(x):
return x.clone(memory_format=torch.contiguous_format)
B0, B1 = 3, 5
x = torch.randn(2, B0, 7)
y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x)
self.assertTrue(y.movedim(1, 0).is_contiguous())
self.assertTrue(y[:, 0, :].is_contiguous())
x = torch.randn(2, B0, 7, B1)
y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x)
self.assertTrue(y.is_contiguous())
self.assertTrue(y[0][0].is_contiguous())
msg = r"only supported with memory_format torch.preserve_format or torch.contiguous_format"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))(
torch.randn(B0)
)
def test_weird_matmul_case(self):
# Check that this doesn't crash.
# https://github.com/pytorch/functorch/issues/417
x = torch.randn(5, 2, 2, 2)
y = torch.randn(5, 7, 2)
vmap(vmap(torch.matmul, in_dims=(None, 0)))(x, y)
@parametrize(
"case",
(
(torch.clamp_min_, TensorFactory.randn),
(torch.clamp_max_, TensorFactory.randn),
),
name_fn=lambda x: x[0].__name__,
)
def test_clamp_inplace_variant(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = "cpu"
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(
op,
(getter([B0, 3], device), getter([B0, 3], device)),
check_propagates_grad=False,
)
test(
op,
(getter([B0], device), getter([B0], device)),
check_propagates_grad=False,
)
test(
op,
(getter([2, B0, 3], device), getter([2, B0, 3], device)),
in_dims=(1, 1),
check_propagates_grad=False,
)
test(
op,
(getter([B0, 2, 3], device), getter([2, B0, 3], device)),
in_dims=(0, 1),
out_dims=1,
check_propagates_grad=False,
)
test(
op,
(getter([B0, 2, 3], device), getter([1, 1], device)),
in_dims=(0, None),
check_propagates_grad=False,
)
test(
op,
(getter([B0, 3], device), getter([B0, 3], device)),
in_dims=(0, 0),
check_propagates_grad=False,
)
# Nested vmap: op(Tensor, Tensor)
test(
vmap(op),
(getter([B0, B1, 2, 3], device), getter([B0, B1, 1, 3], device)),
check_propagates_grad=False,
)
# Python number overload: op(Tensor, Number)
number = get_number(getter)
self._test_unary(
lambda t: op(t, number), getter, device, check_propagates_grad=False
)
@parametrize(
"case",
[
subtest(_make_case(torch.clamp_min), name="clamp_min"),
subtest(_make_case(torch.clamp_max), name="clamp_max"),
],
)
def test_clamp_variant(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = "cpu"
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([B0], device), getter([B0, 2, 3], device)))
test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
test(
op,
(getter([B0], device), getter([2, B0, 3], device)),
in_dims=(0, 1),
out_dims=1,
)
test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(None, 0))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
test(
vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3], device), getter([B1, 3], device)),
in_dims=(0, None),
)
# Python number overload: op(Tensor, Number)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device)
def test_copy_(self):
x = torch.randn(3)
y = torch.randn(3)
vmap(Tensor.copy_)(x, y)
self.assertEqual(x, y)
x = torch.randn(3)
y = torch.randn(3, 2)
vmap(Tensor.copy_, in_dims=(1, None))(y, x)
self.assertEqual(y, x.expand(2, 3).t())
x = torch.randn(3)
y = torch.randn(2, 3)
with self.assertRaisesRegex(RuntimeError, "inplace"):
vmap(Tensor.copy_, in_dims=(None, 0))(x, y)
def test_silu_backward(self):
test = self._vmap_test
device = "cpu"
getter = TensorFactory.randp1
B0 = 7
op = torch.ops.aten.silu_backward
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([], device), getter([B0], device)), in_dims=(None, 0))
test(op, (getter([2, B0], device), getter([2], device)), in_dims=(1, None))
@skipIf(
TEST_WITH_TORCHDYNAMO
and os.getenv("BUILD_ENVIRONMENT", "") == "linux-focal-py3.8-clang10",
"Segfaults with dynamo on focal, see https://github.com/pytorch/pytorch/issues/107173",
)
@parametrize(
"case",
[
subtest(_make_case(torch.add), name="add"),
subtest(_make_case(lambda x, y: x + y), name="add_dunder"),
subtest(_make_case(torch.sub), name="sub"),
subtest(_make_case(lambda x, y: x - y), name="sub_dunder"),
subtest(_make_case(torch.mul), name="mul"),
subtest(_make_case(lambda x, y: x * y), name="mul_dunder"),
subtest(
_make_case(torch.div, input_getter=TensorFactory.randp1), name="div"
),
subtest(
_make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1),
name="div_dunder",
),
subtest(
_make_case(torch.pow, input_getter=TensorFactory.randp1), name="pow"
),
subtest(
_make_case(lambda x, y: x**y, input_getter=TensorFactory.randp1),
name="pow_dunder",
),
],
)
def test_arithmetic(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = "cpu"
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([B0], device), getter([B0, 2, 3], device)))
test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
test(
op,
(getter([B0], device), getter([2, B0, 3], device)),
in_dims=(0, 1),
out_dims=1,
)
test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
test(
vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3], device), getter([B1, 3], device)),
in_dims=(0, None),
)
# Python number overload: op(Tensor, Number) (and vice-versa)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device)
number = get_number(getter)
self._test_unary(lambda t: op(number, t), getter, device)
# Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor)
test(op, (getter([B0], device), getter([B0], device, dtype=torch.double)))
test(op, (getter([B0], device, dtype=torch.double), getter([B0], device)))
test(op, (getter([B0], device), getter([B0], device)))
# Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa)
test(op, (getter([B0, 2], device), getter([B0], device, torch.double)))
test(op, (getter([B0], device, torch.double), getter([B0, 2], device)))
if not torch.cuda.is_available():
return
# TODO(rzou): fix the following
# # Test cross-device scalars
# number = get_number(getter)
# self._test_unary(lambda t: op(t, number), getter, device='cuda')
# self._test_unary(lambda t: op(number, t), getter, device='cuda')
# self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda')
def test_as_strided(self):
def _test(sizes, strides, offset, tensor, lambd):
# bdim at dim 0 test
result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor)
expected = vmap(lambd)(tensor)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# bdim at dim -1 test
tensor = tensor.movedim(0, -1)
result = vmap(lambda t: t.as_strided(sizes, strides, offset), -1)(tensor)
expected = vmap(lambd, -1)(tensor)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# single vmap test
B0 = 5
# Each Tensor has shape [B0, 2, 3]; the expressions below
# are just to get tensors of different strides that have shape [B0, 2, 3]
tensors = [
# contiguous
torch.randn(B0, 2, 3),
# non-contiguous
torch.randn(B0, 3, 2).transpose(1, 2),
torch.randn(3, 2, B0).movedim(-1, 0).transpose(1, 2),
# non-zero storage offset
torch.randn(2, B0, 2, 3)[1],
torch.randn(2, 2, B0, 3)[1].movedim(1, 0),
# non-contiguous strides, zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0],
torch.randn(2, 4, B0, 3, 7).movedim(2, 0)[:, :, 0, :, 0],
# non-contiguous strides, non-zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1],
torch.randn(2, 4, 3, 7, B0).movedim(-1, 0)[:, :, 2, :, 1],
]
for x in tensors:
S0, S1 = x.stride()[1:]
offset = x.storage_offset()
# Broadcast
_test(
[5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3)
)
# transpose
_test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1))
# select
_test([2], [S0], offset + S1, x, lambda x: x[:, 1])
# diagonal
_test([2], [S0 + S1], offset, x, lambda x: x.diagonal())
# strided slice
_test([2], [S1 * 2], offset, x, lambda x: x[0, ::2])
# Nested vmap test
B1 = 7
x = torch.randn(B1, B0, 2, 3)
S0, S1 = x.stride()[2:]
result = vmap(
vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1
)(x)
expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# Check that mal-formatted size/strides doesn't crash
with self.assertRaisesRegex(
RuntimeError, "size and stride must have the same length"
):
x = torch.randn(B0, 2, 3).transpose(0, 1)
vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x)
# All the Sanity check #1{a,b,c} cases check that
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# doesn't index memory that is out of bounds of xs[i]. This condition
# is important to the correctness of the as_strided batching rule
# (see NOTE: [When will the as_strided_batching_rule fail?])
# Sanity check #1a: The maximum indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is less than or equal to the maximum indexable location of xs[i].
msg = "This is not supported inside of vmap"
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3)
vmap(lambda x: x.as_strided([3], [1], 1))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3, 5)
vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, B1, 3, 5)
vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x)
# Sanity check #1b: The min indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is greater than or equal to the min indexable location of xs[i].
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(2, B0, 3)[1]
vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x)
# Sanity check #1c:
# xs[i] is a zero-dim tensor, but
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is not
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 0, 3)
vmap(lambda x: x.as_strided([3], [1]))(x)
def test_nll_loss(self):
test = self._vmap_test
op = F.nll_loss
B = 3
y = torch.randn(B, 2, 5)
t = torch.randint(0, 5, (B, 2))
test(op, (y, t))
test(functools.partial(op, reduction="sum"), (y, t))
test(functools.partial(op, reduction="none"), (y, t))
y = torch.randn(B, 2, 5)
t = torch.randint(0, 5, (2,))
test(op, (y, t), in_dims=(0, None))
test(functools.partial(op, reduction="sum"), (y, t), in_dims=(0, None))
test(functools.partial(op, reduction="none"), (y, t), in_dims=(0, None))
def test_adaptive_avg_pool2d(self):
test = self._vmap_test
op = functools.partial(F.adaptive_avg_pool2d, output_size=(3, 3))
x = torch.randn(3, 5, 7, 9, 11)
test(op, (x,))
test(op, (x,), in_dims=(1,))
test(op, (x,), in_dims=(4,))
def test_bmm(self):
op = torch.bmm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)),
in_dims=(1, None),
)
# right arg is vmapped
test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(
vmap(op, in_dims=(None, 0)),
(torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)),
in_dims=(None, 1),
)
# both args are vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3)))
test(
vmap(op),
(torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)),
in_dims=(1, 0),
)
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)),
in_dims=(None, 0),
)
def test_cat(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.cat(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(B0, 0), torch.rand(B0, 0)))
test(get_op(0), (torch.rand(2), torch.rand(B0, 0)), in_dims=(None, 0))
test(
get_op(1),
(torch.rand(2, 5), torch.rand(B0, 0), torch.rand(2, 3)),
in_dims=(None, 0, None),
)
test(get_op(1), (torch.rand(B0, 2, 3), torch.rand(B0, 0)))
test(get_op(1), (torch.rand(B0, 2, 3, 4), torch.rand(0)), in_dims=(0, None))
test(
get_op(0),
(torch.rand(0), torch.rand(B0, 2), torch.rand(B0, 0)),
in_dims=(None, 0, 0),
)
test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2))
test(
vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 3)),
in_dims=(None, 0),
)
test(
vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 3)),
in_dims=(None, 0),
)
def test_unsafe_view(self):
# Unsafe view isn't exposed, so we get at it via
# vmap(grad(matmul))
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B = 2
x = torch.randn(B, 2, 3, 3)
y = torch.randn(B, 3, 3)
def baz(x, y):
return (x @ y).sum()
test(functorch.grad(baz), (x, y))
def test_conj(self):
op = torch.conj
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
test = self._vmap_test
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])], in_dims=2, out_dims=2)
# correctness tests
run_test(torch.float)
run_test(torch.cfloat)
# check that torch.conj on a non-complex tensor returns the same tensor
real_tensor = torch.randn(3)
result = vmap(op)(real_tensor)
self.assertEqual(result.data_ptr(), real_tensor.data_ptr())
def test_contiguous(self):
op = Tensor.contiguous
self._test_unary(op, TensorFactory.randn, "cpu")
# check that contiguous returns the original tensor if the per-examples
# are already contiguous
B0 = 3
x = torch.randn(B0, 2, 5, 7)
x = x.movedim(0, 2)
result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x)
self.assertTrue(result is x)
msg = "NYI: querying is_contiguous inside of vmap for memory_format"
tensor = torch.randn(B0, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor)
def test_stride(self):
B0 = 3
x = torch.randn(B0, 2, 5, 7)
def foo(x):
assert x.stride() == (7 * 5, 7, 1)
return x
vmap(foo)(x)
x = torch.randn(2, B0, 5, 7).movedim(1, 0)
def bar(x):
assert x.stride() == (7 * 5 * B0, 7, 1)
return x
vmap(bar)(x)
def test_chunk(self):
test = self._vmap_view_test
op = torch.chunk
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None))
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 1023, B0, 5), 4, 0),
in_dims=(2, None, None),
)
test(
vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),),
in_dims=2,
)
def test_clamp(self):
clamp_cases = (
(lambda t: t.clamp(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp(max=0.5), TensorFactory.randn),
(lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn),
(lambda t: t.clamp_min(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp_max(max=0.5), TensorFactory.randn),
)
for op, getter in clamp_cases:
self._test_unary(op, getter, "cpu")
def test_comparison_ops(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
getter = TensorFactory.randn
B0, B1 = 7, 11
ops = (
torch.eq,
lambda x, y: x == y,
torch.gt,
lambda x, y: x > y,
torch.ge,
lambda x, y: x >= y,
torch.le,
lambda x, y: x <= y,
torch.lt,
lambda x, y: x < y,
torch.ne,
lambda x, y: x != y,
)
for op in ops:
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3]), getter([B0, 3])))
test(op, (getter([B0]), getter([B0, 2, 3])))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1)
test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None))
test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3])))
test(
vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3]), getter([B1, 3])),
in_dims=(0, None),
)
# test number as inputs
number = getter([]).item()
self._test_unary(
lambda t: op(t, number), getter, "cpu", check_propagates_grad=False
)
def test_cross_batch_size_three(self):
# Let's test corner case when batch_size is 3 and cross' dim argument is not specified
# According to the cross API, dim will be assigned to the first dim with value 3
# In this test we ensure that found dim is not batch dim.
op = torch.cross
test = self._vmap_test
B0 = B1 = 3
test(op, (torch.rand(B0, 2, 3), torch.rand(B0, 2, 3)))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B0, B1, 2, 3), torch.rand(B0, B1, 2, 3)),
in_dims=(None, 1),
)
def test_diagonal(self):
tensor = torch.randn(3, 5, 7, 11, 13)
test = self._vmap_view_test
op = torch.diagonal
test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None))
test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None))
test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None))
test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1)
test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1)
test(
vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3),
(tensor,),
in_dims=1,
out_dims=1,
)
def test_dot(self):
op = torch.dot
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, B0, 5), torch.rand(5)),
in_dims=(1, None),
)
# right arg is vmapped
test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0))
test(
vmap(op, in_dims=(None, 0)),
(torch.rand(5), torch.rand(B1, B0, 5)),
in_dims=(None, 1),
)
# both args are vmapped
test(op, (torch.rand(B0, 5), torch.rand(B0, 5)))
test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, 5), torch.rand(B0, 5)),
in_dims=(None, 0),
)
def test_expand_as(self):
op = torch.Tensor.expand_as
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5)))
test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None))
test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5)))
test(
vmap(op),
(torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)),
in_dims=(0, 1),
)
test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None))
test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5)))
def test_fill_and_zero_inplace(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
ops = (
lambda t: t.fill_(0.1),
lambda t: t.fill_(torch.tensor(0.2)),
lambda t: t.zero_(),
)
for op in ops:
# Single vmap, various in_dims / out_dims
test(op, [TensorFactory.randn([B0, 3])])
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2)
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [TensorFactory.randn([B0, B1])])
test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(
vmap(op, in_dims=2),
[TensorFactory.randn([2, 5, B0, B1, 3])],
in_dims=2,
out_dims=2,
)
# test when value is a batched tensor for fill_ operator
B0, B1 = 3, 5
test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)])
with self.assertRaisesRegex(RuntimeError, ""):
# Runtime Error is thrown when the tensor being written to isn't being vmapped over
vmap(Tensor.fill_, (None, 0))(
TensorFactory.randn([B0, B1]), TensorFactory.randn([B0])
)
def _test_complex_views(self, op, dtypes):
test = self._vmap_view_test
def run_test(op, dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([3, B0])], in_dims=1)
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])], in_dims=2, out_dims=2)
for dtype in dtypes:
run_test(op, dtype)
def test_real(self):
self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble])
def test_imag(self):
self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble])
def test_view_as_real(self):
self._test_complex_views(
torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble]
)
def test_view_as_complex(self):
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
op = torch.view_as_complex
test = self._vmap_view_test
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3, 2])])
test(op, [get([2, 5, B0, 3, 2])], in_dims=2)
test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1, 2])])
test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2)
test(
vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])], in_dims=2, out_dims=2
)
# Interesting case #1: Batch dim directly before dim of size 2
test(op, [get([3, B0, 2])], in_dims=1)
test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2)
# Interesting case #2: Batch dim at end of tensor, success cases
# view_as_complex requires that the dim with size 2 have stride 1
# in order for the view to function property
test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1)
test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)])
test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)])
# Interesting case #3: Batch dim at end of tensor, failure cases
msg = "Tensor must have a last dimension with stride 1"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([2, B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1]))
# Invalid input: no dimension of size 2
msg = "Input tensor must have one or more dimensions"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(get([B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op))(get([B0, B1]))
# Invalid input: Batch dim has size 2, but the logical last dim does
# not have size 2
msg = "Tensor must have a last dimension of size 2"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([3, 2]))
for dtype in [torch.float, torch.double]:
run_test(dtype)
def test_is_complex(self):
ctensor = torch.randn(3, dtype=torch.cfloat)
tensor = torch.randn(3)
def foo(x):
if x.is_complex():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0]))
def test_is_floating_point(self):
float_tensor = torch.tensor([1.0, 2.0, 3.0])
long_tensor = torch.tensor([1, 2, 3])
def foo(x):
if x.is_floating_point():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0]))
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
def test_is_contiguous(self):
def foo(x):
if x.is_contiguous():
return torch.tensor(1.0)
else:
return torch.tensor(0.0)
B0, B1 = 3, 5
# Single batch dim
contig = torch.randn(B0, 2, 7)
self.assertEqual(vmap(foo)(contig), torch.ones(B0))
noncontig = torch.randn(2, B0, 7)
self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, B0, 7).movedim(1, 0)
self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, 7, B0)
self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0))
# Multiple batch dims
contig = torch.randn(B0, B1, 3)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3)
self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3).movedim(0, 1)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
noncontig = torch.randn(B0, 3, B1)
self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1))
# is_contiguous on empty tensor is True
def bar(x):
assert x.is_contiguous()
return x
vmap(bar)(torch.randn(B0, 0, 3))
vmap(bar, in_dims=1)(torch.randn(0, B0, 3))
vmap(bar)(torch.randn(B0, 0, 3).transpose(-1, -2))
# is_contiguous with other memory formats
def baz(x, memory_format):
x.is_contiguous(memory_format=memory_format)
return x
msg = "NYI: querying is_contiguous inside of vmap for memory_format"
tensor = torch.randn(B0, 2, 7, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor)
for mf in (torch.channels_last, torch.channels_last_3d):
@torch.compile(backend="eager", fullgraph=True)
def f(x):
if x.is_contiguous(memory_format=mf):
return x.sin()
return x.cos()
with self.assertRaisesRegex(RuntimeError, msg):
vmap(f)(torch.randn(3, 3))
def test_unsqueeze(self):
op = torch.unsqueeze
test = self._vmap_view_test
B0, B1 = 7, 11
# unsqueeze dim 0
test(op, (torch.rand(B0, 2, 5), 0), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 0), in_dims=(1, None))
# unsqueeze last dim (positive)
test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 2), in_dims=(1, None))
# unsqueeze last dim (negative)
test(op, (torch.rand(B0, 2, 5), -1), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), -1), in_dims=(1, None))
# nested vmaps
def unsqueeze_0(x):
return torch.unsqueeze(x, 0)
def unsqueeze_last(x):
return torch.unsqueeze(x, -1)
# bdims in canonical order
test(vmap(unsqueeze_0), (torch.rand(B0, B1, 2),))
test(vmap(unsqueeze_last), (torch.rand(B0, B1, 2),))
# wild bdims
test(vmap(unsqueeze_0), (torch.rand(B1, 2, B0),), in_dims=2)
test(vmap(unsqueeze_0, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)
test(vmap(unsqueeze_last), (torch.rand(B1, 2, B0),), in_dims=2)
test(vmap(unsqueeze_last, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)
def test_movedim(self):
op = torch.movedim
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
# movedim(tensor, int, int) variant
test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None))
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5), 0, 1),
in_dims=(2, None, None),
)
test(
vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), 0, 1),
in_dims=(2, None, None),
)
# movedim(tensor, intlist, intlist) variant
test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None))
test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None))
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]),
in_dims=(2, None, None),
)
test(
vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]),
in_dims=(2, None, None),
)
def test_mm(self):
op = torch.mm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, B0, 2, 5), torch.rand(5, 2)),
in_dims=(1, None),
)
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
test(
vmap(op, in_dims=(None, 0)),
(torch.rand(2, 5), torch.rand(B1, B0, 5, 2)),
in_dims=(None, 1),
)
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2)))
test(
vmap(op),
(torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)),
in_dims=(1, 0),
)
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)),
in_dims=(None, 0),
)
def test_mv(self):
op = torch.mv
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, B0, 2, 5), torch.rand(5)),
in_dims=(1, None),
)
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
test(
vmap(op, in_dims=(None, 0)),
(torch.rand(2, 5), torch.rand(B1, B0, 5)),
in_dims=(None, 1),
)
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5)))
test(
vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0)
)
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5)),
in_dims=(None, 0),
)
def test_narrow(self):
op = torch.narrow
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None))
test(
vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 2, B0, 5), 1, 0, 0),
in_dims=(2, None, None, None),
)
test(
vmap(
vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)
),
(torch.rand(B1, 2, B0, 5, B2), -1, 2, 3),
in_dims=(2, None, None, None),
)
def test_new_empty(self):
# Empty is non-deterministic so we just check that the shape of the
# output tensor is what we expect and that the vmap fallback isn't used.
op = Tensor.new_empty
B0, B1 = 7, 11
result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0))
self.assertEqual(result.shape, [B0, 2, 3])
result = vmap(lambda x: op(x, []))(torch.randn(B0))
self.assertEqual(result.shape, [B0])
result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1))
self.assertEqual(result.shape, [B0, B1, 2, 3])
def test_new_empty_strided(self):
# Empty is non-deterministic so we just check that the size and shape
# of the output are what we expect and that the vmap fallback isn't used
B0, B1 = 7, 11
def _test_single_vmap(size, stride, B0):
x = torch.randn(B0)
result = vmap(lambda x: x.new_empty_strided(size, stride))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0] + size)
self.assertEqual(result.stride(), [S] + stride)
def _test_double_vmap(size, stride, B0, B1):
x = torch.randn(B0, B1)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
x = torch.randn(B1, B0)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)(
x
)
S = x.new_empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
# contiguous case
_test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0)
_test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1)
# expanded
_test_single_vmap([2, 3, 5], [0, 5, 1], B0)
_test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1)
# some of these cases are pretty strange, just verifying that if
# empty_strided allows them then BatchedTensor.new_empty_strided
# can as well
for shape in [[2, 3, 4], [0, 2, 0]]:
for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]:
_test_single_vmap(shape, strides, B0)
_test_double_vmap(shape, strides, B0, B1)
def test_new_zeros(self):
op = Tensor.new_zeros
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
test(lambda x: op(x, 2, 3), (torch.rand(B0),))
test(lambda x: op(x, []), (torch.rand(B0),))
test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),))
def test_select(self):
op = torch.select
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None))
test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(
vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)),
(torch.rand(B1, 2, B0, B2, 5),),
in_dims=2,
)
def test_roll_no_dims(self):
op = torch.roll
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 3), in_dims=(1, None))
test(vmap(lambda t: op(t, 3)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(
vmap(vmap(lambda t: op(t, 3), in_dims=1)),
(torch.rand(B1, 2, B0, B2, 5),),
in_dims=2,
)
def test_stack(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.stack(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(
vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 2)),
in_dims=(None, 0),
)
test(
vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 2)),
in_dims=(None, 0),
)
def test_slice(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda t: t[0:1], (torch.rand(B0, 3, 5),))
test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2)
test(
vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2
)
test(
vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2),
(torch.rand(3, 5, B0, B1, B2),),
in_dims=2,
)
@xfailIfTorchDynamo
def test_squeeze(self):
def verify_behavior(op, min_ndim=1):
test = self._vmap_view_test
B0, B1 = 1, 11
# These tests cannot be used with an operator that requires more
# than 1 dimension after batching.
if min_ndim <= 1:
test(op, (torch.rand(B0),))
test(op, (torch.rand(B1),))
test(vmap(op), (torch.rand(B0, B1, 1),))
test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2)
test(op, (torch.rand(B0, 3, 5),))
test(op, (torch.rand(1, B0, 5),), in_dims=1)
test(op, (torch.rand(B0, 0, 1, 5, 1),))
test(op, (torch.rand(B0, 1, 1, 1, 1),))
test(vmap(op), (torch.rand(B0, B1, 1, 3, 4),))
test(vmap(op), (torch.rand(B1, 1, B0, 4, 5),), in_dims=2)
verify_behavior(torch.squeeze)
verify_behavior(lambda x: torch.squeeze(x, dim=0), min_ndim=1)
verify_behavior(lambda x: torch.squeeze(x, dim=1), min_ndim=2)
verify_behavior(lambda x: torch.squeeze(x, dim=-1), min_ndim=2)
verify_behavior(lambda x: torch.squeeze(x, dim=-2), min_ndim=3)
msg = ""
try:
torch.squeeze(torch.rand(10), dim=1)
except IndexError as err:
msg = str(err)
with self.assertRaises(RuntimeError, msg=msg):
vmap(lambda x: torch.squeeze(x, dim=1))(torch.rand(10))
def _test_mean_sum_dim(self, op):
test = self._vmap_test
B0, B1 = 5, 7
# Single vmap, various in_dims / out_dims
test(lambda x: op(x, 0), [torch.randn([B0])])
test(lambda x: op(x, -1), [torch.randn([B0])])
test(lambda x: op(x, 0), [torch.randn([B0, 3])])
test(lambda x: op(x, -1), [torch.randn([2, 5, B0, 3])], in_dims=2)
test(lambda x: op(x, 2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(lambda x: op(x, 0)), [torch.randn([B0, B1])])
test(vmap(lambda x: op(x, -1)), [torch.randn([B0, B1])])
test(vmap(lambda x: op(x, -2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(
vmap(lambda x: op(x, 2), in_dims=2),
[torch.randn([2, 5, B0, B1, 3])],
in_dims=2,
out_dims=2,
)
def test_sum_dim(self):
self._test_mean_sum_dim(torch.sum)
def test_mean_dim(self):
self._test_mean_sum_dim(torch.mean)
def test_argmax_dim(self):
def test(f, args):
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
self.assertEqual(loop_out, batched_out)
B0 = 5
test(lambda x: torch.argmax(x), [torch.randn(B0)])
test(lambda x: torch.argmax(x), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, 0), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, -1), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, 2), [torch.randn(B0, 2, 3)])
def _test_sum_mean(self, op):
test = self._vmap_test
B0, B1 = 5, 7
# Single vmap, various in_dims / out_dims
test(op, [torch.randn([B0])])
test(op, [torch.randn([B0, 3])])
test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)
test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)
# Doubly nested vmap
test(vmap(op), [torch.randn([B0, B1])])
test(vmap(op), [torch.randn([B1, 2, 5, B0, 3])])
test(vmap(op), [torch.randn([2, 5, B0, B1, 3])], in_dims=2)
def test_sum(self):
self._test_sum_mean(torch.sum)
def test_mean(self):
self._test_sum_mean(torch.mean)
def test_repeat(self):
test = self._vmap_test
B0 = 7
op = Tensor.repeat
test(lambda x: op(x, (2, 3)), (torch.rand(B0, 1, 1),))
test(lambda x: op(x, (2, 3)), (torch.rand(1, B0, 1),), in_dims=1)
@skipIfTorchDynamo()
def test_slogdet(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0 = 7
op = torch.linalg.slogdet
test(op, (torch.rand(B0, 1, 1),))
test(op, (torch.rand(B0, 2, 2),))
test(op, (torch.rand(B0, 3, 2, 2),))
test(op, (torch.rand(3, 2, 2, B0),), in_dims=3)
def test_reshape(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.reshape
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True)
test(
op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False
)
test(
vmap(lambda t: t.reshape([-1])),
(torch.rand(B0, B1, 2, 5),),
check_view=True,
)
test(
vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1),
(torch.rand(3, B1, 2, B2, 5, B0),),
in_dims=5,
check_view=False,
)
def test_reshape_as(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.reshape_as
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True)
test(
op,
(torch.rand(2 * 5), torch.rand(B0, 2, 5)),
in_dims=(None, 0),
check_view=True,
)
test(
op,
(torch.rand(B0, 2 * 5), torch.rand(2, 5)),
in_dims=(0, None),
check_view=True,
)
test(
op,
(torch.rand(2, B0, 5), torch.rand(1, 1, 10)),
in_dims=(1, None),
check_view=False,
)
test(
vmap(op),
(torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)),
check_view=True,
)
test(
vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)),
(torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)),
in_dims=(5, 0),
check_view=False,
)
def test_result_type(self):
def scalar_tensor_with_dtype(op):
def wrapped(*args, **kwargs):
dtype = op(*args, **kwargs)
return torch.ones([], dtype=dtype)
return wrapped
test = self._vmap_test
op = scalar_tensor_with_dtype(torch.result_type)
B0 = 2
test(
op,
(torch.randn(B0), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False,
)
test(
op,
(torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False,
)
test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False)
test(
lambda x: op(x, torch.tensor(1)),
(torch.randn(B0),),
check_propagates_grad=False,
)
test(
lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0),),
check_propagates_grad=False,
)
test(
op,
(torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)),
check_propagates_grad=False,
)
test(
op,
(torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)),
check_propagates_grad=False,
)
test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False)
test(
lambda x: op(x, torch.tensor(1)),
(torch.randn(B0, 2),),
check_propagates_grad=False,
)
test(
lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0, 2),),
check_propagates_grad=False,
)
test(
op,
(torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False,
)
test(
op,
(torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False,
)
def test_tensor_split(self):
test = self._vmap_view_test
op = torch.tensor_split
B0, B1, B2 = 7, 11, 13
# tests for torch.tensor_split(self, indices_or_sections: int, dim)
test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None))
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None),
)
test(
vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),),
in_dims=2,
)
# tests for torch.tensor_split(self, indices_or_sections: List[int], dim)
test(
op,
(torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1),
in_dims=(0, None, None),
)
test(
op,
(torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1),
in_dims=(1, None, None),
)
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0),
in_dims=(2, None, None),
)
test(
vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),),
in_dims=2,
)
@skipIfTorchDynamo("really slow")
def test_split(self):
test = self._vmap_view_test
op = torch.split
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None))
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None),
)
test(
vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),),
in_dims=2,
)
# tests for torch.split(self, split_size: List[int], dim)
test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None))
test(
op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None)
)
test(
vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0),
in_dims=(2, None, None),
)
test(
vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),),
in_dims=2,
)
def test_trace(self):
op = torch.trace
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_transpose(self):
op = torch.transpose
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),))
test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(
vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 5, B2),),
in_dims=2,
)
# Special case: scalar tensor
for dim1, dim2 in itertools.product([0, -1], [0, -1]):
x = torch.rand(B0)
result = vmap(lambda x: op(x, dim1, dim2))(x)
self.assertTrue(result is x)
def test_t(self):
op = torch.t
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_T_numpy(self):
def op(t):
return t.T
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 3, 5),))
test(op, (torch.rand(2, B0, 3, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2)
def test_to(self):
test = self._vmap_test
B0, B1 = 7, 11
test(lambda t: t.to("cpu"), (torch.rand(B0),))
test(lambda t: t.to(torch.double), (torch.rand(B0),))
test(
lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64))
)
test(
lambda t, o: t.to(o),
(torch.rand(B0), torch.randn(B0, dtype=torch.float64)),
in_dims=(0, None),
)
test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),))
# also test some casting methods
test(lambda t: t.double(), (torch.rand(B0),))
test(lambda t: t.float(), (torch.rand(B0),))
test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False)
test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False)
def test_unfold(self):
op = torch.Tensor.unfold
test = self._vmap_view_test
B0, B1, B2 = 3, 2, 5
test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None))
test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None))
test(
vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 7, B0, 11), 1, 5, 1),
in_dims=(2, None, None, None),
)
test(
vmap(
vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)
),
(torch.rand(B1, 7, B0, 11, B2), -1, 2, 4),
in_dims=(2, None, None, None),
)
def test_unbind(self):
test = self._vmap_view_test
op = torch.unbind
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None))
test(op, (torch.rand(B0, 2, 0),))
test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None))
test(
vmap(op, in_dims=(0, None)),
(torch.rand(B1, 1023, B0, 5), 1),
in_dims=(2, None),
)
test(
vmap(vmap(lambda t: op(t, dim=1), in_dims=2)),
(torch.rand(B1, 2, B0, 32, B2),),
in_dims=2,
)
def test_view(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10])
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None))
test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),))
test(
vmap(vmap(lambda t: t.reshape([-1])), in_dims=1),
(torch.rand(B2, B0, B1, 3, 2, 5),),
in_dims=1,
)
def test_view_as(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view_as
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10))
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)))
test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0))
test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None))
test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)))
test(
vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)),
(torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)),
in_dims=(2, 0),
)
def test_conv2d(self):
conv_setups = [
(torch.nn.Conv1d, torch.conv1d, [2, 4, 15]),
(torch.nn.Conv2d, torch.conv2d, [2, 4, 15, 20]),
(torch.nn.Conv3d, torch.conv3d, [2, 4, 15, 20, 25]),
# (torch.nn.ConvTranspose2d, torch.conv_transpose2d, [2, 4, 15, 20])
]
for conv_mod, conv_fn, inp_shape in conv_setups:
mod = conv_mod(4, 8, kernel_size=3)
arg_values = [torch.randn(inp_shape), mod.weight, mod.bias]
kwarg_values = {}
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
conv_fn, arg_values, kwarg_values
):
self.assertEqual(loop_out, batched_out)
arg_values = [torch.randn(inp_shape), mod.weight, None]
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
conv_fn, arg_values, kwarg_values
):
self.assertEqual(loop_out, batched_out)
mod2 = conv_mod(
4, 8, kernel_size=3, groups=2, stride=3, padding=1, dilation=2
)
arg_values = [torch.randn(inp_shape), mod2.weight, mod2.bias]
kwarg_values = dict(groups=2, stride=3, padding=1, dilation=2)
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
conv_fn, arg_values, kwarg_values
):
self.assertEqual(loop_out, batched_out)
arg_values = [torch.randn(inp_shape), mod2.weight, None]
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
conv_fn, arg_values, kwarg_values
):
self.assertEqual(loop_out, batched_out)
def test_one_hot(self):
sample_inputs = [
(torch.randint(0, 3, []), 3),
(torch.randint(0, 3, [2, 3, 4]), 4),
]
for args in sample_inputs:
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
F.one_hot, args, {}
):
self.assertEqual(loop_out, batched_out)
def test_conj_bit(self):
x = torch.tensor([1 + 1j, 2 + 1j])
def foo(x):
assert not x.is_conj()
y = x.conj()
assert y.is_conj()
return y
res = vmap(foo)(x)
self.assertEqual(res, x.conj())
def test_mode_key(self):
def vmap_f(x):
return x + torch.randn(())
def naive_f(x, shape):
return x + torch.randn(shape)
torch.manual_seed(0)
out1 = vmap(vmap(vmap_f, randomness="different"), randomness="different")(
torch.ones(2, 3)
)
torch.manual_seed(0)
out2 = naive_f(torch.ones(2, 3), (2, 3))
self.assertEqual(out1, out2)
torch.manual_seed(0)
out1 = vmap(vmap(vmap_f, randomness="different"), randomness="different")(
torch.ones(2, 3, 4)
)
torch.manual_seed(0)
out2 = naive_f(torch.ones(2, 3, 4), (2, 3, 1))
self.assertEqual(out1, out2)
self.assertTrue(torch.randn(()).dim() == 0)
@parametrize("in_dim", [0, 1, 2])
@parametrize("out_dim", [0, 1, 2])
@parametrize("randomness", ["error", "same"])
def test_chunk_vmap(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
rs = torch.get_rng_state()
expected = vmap(f, in_dims=in_dim, out_dims=out_dim, randomness=randomness)(x)
for chunks in [1, 2, 3, 4, 7, 10, 16]:
torch.set_rng_state(rs)
output = chunk_vmap(
f,
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunks=chunks,
)(x)
self.assertEqual(output, expected)
@parametrize("in_dim", [0, 1, 2])
@parametrize("out_dim", [0, 1, 2])
@parametrize("randomness", ["error", "same"])
def test_vmap_chunksize(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
y = torch.randn_like(x)
# fn: Single Input/Single Output
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
f_args = (x,)
f_kwargs = {"in_dims": in_dim, "out_dims": out_dim, "randomness": randomness}
# fn: Nested Input/Single Output
def f1(pair):
x, y = pair
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return z
f1_args = ((x, y),)
f1_kwargs = {
"in_dims": ((in_dim,) * 2,),
"out_dims": out_dim,
"randomness": randomness,
}
# fn: Single Input/Nested Output
def f2(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return {"out": y, "out1": y + 2}
f2_args = (x,)
f2_kwargs = {"in_dims": in_dim, "out_dims": out_dim, "randomness": randomness}
# fn: Nested Input/Nested Output (first tensor is not vmapped).
def f3(inp_dict):
x = inp_dict["inp"]
y = inp_dict["inp1"]
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {"z": z, "tuple": (z, z + 1)}
f3_args = (
{
"inp": x.index_select(in_dim, torch.tensor([0])).squeeze(in_dim),
"inp1": y,
},
)
f3_kwargs = {
"in_dims": ({"inp": None, "inp1": in_dim},),
"out_dims": out_dim,
"randomness": randomness,
}
# fn: Nested Input/Nested Output (first argument is not a Tensor).
def f4(inp_dict):
x = inp_dict["inp"]
y = inp_dict["inp1"]
z = x + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {"z": z, "tuple": (z, z + 1)}
f4_args = ({"inp": 2.0, "inp1": y},)
f4_kwargs = {
"in_dims": ({"inp": None, "inp1": in_dim},),
"out_dims": out_dim,
"randomness": randomness,
}
fns_and_args = (
(f, f_args, f_kwargs),
(f1, f1_args, f1_kwargs),
(f2, f2_args, f2_kwargs),
(f3, f3_args, f3_kwargs),
(f4, f4_args, f4_kwargs),
)
for fn, args, kwargs in fns_and_args:
rs = torch.get_rng_state()
expected_vmap = vmap(fn, **kwargs)(*args)
for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100):
torch.set_rng_state(rs)
output = vmap(fn, chunk_size=chunk_size, **kwargs)(*args)
self.assertEqual(output, expected_vmap)
@parametrize("in_dim", [0, 1])
@parametrize("out_dim", [0, 1])
@parametrize("randomness", ["error", "same"])
def test_vmap_chunksize_error(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
# Incorrect `chunk_size`
for chunk_size in (-1, 0):
with self.assertRaisesRegex(
ValueError, "vmap: chunk_size should be None or greater than 0."
):
vmap(
f,
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunk_size=chunk_size,
)(x)
# Incorrect `out_dims`
msg = "out_dims is not compatible with the structure of `outputs`"
with self.assertRaisesRegex(ValueError, msg):
vmap(
f,
in_dims=in_dim,
out_dims=(out_dim, out_dim),
randomness=randomness,
chunk_size=2,
)(x)
@parametrize("in_dim", [0, 1])
@parametrize("out_dim", [0, 1])
@parametrize("randomness", ["error", "same"])
def test_vmap_chunksize_composition(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
y = torch.randn_like(x)
# fn: Single Input/Single Output
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
f_args = (x,)
# fn: Nested Input/Single Output
def f1(pair):
x, y = pair
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return z
f1_args = ((x, y),)
# fn: Single Input/Nested Output
def f2(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return {"out": y, "out1": y + 2}
f2_args = (x,)
# fn: Nested Input/Nested Output
def f3(inp_dict):
x = inp_dict["inp"]
y = inp_dict["inp1"]
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {"z": z, "tuple": (z, z + 1)}
f3_args = ({"inp": x, "inp1": y},)
for fn, args in ((f, f_args), (f1, f1_args), (f2, f2_args), (f3, f3_args)):
rs = torch.get_rng_state()
expected = vmap(
vmap(fn, in_dims=in_dim, out_dims=out_dim, randomness=randomness),
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
)(*args)
for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100):
torch.set_rng_state(rs)
actual = vmap(
vmap(
fn,
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunk_size=chunk_size,
),
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunk_size=chunk_size,
)(*args)
self.assertEqual(actual, expected)
instantiate_parametrized_tests(TestVmapOperators)
def construct_v(output, batch_size, contig=False):
if contig:
return torch.randn(
batch_size, *output.shape, dtype=output.dtype, device=output.device
)
result = torch.randn(
*output.shape, batch_size, dtype=output.dtype, device=output.device
)
return result.movedim(-1, 0)
def as_tuple(x):
if isinstance(x, tuple):
return x
elif isinstance(x, list):
return tuple(x)
else:
return (x,)
def differentiable(args):
return tuple(
arg
for arg in as_tuple(args)
if isinstance(arg, torch.Tensor) and arg.requires_grad
)
def _get_rand_no_zeros(*args, **kwargs):
requires_grad = kwargs.get("requires_grad", False)
kwargs_without_requires_grad = kwargs.copy()
kwargs_without_requires_grad["requires_grad"] = False
result = torch.rand(*args, **kwargs_without_requires_grad)
return result.clamp_min_(0.1).requires_grad_(requires_grad)
@markDynamoStrictTest
class TestVmapBatchedGradient(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
# Tests batched gradient computation of outputs = op(*args, **kwargs)
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
def _batched_grad_test(
self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3
):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
for contig in [True, False]:
batched_vectors = tuple(
construct_v(out, batch_size, contig) for out in outputs
)
def vector_jacobian_product(*vectors):
return torch.autograd.grad(
outputs, differentiable(args), vectors, retain_graph=True
)
self._vmap_test(
vector_jacobian_product, batched_vectors, check_propagates_grad=False
)
# Tests batched second grad computation of outputs = op(*args, **kwargs).
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
#
# NB: we only test computing batched gradients in the second gradient
# computation. One specific use case that does this is computing the hessian
# matrix of a scalar-valued function; this is useful in Bayesian Logistic
# Regression.
# It might be useful to have a test that computes batched first gradients and
# then uses those to compute batched second gradients in the future.
def _batched_grad_grad_test(
self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3
):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
ones = tuple(torch.ones_like(out) for out in outputs)
# Same thing as summing together all of the outputs and calling .backward()
first_grads = torch.autograd.grad(
outputs, differentiable(args), ones, create_graph=True
)
first_grads = differentiable(first_grads)
self.assertNotEqual(
len(first_grads), 0, "None of the first grads depend on the input!"
)
for contig in [True, False]:
batched_vectors = tuple(
construct_v(grad, batch_size, contig) for grad in first_grads
)
def vector_hessian_product(*vectors):
outputs = torch.autograd.grad(
first_grads,
differentiable(args),
vectors,
retain_graph=True,
allow_unused=True,
)
outputs = tuple(out for out in outputs if out is not None)
assert len(outputs) > 0
return outputs
self._vmap_test(
vector_hessian_product, batched_vectors, check_propagates_grad=False
)
def _test_arithmetic(self, op, device, test_grad_grad=True):
x = torch.randn(2, 3, requires_grad=True, device=device)
y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
scalar = 3.14
self._batched_grad_test(op, (x, y))
self._batched_grad_test(op, (scalar, y))
self._batched_grad_test(op, (x, scalar))
if test_grad_grad:
self._batched_grad_grad_test(op, (x, y))
def test_add(self, device):
self._test_arithmetic(torch.add, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False)
def test_sub(self, device):
self._test_arithmetic(torch.sub, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False)
def test_mul(self, device):
self._test_arithmetic(torch.mul, device)
self._test_arithmetic(lambda x, y: x * y, device)
def test_div(self, device):
self._test_arithmetic(torch.div, device)
self._test_arithmetic(lambda x, y: x / y, device)
def test_binary_cross_entropy(self, device):
x = F.sigmoid(torch.randn(3, 2, device=device, requires_grad=True))
target = torch.rand(3, 2, device=device)
op = functools.partial(F.binary_cross_entropy, target=target)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_log_softmax(self, device):
op = functools.partial(torch.log_softmax, dim=-1)
x = torch.randn(3, 2, device=device, requires_grad=True)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_expand(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
def op(x):
return x.expand(5, 5, 2, 3)
self._batched_grad_test(op, (x,))
@allowVmapFallbackUsage
def test_index(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
index = torch.tensor([[0, 0], [1, 1]], device=device)
def op(x):
y = x * x
return y[index]
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_lgamma(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.lgamma, (x,))
self._batched_grad_grad_test(Tensor.lgamma, (x,))
def test_log(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log, (x,))
self._batched_grad_grad_test(torch.log, (x,))
def test_logsumexp(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
def op(x):
return torch.logsumexp(x, -1)
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_log1p(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log1p, (x,))
self._batched_grad_grad_test(torch.log1p, (x,))
@allowVmapFallbackUsage
def test_max(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.max, (x,))
@allowVmapFallbackUsage
def test_median(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.median, (x,))
@allowVmapFallbackUsage
def test_min(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.min, (x,))
def test_permute(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.permute(2, 0, 1)
self._batched_grad_test(op, (x,))
def test_reshape(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.reshape([2 * 3, 5])
self._batched_grad_test(op, (x,))
def test_sigmoid(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.sigmoid, (x,))
self._batched_grad_grad_test(Tensor.sigmoid, (x,))
def test_stack(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
y = torch.randn(2, 3, device=device, requires_grad=True)
def op(x, y):
return torch.stack([x, y])
self._batched_grad_test(op, (x, y))
def test_select(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[1], (x,))
self._batched_grad_test(lambda x: x.select(1, 2), (x,))
self._batched_grad_test(lambda x: x.select(-1, 0), (x,))
def test_slice(self, device):
x = torch.randn(2, 3, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[0:1], (x,))
self._batched_grad_test(lambda x: x[:, 1:3], (x,))
self._batched_grad_test(lambda x: x[..., 1:3], (x,))
def test_trace(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(Tensor.trace, (x,))
x = torch.randn(3, 2, 2, device=device)
def sum_grad_trace(x):
return grad(torch.trace)(x).sum()
output = vmap(grad(sum_grad_trace))(x)
self.assertEqual(output, torch.zeros_like(output))
def test_where(self, device):
x = torch.randn(3, 2, device=device)
y = torch.ones(3, 2, device=device)
def f(x, y):
return torch.where(x > 0, x, y)
# Check that there is no runtime error, exactness tests are done with opinfo
vmap(f)(x, y)
x = torch.randint(0, 2, size=(4, 3), dtype=torch.float)
def f(t):
return torch.where(t)
with self.assertRaisesRegex(
RuntimeError, r"Attempted to vmap over aten::where"
):
vmap(f)(x)
def test_threshold(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,))
@parametrize("backend", PLATFORM_SPECIFIC_SDPA)
def test_sdpa(self, device, backend):
if device == "cpu":
raise unittest.SkipTest("This test is only for CUDA for now")
def T(*args):
return torch.randn(*args, dtype=torch.float16, device=device)
backend_ctx = sdpa_kernel([backend])
with backend_ctx:
for batching in [
(True, True, True),
(True, False, False),
(False, True, True),
]:
size = [8, 4, 128, 64]
if batching[0]:
query = T(3, *size)
else:
query = T(*size)
if batching[1]:
key = T(3, *size)
else:
key = T(*size)
if batching[2]:
value = T(3, *size)
else:
value = T(*size)
in_dims = tuple(0 if b else None for b in batching)
attention = F.scaled_dot_product_attention
self._vmap_test(
attention,
(query, key, value),
in_dims=in_dims,
)
# Backwards test doesn't work yet
# self._batched_grad_test(
# lambda query, key, value: F.scaled_dot_product_attention(
# query, key, value
# ),
# (query, key, value),
# )
B = 4
query = torch.rand(4, 32, B, 8, 128, dtype=torch.float16, device=device)
key = torch.rand(4, B, 32, 8, 128, dtype=torch.float16, device=device)
value = torch.rand(4, 32, 8, 128, dtype=torch.float16, device=device)
self._vmap_test(
F.scaled_dot_product_attention,
(query, key, value),
in_dims=(2, 1, None),
)
@parametrize("backend", PLATFORM_SPECIFIC_SDPA)
@parametrize("randomness", ["error", "same", "different"])
def test_randomness(self, device, randomness, backend):
if device == "cpu":
raise unittest.SkipTest("This test is only for CUDA for now")
backend_ctx = sdpa_kernel([backend])
with backend_ctx:
B = 4
query = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device)
key = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device)
value = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device)
def f(q, k, v, dropout):
return F.scaled_dot_product_attention(q, k, v, dropout_p=dropout)
# No matter the randomness mode, dropout=0.0 should pass
vmap(
functools.partial(f, dropout=0.0),
in_dims=(0, 0, 0),
randomness=randomness,
)(query, key, value)
fail_with_randomness = randomness == "error"
if backend != SDPBackend.MATH:
fail_with_randomness |= randomness == "same"
context = (
self.assertRaises(RuntimeError)
# We currently don't support randomness == "same", and "error" should always error with randomness
if fail_with_randomness
else contextlib.nullcontext()
)
with context:
vmap(
functools.partial(f, dropout=0.5),
in_dims=(0, 0, 0),
randomness=randomness,
)(query, key, value)
@allowVmapFallbackUsage
def test_inplace_view(self, device):
leaf = torch.randn(4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base[0]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
@allowVmapFallbackUsage
def test_inplace_manyview(self, device):
leaf = torch.randn(4, 4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base.transpose(0, 2)
view = view[1]
view = view.diagonal()
view = view[::2]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
def test_diagonal(self, device):
x = torch.randn(4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,))
x = torch.randn(3, 4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,))
@allowVmapFallbackUsage
def test_unrelated_output(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
(res,) = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
@allowVmapFallbackUsage
def test_unrelated_output_multiple_grad(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
(res,) = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
_ = vjp(gy[0])
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
def discover_variants(opinfo):
aliases = []
inplace_variants = []
if opinfo.inplace_variant:
inplace_variants.append(opinfo.inplace_variant)
aliases.append(opinfo.op)
for alias in opinfo.aliases:
aliases.append(alias.op)
if alias.inplace_variant:
inplace_variants.append(alias.inplace_variant)
return aliases, inplace_variants
# TODO: enable this when we get a bit closer to getting torch.vmap x torch.compile working.
# @markDynamoStrictTest
@unMarkDynamoStrictTest
class TestVmapOperatorsOpInfo(TestCase):
def vmap_outplace_test(
self,
func,
args,
kwargs,
in_dims,
check_shape_only=False,
postprocess_fn=None,
out_dim=0,
):
for vmap_out, loop_out in compute_quantities_for_vmap_test(
func, args, kwargs, in_dims, out_dim=out_dim
):
if postprocess_fn is not None:
loop_out = postprocess_fn(loop_out)
vmap_out = postprocess_fn(vmap_out)
if check_shape_only:
self.assertEqual(vmap_out.shape, loop_out.shape)
continue
self.assertEqual(vmap_out, loop_out)
def vmap_inplace_test(
self, func, args, kwargs, in_dims, postprocess_fn=None, out_dim=0
):
# NB: This test assumes that the first argument is being modified.
# This is OK because it's what every other OpInfo-based test assumes,
# but it is going to need a more robust solution eventually.
if in_dims[0] is None:
# Check that we correctly raise an error when vmap is impossible
# on the in-place operation
with self.assertRaises(RuntimeError):
for _ in compute_quantities_for_vmap_test(
func,
args,
kwargs,
in_dims,
out_dim=out_dim,
compute_loop_out=False,
clone_inputs=True,
):
pass
return
for vmap_out, loop_out in compute_quantities_for_vmap_test(
func,
args,
kwargs,
in_dims,
clone_inputs=True,
out_dim=out_dim,
):
if postprocess_fn is not None:
loop_out = postprocess_fn(loop_out)
vmap_out = postprocess_fn(vmap_out)
self.assertEqual(vmap_out, loop_out)
def opinfo_vmap_test(
self,
device,
dtype,
op,
check_has_batch_rule,
skip_inplace=(),
postprocess_fn=None,
):
def test():
# Error inputs check
if op.error_inputs_func is not None:
error_inputs = op.error_inputs(device)
for error_input in error_inputs:
sample_input = error_input.sample_input
args = (sample_input.input,) + tuple(sample_input.args)
kwargs = sample_input.kwargs
for batched_args, in_dims, _ in generate_vmap_inputs(args, {}):
with self.assertRaises(Exception):
vmap(op, in_dims)(*batched_args, **kwargs)
# Sample inputs check
sample_inputs_op = {
# Take too long with reference inputs
"special.chebyshev_polynomial_t",
"special.chebyshev_polynomial_u",
"special.chebyshev_polynomial_v",
"special.chebyshev_polynomial_w",
"special.hermite_polynomial_he",
"special.laguerre_polynomial_l",
"special.legendre_polynomial_p",
"special.shifted_chebyshev_polynomial_t",
"special.shifted_chebyshev_polynomial_u",
"special.shifted_chebyshev_polynomial_v",
"special.shifted_chebyshev_polynomial_w",
}
if op.name in sample_inputs_op:
sample_inputs_itr = op.sample_inputs(
device, dtype, requires_grad=False, use_subtests=True
)
else:
sample_inputs_itr = op.reference_inputs(
device, dtype, requires_grad=False, use_subtests=True
)
aliases, inplace_aliases = discover_variants(op)
check_shape_only = op.name in ("empty_like", "new_empty")
for sample_input, subtest_ctx in sample_inputs_itr:
with subtest_ctx(self):
args = (sample_input.input,) + sample_input.args
if not any(isinstance(arg, torch.Tensor) for arg in args):
# Atleast one tensor required for vmap.
continue
kwargs = sample_input.kwargs
is_batch_norm_and_training = is_batch_norm_training(op.name, kwargs)
out_dim = 0
if op.name == "NumpySplitCopyWithIntCustomOp":
# special case for this custom op
def sample_vmap_out_dim_numpy_split_copy_with_int(
x, splits, dim
):
return [0 for _ in range(len(splits) + 1)], None
out_dim = sample_vmap_out_dim_numpy_split_copy_with_int(*args)
for batched_args, in_dims, _ in generate_vmap_inputs(
args, {}, is_batch_norm_and_training=is_batch_norm_and_training
):
for func in aliases:
self.vmap_outplace_test(
func,
batched_args,
kwargs,
in_dims,
check_shape_only,
postprocess_fn,
out_dim=out_dim,
)
if op.name in skip_inplace:
continue
if not is_valid_inplace_sample_input(
sample_input, op, op.inplace_variant
):
continue
for func in inplace_aliases:
self.vmap_inplace_test(
func, batched_args, kwargs, in_dims, postprocess_fn
)
if check_has_batch_rule:
check_vmap_fallback(self, test, op)
else:
test()
vmap_fail = {
# -------------------- ALLOWED FAILURES --------------------------------
# These are things that we either cannot fix or are not actually problems
xfail("resize_"),
xfail("resize_as_"),
xfail("to_sparse"),
xfail("__getitem__"), # dynamic mask
xfail("index_put"), # dynamic mask
xfail(
"nn.functional.dropout"
), # works, can't check against for loop because of randomness inconsistency
xfail("nn.functional.scaled_dot_product_attention"), # randomness
xfail("nn.functional.multi_head_attention_forward"), # randomness
xfail("masked_select"), # dynamic op
xfail("nonzero"), # dynamic op
xfail("unique", ""), # dynamic op
xfail("unique_consecutive", ""), # dynamic op
xfail("allclose"), # returns a boolean
xfail("uniform"), # randomness is tested separately
xfail("rand_like"), # randomness is tested separately
xfail("randint_like"), # randomness is tested separately
xfail("randn_like"), # randomness is tested separately
xfail("bernoulli", ""), # randomness is tested separately
xfail("normal", ""), # randomness is tested separately
xfail("normal", "number_mean"), # randomness is tested separately
xfail("multinomial", ""), # randomness
xfail("nn.functional.embedding", ""), # we only support some cases
xfail("nn.functional.rrelu"), # randomness
xfail("nn.functional.dropout2d", ""), # randomness
xfail("nn.functional.dropout3d", ""), # randomness
xfail("nn.functional.alpha_dropout", ""), # randomness
xfail("nn.functional.feature_alpha_dropout", "with_train"), # randomness
xfail("as_strided"), # Our test runner can't handle this; manual test exists
xfail("as_strided_copy"),
xfail(
"as_strided_scatter"
), # no batching rule implemented, default doesnt work
skip(
"new_empty_strided"
), # empty tensor data is garbage so it's hard to make comparisons with it
xfail("nn.functional.fractional_max_pool3d"), # randomness
xfail("nn.functional.fractional_max_pool2d"), # randomness
xfail("pca_lowrank", ""), # random operation
xfail("svd_lowrank", ""), # random operation
xfail("sparse.sampled_addmm"), # sparse
xfail("sparse.mm", "reduce"), # sparse
xfail(
"NumpyCubeNotComposableAutogradFunction"
), # Not composable autograd.Function
skip("_softmax_backward_data"),
skip(
"linalg.eigh", ""
), # not always return the same result for the same input, see test_linalg_eigh for manual test
# UnimplementedError: data-dependent operators cannot be vmapped
xfail("NumpyNonzeroCustomOp"),
xfail("NumpyNMSCustomOp"),
# ----------------------------------------------------------------------
# ---------------------------- BUGS ------------------------------------
# entries in here don't work and need to be fixed.
# Each one of these is a bug
decorate("frexp", decorator=skipIfTorchDynamo()),
xfail("clamp_min", ""), # Exception not raised on error input
xfail("clamp_max", ""), # Exception not raised on error input
xfail(
"view_as_complex"
), # RuntimeError: Tensor must have a last dimension with stride 1
xfail("tensor_split"), # data_ptr
xfail(
"histogramdd"
), # expected Tensor as element 0 in argument 0, but got tuple
xfail("nn.functional.gaussian_nll_loss"), # data-dependent control flow error
xfail(
"nn.functional.embedding_bag"
), # embedding renorm vmap inplace incompatible
xfail("narrow"), # Batching rule not implemented for aten::narrow.Tensor
# required rank 4 tensor to use channels_last format
xfail("bfloat16"),
xfail("bool"),
xfail("byte"),
xfail("char"),
xfail("double"),
xfail("float"),
xfail("half"),
xfail("int"),
xfail("long"),
xfail("short"),
xfail("cdouble"),
xfail("cfloat"),
xfail(
"jiterator_binary", device_type="cuda"
), # NYI: querying is_contiguous inside of vmap
xfail(
"jiterator_binary_return_by_ref", device_type="cuda"
), # NYI: querying is_contiguous inside of vmap
xfail(
"jiterator_4inputs_with_extra_args", device_type="cuda"
), # NYI: querying is_contiguous inside of vmap
xfail(
"equal", ""
), # TypeError: object of type 'bool' has no len(); likely testrunner problem
xfail(
"jiterator_unary", device_type="cuda"
), # NYI: querying is_contiguous inside of vmap
xfail(
"jiterator_2inputs_2outputs", device_type="cuda"
), # NYI: querying is_contiguous inside of vmap
# ---------------------------------------------------------------------
# TypeError: expected Tensor as element 0 in argument 0, but got NotImplementedType
xfail("__rsub__"),
# RuntimeError: Batching rule not implemented for aten::moveaxis.int;
# the fallback path doesn't work on out= or view ops.
xfail("movedim"),
# RuntimeError: NYI: querying is_contiguous inside of vmap for
# memory_format other than torch.contiguous_format
xfail("contiguous"),
# RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only supported
# with memory_format torch.preserve_format or torch.contiguous_format (got ChannelsLast)
xfail("clone"),
# RuntimeError: When vmap-ing torch.nn.functional.one_hot,
# please provide an explicit positive num_classes argument.
xfail("nn.functional.one_hot"),
# RuntimeError: Expected all tensors to be on the same device,
# but found at least two devices, cuda:0 and cpu!
xfail("eq", device_type="cuda"),
xfail("ge", device_type="cuda"),
xfail("gt", device_type="cuda"),
xfail("le", device_type="cuda"),
xfail("lt", device_type="cuda"),
xfail("ne", device_type="cuda"),
# RuntimeError: aten::_flash_attention_forward hit the vmap fallback which is currently disabled
xfail("torch.ops.aten._flash_attention_forward"),
}
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(
op_db + additional_op_db + autograd_function_db + custom_op_db,
dtypes=OpDTypes.any_one,
)
@opsToleranceOverride(
"TestVmapOperatorsOpInfo",
"test_vmap_exhaustive",
(
tol1(
"linalg.det",
{torch.float32: tol(atol=1e-04, rtol=1e-04)},
device_type="cuda",
),
# The following is often flaky, but just on windows.
# We should investigate if it's actually a problem or not.
tol1(
"nn.functional.conv_transpose3d",
{torch.float32: tol(atol=1e-04, rtol=1e-02)},
device_type="cuda",
),
),
)
@toleranceOverride(
{
torch.float32: tol(atol=1e-04, rtol=1e-04),
torch.complex64: tol(atol=1e-04, rtol=1e-04),
}
)
@skipOps(
"TestVmapOperatorsOpInfo",
"test_vmap_exhaustive",
vmap_fail.union(
{
# RuntimeError: Batch norm got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
xfail("tril"), # Exception not raised on error input
xfail("triu"), # Exception not raised on error input
xfail("as_strided", "partial_views"),
# RuntimeError: output with shape [4, 4] doesn't match the broadcast shape [1, 4, 4]
xfail("addcdiv"),
xfail("addcmul"),
xfail("clamp"),
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
# TypeError: expected Tensor as element 0 in argument 0, but got float
xfail("item"),
# RuntimeError: required rank 4 tensor to use channels_last format
xfailIf(
"to",
lambda sample: (
sample.kwargs["memory_format"] == torch.channels_last
),
),
}
),
)
def test_vmap_exhaustive(self, device, dtype, op):
# needs to be fixed
inplace_failure_list = ()
self.opinfo_vmap_test(
device,
dtype,
op,
check_has_batch_rule=False,
skip_inplace=inplace_failure_list,
)
@with_tf32_off
@ops(
op_db + additional_op_db + autograd_function_db + custom_op_db,
dtypes=OpDTypes.any_one,
)
@opsToleranceOverride(
"TestVmapOperatorsOpInfo",
"test_op_has_batch_rule",
(
tol1(
"linalg.det",
{torch.float32: tol(atol=1e-04, rtol=1e-04)},
device_type="cuda",
),
),
)
@toleranceOverride(
{
torch.float32: tol(atol=1e-04, rtol=1e-04),
torch.complex64: tol(atol=1e-04, rtol=1e-04),
}
)
@skipOps(
"TestVmapOperatorsOpInfo",
"test_op_has_batch_rule",
vmap_fail.union(
{
xfail("as_strided", "partial_views"),
skip(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail("fill"),
# Batch norm got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
xfail("histogram"),
# `index_put` OpInfo in pytorch/pytorch has
# masked index as input which is not supported
xfail("index_put", ""),
xfail("isin"),
xfail("masked_fill"),
xfail("masked_scatter"),
xfail("masked_select"),
xfail("nanquantile"),
xfail("ormqr"),
xfail("put"),
xfail("quantile"),
xfail("renorm"),
xfail("squeeze_copy"),
xfail("resize_as_"),
xfail("take"),
xfail("tensor_split"),
xfail("transpose_copy"),
xfail("to_sparse"),
# TypeError: expected Tensor as element 0 in argument 0, but got float
xfail("item"),
xfail("tril"), # Exception not raised on error input
xfail("triu"), # Exception not raised on error input
xfail("__getitem__", ""),
xfail("count_nonzero"),
xfail(
"nn.functional.dropout"
), # works, can't check against for loop because of randomness inconsistency
xfail("nn.functional.scaled_dot_product_attention"), # randomness
xfail("nn.functional.multi_head_attention_forward"), # randomness
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
xfail("resize_"),
xfail("view_as_complex"),
xfail("matrix_exp"),
xfail("fft.ihfft2"),
xfail("fft.ihfftn"),
xfail("allclose"),
xfail("argwhere"),
xfail("unique_consecutive"),
xfail("unique"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.gaussian_nll_loss"),
xfail("histc"),
xfail("as_strided"),
xfail("as_strided_copy"),
xfail("permute_copy"),
xfail("t_copy"),
xfail("unsqueeze_copy"),
xfail("istft"),
xfail("nonzero"),
xfail("nn.functional.fractional_max_pool2d"),
xfail("stft"),
xfail("isclose"),
xfail("nn.functional.fractional_max_pool3d"),
xfail("nn.functional.bilinear"),
xfail("nn.functional.embedding_bag"),
xfail("linalg.tensorsolve"),
xfail("bernoulli", ""),
xfail("nn.functional.feature_alpha_dropout", "with_train"),
xfail("nn.functional.kl_div", ""),
xfail("multinomial", ""),
xfail("pca_lowrank", ""),
xfail("normal", ""),
xfail("nn.functional.dropout2d", ""),
xfail("normal", "number_mean"),
xfail("svd_lowrank", ""),
xfail("diagflat", ""),
xfail("special.log_ndtr"),
xfail(
"narrow"
), # Batching rule not implemented for aten::narrow.Tensor
xfail("nn.functional.triplet_margin_loss", ""),
xfail("nn.functional.pdist", ""),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.multi_margin_loss", ""),
xfail("nn.functional.multilabel_margin_loss", ""),
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.max_unpool2d", ""),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("nn.functional.margin_ranking_loss", ""),
xfail("nn.functional.max_unpool1d", ""),
xfail("nn.functional.soft_margin_loss", ""),
xfail("nn.functional.max_unpool3d", ""),
xfail("linalg.ldl_solve", "", device_type="cpu"),
xfail("chalf", ""),
xfail("clamp_max", ""),
xfail("jiterator_binary_return_by_ref", device_type="cuda"),
xfail("jiterator_unary", device_type="cuda"),
xfail("jiterator_2inputs_2outputs", device_type="cuda"),
xfail("special.airy_ai"),
xfail("clamp_min", ""),
xfail("sparse.sampled_addmm"),
xfail("sparse.mm", "reduce"),
xfail("special.chebyshev_polynomial_u"),
xfail("_segment_reduce", "offsets"),
xfail("index_reduce", "prod"),
xfail("index_reduce", "mean"),
xfail("index_reduce", "amin"),
xfail("index_reduce", "amax"),
xfail("special.laguerre_polynomial_l"),
xfail("special.hermite_polynomial_h"),
xfail("jiterator_binary", device_type="cuda"),
xfail("jiterator_4inputs_with_extra_args", device_type="cuda"),
xfail("_segment_reduce", "lengths"),
xfail("lu_solve", ""),
xfail("special.hermite_polynomial_he"),
xfail("nn.functional.dropout3d", ""),
xfail("special.chebyshev_polynomial_t"),
xfail("as_strided_scatter", ""),
xfail("equal", ""),
xfail("linalg.lu", ""),
skip("linalg.ldl_solve", ""),
skip("_softmax_backward_data"),
# One or more of the overload doesn't have a Batch rule.
xfail("bincount"),
# RuntimeError: Expected all tensors to be on the same device,
# but found at least two devices, cuda:0 and cpu!
xfail("ge", device_type="cuda"),
xfail(
"searchsorted"
), # aten::searchsorted.Scalar hit the vmap fallback which is currently disabled
}
),
)
def test_op_has_batch_rule(self, device, dtype, op):
# needs to be fixed
inplace_failures = (
"addbmm",
"addcdiv",
"addcmul",
"addmm",
"addmv",
"addr",
"baddbmm",
"clamp",
"conj_physical",
"cumprod",
"cumsum",
"floor_divide",
"fmod",
"heaviside",
"hypot",
"igamma",
"igammac",
"index_copy",
"ldexp",
"lerp",
"neg",
"nextafter",
"polygamma",
"pow",
"remainder",
"scatter_add",
"scatter",
"square",
"sub",
"trunc",
"xlogy",
)
self.opinfo_vmap_test(
device, dtype, op, check_has_batch_rule=True, skip_inplace=inplace_failures
)
def test_linalg_svd(self, device):
# linalg_svd returns a tuple of three tensors, (U, S, Vh).
# Given the same input, it may return different tensors,
# because svd isn't unique. To test that the svd is correct, we multiply
# U @ diag(S) @ Vh and check that the output from vmap matches the
# output from a for-loop.
def compute_A(out):
U, S, Vh = out
m = U.shape[-1]
n = Vh.shape[-2]
diag_S = S.new_zeros(*S.shape[:-1], m, n)
diag_S.diagonal(offset=0, dim1=-2, dim2=-1).copy_(S)
return U @ diag_S @ Vh
opinfos = [op for op in op_db if op.name == "linalg.svd"]
assert len(opinfos) > 0
for op in opinfos:
self.opinfo_vmap_test(
device,
torch.float,
op,
check_has_batch_rule=True,
postprocess_fn=compute_A,
)
def test_linalg_eigh(self, device):
# linalg_svd returns two tensors, (Q, L).
# Given the same input, it may return different tensors,
# because the eig decomposition isn't unique.
# To test that eigh is correct, we multiply
# Q @ diag(L) @ Qh and check that the output from vmap matches the
# output from a for-loop.
def compute_A(out):
L, Q = out
n = Q.shape[-1]
diag_L = L.new_zeros(*L.shape[:-1], n, n)
diag_L.diagonal(offset=0, dim1=-2, dim2=-1).copy_(L)
Qh = Q.transpose(-2, -1).conj()
return Q @ diag_L @ Qh
opinfos = [op for op in op_db if op.name == "linalg.eigh"]
assert len(opinfos) > 0
for op in opinfos:
self.opinfo_vmap_test(
device,
torch.float,
op,
check_has_batch_rule=True,
postprocess_fn=compute_A,
)
@skipIfTorchDynamo()
def test_slogdet(self, device):
# There's no OpInfo for this
def test():
B = 2
x = torch.randn(B, 5, 5, device=device)
self.vmap_outplace_test(torch.slogdet, (x,), {}, (0,))
check_vmap_fallback(self, test, torch.slogdet)
def test_index_fill(self, device):
# There's no OpInfo for these tests
B = 2
def test1():
# negative dim
x = torch.randn(B, 5, 5, device=device)
dim = -2
index = torch.tensor([[2, 3], [0, 4]], device=device)
value = 5.0
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None)
)
def test2():
# self batched, self logical rank 1, index logical rank 1
x = torch.zeros(B, 3, device=device)
dim = 0
index = torch.tensor([[0], [1]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None)
)
def test3():
# self batched, self logical rank 1, index logical rank 0
x = torch.zeros(B, 3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None)
)
def test4():
# self not batched, self logical rank 0, index logical rank 1
x = torch.zeros([], device=device)
dim = 0
index = torch.tensor([[0], [0]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None)
)
def test5():
# self not batched, self logical rank 0, index logical rank 0
x = torch.zeros([], device=device)
dim = 0
index = torch.tensor([0, 0], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None)
)
def test6():
# self not batched, self logical rank 0, index logical rank 1
x = torch.zeros(3, device=device)
dim = 0
index = torch.tensor([[0], [1]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None)
)
def test7():
# self not batched, self logical rank 0, index logical rank 0
x = torch.zeros(3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None)
)
def test8():
# self batched, self logical rank > 1, index logical rank 0
x = torch.zeros(B, 3, 3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(
torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None)
)
for test in (test1, test2, test3, test4, test5, test6, test7, test8):
check_vmap_fallback(self, test, torch.index_fill)
def test_fill__Tensor(self, device):
# There's no OpInfo for fill_.Tensor, so here's an extra test for it.
def test():
B = 2
args = (torch.randn(B, 3, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (0, 0))
args = (torch.randn(3, B, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (-1, 0))
args = (torch.randn(3, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (None, 0))
args = (torch.randn(3, B, device=device), torch.randn([]))
self.vmap_inplace_test(Tensor.fill_, args, {}, (1, None))
check_vmap_fallback(self, test, Tensor.fill_)
@tf32_on_and_off(0.005)
def test_conv_double_backward(self, device):
images = torch.randn(2, 1, 5, 5, device=device)
weight = torch.randn(2, 1, 2, 2, device=device)
bias = torch.randn(2, device=device)
ggI = torch.randn_like(images)
ggW = torch.randn_like(weight)
ggb = torch.randn_like(bias)
stride = (1, 1)
padding = (0, 0)
dilation = (1, 1)
transposed = False
output_padding = (0, 0)
groups = 1
output_mask = (True, True, True)
gO = torch.randn_like(
F.conv2d(images, weight, bias, stride, padding, dilation, groups)
)
args = (
ggI,
ggW,
ggb,
gO,
weight,
images,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
output_mask,
)
op = torch.ops.aten._convolution_double_backward
generator = get_fallback_and_vmap_exhaustive(op, args, {})
is_cuda_sm86 = device.startswith("cuda") and torch.cuda.get_device_capability(
0
) == (8, 6)
atol, rtol = (1e-3, 1e-3) if is_cuda_sm86 else (1e-4, 1e-4)
def test():
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out, atol=atol, rtol=rtol)
check_vmap_fallback(self, test, op)
def test_isnan(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = torch.isnan
x = torch.randn(B, N, C, H, W)
x[x > 0] = float("nan")
test(self, op, (x,), in_dims=(0))
def test_sum_scalar(self, device):
x = torch.tensor([10.0], device=device)
y = vmap(torch.sum)(x)
self.assertEqual(y, x)
y = vmap(lambda x: x.sum(0))(x)
self.assertEqual(y, x)
y = vmap(lambda x: x.sum(-1))(x)
self.assertEqual(y, x)
def test_isinf(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = torch.isinf
x = torch.randn(B, N, C, H, W)
x[x > 0] = float("inf")
test(self, op, (x,), in_dims=(0))
def test_foo_like(self, device):
# vfdev-5: Probably, we can remove this line. Flake8 reported as unused
# test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
for op in [torch.ones_like, torch.zeros_like]:
x = torch.randn(B, N, C, H, W)
# todo(chilli): test these better
# Not testing correctness, just that they run
vmap(op, in_dims=(0,))(
x,
)
def test_flatten(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
op = torch.flatten
x = torch.randn(2, 3, 4, 5)
test(self, op, (x, 1, 2), in_dims=(0, None, None))
def test_group_norm(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = F.group_norm
x = torch.randn(B, N, C, H, W)
weight = torch.randn(C)
bias = torch.randn(C)
test(self, op, (x, 3, weight, bias), in_dims=(0, None, None, None))
x = torch.randn(B, N, C, H, W)
weight = torch.randn(B, C)
bias = torch.randn(B, C)
test(self, op, (x, 4, weight, bias), in_dims=(0, None, 0, 0))
def test_index_put(self, device):
def test(f, t, idx, values):
base = f(t[0], idx[0], values[0])
self.assertEqual(vmap(f, in_dims=(0, 0, 0))(t, idx, values)[0], base)
self.assertEqual(
vmap(f, in_dims=(0, None, None))(t, idx[0], values[0])[0], base
)
self.assertEqual(vmap(f, in_dims=(0, None, 0))(t, idx[0], values)[0], base)
self.assertEqual(vmap(f, in_dims=(0, 0, None))(t, idx, values[0])[0], base)
def f(x, y, z):
x[y] = z
return x
x = torch.randn(3, 4, 5, device=device)
y = torch.zeros((3, 2), device=device).long()
z = torch.randn(3, 2, 5, device=device)
test(f, x, y, z)
# indexing innermost dim
def f(t, idx, values):
t[:, idx] = values
return t
t = torch.zeros((3, 2, 3))
values = torch.ones((3, 1, 2))
idx = torch.tensor([[1, 2]]).expand((3, 2))
test(f, t, idx, values)
# indexing middle dim
def f(t, idx, values):
t[:, idx, :] = values
return t
t = torch.zeros((3, 2, 3, 3))
values = torch.ones((3, 1, 2, 3))
idx = torch.tensor([[0, 2]]).expand((3, 2))
test(f, t, idx, values)
# indexing with slices
def f(t, values):
t[:, :2, :] = values
return t
base = f(t[0], values[0])
self.assertEqual(vmap(f, in_dims=(0, 0))(t, values)[0], base)
self.assertEqual(vmap(f, in_dims=(0, None))(t, values[0])[0], base)
# index_put_
tensor = torch.zeros(3, 3, 4)
value = torch.ones(3, 2)
idxs = (
torch.tensor([[0], [1], [2]]),
torch.tensor([[0]]),
torch.tensor([1, 2]),
)
expected = torch.index_put_(tensor.clone(), idxs, value)
def f(t, idx, v):
torch.index_put_(t, idx, v)
return t
self.assertEqual(
vmap(f, in_dims=(0, (None, None), 0))(tensor, idxs[1:], value), expected
)
self.assertEqual(
vmap(f, in_dims=(0, (None, None), None))(tensor, idxs[1:], value[0]),
expected,
)
# boolean mask
B = 2
x = torch.randn(1, 3, 3)
gy = torch.randn(B, 1, 3, 3)
def f(x, gy):
mask = x < 1e-09
zeros = torch.zeros([])
index_put = torch.ops.aten.index_put.default(gy, [mask], zeros)
return index_put
self.vmap_outplace_test(f, (x, gy), {}, in_dims=(None, 0))
@onlyCUDA
@parametrize("inplace", [True, False])
def test_0d_tensor_index_put(self, device, inplace):
def f(t, idx, v):
fn = torch.index_put_ if inplace else torch.index_put
return fn(t, idx, v)
N = 2
t = torch.zeros((N, 5), device="cuda")
idx = torch.tensor([1, 3])
v = torch.tensor(1, dtype=t.dtype, device="cpu")
expected = torch.tensor([[0, 1, 0, 1, 0], [0, 1, 0, 1, 0]], dtype=t.dtype)
self.assertEqual(expected, vmap(f, in_dims=(0, None, None))(t, (idx,), v))
@parametrize("training", [True, False])
@parametrize("track_running_stats", [True, False])
@parametrize("affine", [True, False])
def test_batch_norm(self, device, affine, track_running_stats, training):
if not track_running_stats and not training:
return
test = functools.partial(_vmap_test, check_propagates_grad=False)
BN = torch.nn.BatchNorm2d
ensemble_size = 10
hidden_dim = 3
weights, buffers, _, _, _ = functional_init_with_buffers(BN, [ensemble_size])(
hidden_dim, affine=affine, track_running_stats=track_running_stats
)
inputs = [torch.randn(ensemble_size, 32, hidden_dim, 16, 16, device=device)]
in_dims = [0]
def append(inp, in_dim):
inputs.append(inp)
in_dims.append(in_dim)
if track_running_stats:
running_mean, running_var, _ = buffers
append(running_mean.to(device), 0)
append(running_var.to(device), 0)
else:
append(None, None)
append(None, None)
if affine:
weight, bias = weights
append(weight.to(device), 0)
append(bias.to(device), 0)
else:
append(None, None)
append(None, None)
append(training, None)
def op(inp, running_mean, running_var, weight, bias, training):
res = F.batch_norm(inp, running_mean, running_var, weight, bias, training)
if track_running_stats:
return res, running_mean, running_var
return res
test(self, op, tuple(inputs), in_dims=tuple(in_dims))
def test_torch_return_types_returns(self, device):
t = torch.randn(3, 2, 2, device=device)
self.assertTrue(
isinstance(vmap(torch.min, (0, None))(t, 0), torch.return_types.min)
)
self.assertTrue(
isinstance(vmap(torch.max, (0, None))(t, 0), torch.return_types.max)
)
self.assertTrue(
isinstance(
vmap(torch.topk, (0, None, None))(t, 1, 0), torch.return_types.topk
)
)
self.assertTrue(
isinstance(vmap(torch.linalg.eig, (0))(t), torch.return_types.linalg_eig)
)
def test_namedtuple_returns(self, device):
Point = namedtuple("Point", ["x", "y"])
def f(x, y):
return Point(x=x, y=y)
x = torch.randn(2, 5, device=device)
y = torch.randn(2, 3, device=device)
self.assertTrue(isinstance(vmap(f)(x, y), Point))
def test_inplace_on_view(self, device):
def func(leaf):
base = leaf * leaf
view = base.transpose(0, 1)
view[2:4, 2:4] *= 2
view[0:2, 0:2].diagonal().sin_()
view = view[1:3, 1:3]
view.cos_()
return view
def push_vjp(leaf, gout):
_, vjp_fn = vjp(func, leaf)
(result,) = vjp_fn(gout)
return result
leaf = torch.randn(4, 4, device=device)
gout = torch.randn(2, 2, device=device)
args = (leaf, gout)
for (
batched_args,
in_dims,
_,
) in generate_vmap_inputs(args, {}):
if in_dims[1] is None:
# triggers some composite compliance problem
continue
self.vmap_outplace_test(push_vjp, batched_args, {}, in_dims)
def test_advanced_indexing(self, device):
def test(f, args):
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
self.assertEqual(loop_out, batched_out)
def f(x, idx):
return x[:, idx]
def f2(x, idx):
return x[idx, :]
def f3(x, idx):
return x[:, :, idx]
inps = (
torch.randn(5, 5, 5, device=device),
torch.randn(5, 5, 5, 5, device=device),
torch.randn(5, 5, 5, 5, 5, device=device),
)
idxes = (
torch.tensor([0, 1, 2], device=device),
torch.tensor([0, 1, 2], device=device).reshape(3, 1),
torch.tensor([0, 1, 2], device=device).reshape(3, 1, 1),
)
for inp, idx in itertools.product(inps, idxes):
test(f, (inp, idx))
test(f2, (inp, idx))
test(f3, (inp, idx))
def test_nested_advanced_indexing(self, device):
e = torch.rand(7, 4, device=device)
idx = torch.tensor([0, 1], device=device).view(2, 1)
# simple reference implementation for comparison
def _fake_vmap(f, in_dims=0, out_dims=0):
def w(input):
r = [f(input.select(in_dims, i)) for i in range(input.size(in_dims))]
return torch.stack(r, out_dims)
return w
def with_vmap(_vmap):
def g(idx_):
def f(e_):
return e_[idx_]
return _vmap(f, in_dims=1)(e)
r = _vmap(g)(idx)
return r
a = with_vmap(vmap)
b = with_vmap(_fake_vmap)
self.assertEqual(a, b)
@ops(
filter(lambda op: "linalg" in op.name, op_db + additional_op_db),
allowed_dtypes=(torch.float,),
)
@skipOps(
"TestVmapOperatorsOpInfo",
"test_vmap_linalg_failure_1D_input",
{
xfail("linalg.vector_norm"), # can accept vector inputs
xfail("linalg.norm"), # can accept vector inputs
xfail("linalg.norm", "subgradients_at_zero"), # can accept vector inputs
xfail("linalg.vander"), # can accept vector inputs
skip(
"linalg.multi_dot"
), # accepts list of tensor inputs, has its own special test
xfail("linalg.vecdot"),
# throws in vmap on CUDA
# IndexError: Dimension out of range (expected to be in range of [-1, 0], but got -2)
# https://github.com/pytorch/pytorch/runs/8110653462?check_suite_focus=true
# but it passes locally
xfail("linalg.diagonal"),
skip("linalg.matrix_norm", ""),
skip("linalg.ldl_solve", ""),
},
)
def test_vmap_linalg_failure_1D_input(self, device, dtype, op):
for sample in op.sample_inputs(device, dtype, requires_grad=False):
if sample.input.dim() != 2 or sample.input.shape[0] == 0:
continue
test_input = sample.input[
0
] # using the sample input avoids numerical inconsistency issues
with self.assertRaisesRegex(RuntimeError, "dimension"):
op(test_input, *sample.args, **sample.kwargs)
def op_wrapper(inp):
return op(inp, *sample.args, **sample.kwargs)
# square inputs are more likely to pass linalg checks
test_input = test_input.expand(test_input.shape[0], test_input.shape[0])
with self.assertRaisesRegex(RuntimeError, "dimension"):
return vmap(op_wrapper)(test_input)
def test_vmap_multi_dot_failure_1D_input(self):
# special exception for first and last tensors so making giving 3 items avoids special cases
inputs = (torch.randn(3, 3), torch.randn(3), torch.randn(3, 3))
with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
torch.linalg.multi_dot(inputs)
# square inputs are more likely to pass linalg checks
inputs = tuple(i.expand(i.shape[0], i.shape[0]) for i in inputs)
with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
return vmap(torch.linalg.multi_dot)(inputs)
def test_vmap_escaped_error(self):
escaped = None
def f(x):
nonlocal escaped
escaped = x
return x**2
x = torch.randn([3, 3, 3, 3, 3])
vmap(f)(x)
common_message = (
r"your tensor may have escaped from inside a function being vmapped.*{0}.*"
)
# Note: These are not a complete set of tests for all possible functions calling 'vmap_check_escaped'
with self.assertRaisesRegex(
RuntimeError, common_message.format("gen_vmap_plumbing")
):
escaped.sin()
with self.assertRaisesRegex(
RuntimeError, common_message.format("boxed_tensor_inputs_batch_rule")
):
escaped.sin_()
with self.assertRaisesRegex(
RuntimeError, common_message.format("gen_vmap_inplace_plumbing")
):
escaped.mul_(1)
with self.assertRaisesRegex(
RuntimeError, common_message.format("binary_cross_entropy_plumbing")
):
torch.nn.functional.binary_cross_entropy(escaped, torch.zeros([3, 3, 3, 3]))
with self.assertRaisesRegex(
RuntimeError, common_message.format("boxed_existing_bdim_all_batch_rule")
):
torch.nn.functional.adaptive_max_pool2d(escaped, output_size=(1, 1))
with self.assertRaisesRegex(
RuntimeError, common_message.format("boxed_reduction_batch_rule")
):
escaped.argmin()
a = torch.zeros([4, 4, 4, 4])
b = torch.zeros([4, 4, 4, 4], dtype=torch.long)
with self.assertRaisesRegex(
RuntimeError, common_message.format("boxed_all_tensors_have_optional_bdim")
):
torch.ops.aten.adaptive_max_pool2d_backward(escaped, a, b)
vmap(f)(torch.tensor([[0, 0], [0, 0]], dtype=torch.int))
with self.assertRaisesRegex(
RuntimeError, common_message.format("gen_vmap_plumbing_no_returns")
):
torch.ops.aten._linalg_check_errors(escaped, "linalg.inv", is_matrix=False)
def test_vmap_with_anomaly_detection(self):
with torch.autograd.set_detect_anomaly(True):
x = torch.zeros(3) - 1
def fn(x):
return x.sum()
per_sample_grad = vmap(grad(fn))(x)
self.assertEqual(per_sample_grad, torch.ones_like(x))
def bad_fn(x):
return x.sqrt().sum()
err_msg = "Function 'SqrtBackward0' returned nan values in its 0th output."
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(grad(bad_fn))(x)
def test_searchsorted_bucketize(self, device):
# OpInfo generates test with repeated samples in batch dim.
# Thus we test explicitly with different samples across a batch.
def test():
boundaries = torch.tensor(
[[1, 4, 5, 7, 9], [1, 2, 6, 8, 10]], device=device
)
v = torch.tensor(3, device=device)
self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, None))
self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (None, 0))
boundaries = torch.tensor([[1, 4, 5, 7, 9], [1, 2, 4, 8, 9]], device=device)
v = torch.tensor([3, 4], device=device)
self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, 0))
self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (0, 0))
test()
@markDynamoStrictTest
class TestRandomness(TestCase):
def _reset_random(self, generator, orig_state, use_generator, seed):
return (
generator.set_state(orig_state)
if use_generator
else torch.manual_seed(seed)
)
def _get_image(self, batched_input, batch_size, device):
if batched_input == "first":
return torch.ones([batch_size, 3, 3, 14, 14], device=device)
if batched_input == "last":
return torch.ones([3, 3, 14, 14, batch_size], device=device)
assert batched_input == "none"
return torch.ones([3, 3, 14, 14], device=device)
def _assert_all_slices_equal(self, tensor):
expected = tensor[0]
self.assertTrue((tensor == expected).all())
def _assert_all_slices_unique(self, tensor):
B0 = tensor.shape[0]
slices_equal = vmap(vmap(lambda x, y: (x == y).all(), (0, None)), (None, 0))(
tensor, tensor
)
assert slices_equal.shape == (B0, B0)
slices_equal.diagonal().zero_()
self.assertEqual(slices_equal, torch.zeros_like(slices_equal))
def _assert_throws_in_error_mode(self, fn, args, in_dims):
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(fn, in_dims=in_dims, randomness="error")(*args)
def _assert_throws_in_different_mode_inplace(self, fn, args, in_dims):
with self.assertRaisesRegex(
RuntimeError, r"different inplace randomness on an unbatched tensor"
):
vmap(fn, in_dims=in_dims, randomness="different")(*args)
def _assert_throws_in_same_mode_batched(self, fn, args, in_dims):
with self.assertRaisesRegex(
RuntimeError,
r"Vmap does not currently support same randomness with a batched tensor input",
):
vmap(fn, in_dims=in_dims, randomness="same")(*args)
def _in_dims(self, *batched_strings):
def get_in_dim(batched_string):
if batched_string == "first":
return 0
if batched_string == "last":
return -1
assert batched_string == "none"
return None
batched_strings = batched_strings + (
"first",
) # for the always batched as first dim dummy argument
return tuple(get_in_dim(batched_string) for batched_string in batched_strings)
@parametrize("randomness", ["same", "different", "error"])
@parametrize("use_generator", [True, False])
def test_factory_ops(self, device, randomness, use_generator):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = (
{"device": device, "generator": generator}
if use_generator
else {"device": device}
)
ops = [
lambda _, shape: torch.randn(shape, **kwargs),
lambda _, shape: torch.rand(shape, **kwargs),
lambda _, shape: torch.randint(100, shape, **kwargs),
lambda _, shape: torch.randint(5, 100, shape, **kwargs),
lambda _, shape: torch.normal(0.0, 1.0, shape, **kwargs),
]
B0 = 4
shape = (3, 3)
seed = 1234567
for op in ops:
passed = torch.randn(B0, device=device)
if randomness == "error":
self._assert_throws_in_error_mode(
op, (passed, shape), in_dims=(0, None)
)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=(0, None), randomness=randomness)(
passed, shape
)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
expected = op(passed, [B0, *shape])
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, shape)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("randomness", ["same", "different", "error"])
@parametrize("use_generator", [True, False])
def test_randperm(self, device, randomness, use_generator):
# needs a special case because randperm doesn't take a batch size
B0 = 4
seed = 1234567
passed = torch.randn(B0, device=device)
torch.manual_seed(seed)
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = (
{"device": device, "generator": generator}
if use_generator
else {"device": device}
)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)(
passed
)
return
vmap_result = vmap(
lambda _: torch.randperm(10, **kwargs), randomness=randomness
)(passed)
generator = generator.set_state(orig_state)
torch.manual_seed(seed)
if randomness == "different":
for i in range(B0):
expected = torch.randperm(10, **kwargs)
# RNG differs between eager and via dynamo trace on CUDA
if TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda":
self._assert_all_slices_unique(vmap_result)
else:
self.assertEqual(vmap_result[i], expected)
else:
expected = torch.randperm(10, **kwargs)
# RNG differs between eager and via dynamo trace on CUDA
if TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda":
self._assert_all_slices_equal(vmap_result)
else:
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.dropout(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(
passed, always_batched
)
# Check that the randomness is within bounds...
# ideally this is close to 0.5
p_estimate = vmap_result.mean() / 2
self.assertTrue(p_estimate < 0.75)
self.assertTrue(p_estimate > 0.25)
if randomness == "different":
self._assert_all_slices_unique(vmap_result)
return
assert randomness == "same"
self._assert_all_slices_equal(vmap_result)
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_alpha_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.alpha_dropout(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
# I have no clue how to actually test correctness of alpha dropout because the docs
# seem wrong: https://github.com/pytorch/pytorch/issues/74004
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(
passed, always_batched
)
if randomness == "different":
self._assert_all_slices_unique(vmap_result)
return
assert randomness == "same"
self._assert_all_slices_equal(vmap_result)
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
@parametrize("dim", [2, 3])
def test_feature_dropout(self, device, randomness, batched_input, dim):
def op(t, ignored):
f = (
torch.nn.functional.dropout2d
if dim == 2
else torch.nn.functional.dropout3d
)
return f(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
if dim == 3:
unsqueeze_dim = -2 if batched_input == "last" else -1
passed = passed.unsqueeze(unsqueeze_dim)
in_dims = self._in_dims(batched_input)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(
passed, always_batched
)
# Check the "feature" pattern
dims = [-1, -2] if dim == 2 else [-1, -2, -3]
planes_numel = (
2
* vmap_result.numel()
/ (vmap_result.shape[0] * vmap_result.shape[1] * vmap_result.shape[2])
)
planes = vmap_result.sum(dims)
result = (planes == 0) ^ (planes == planes_numel)
self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))
if randomness == "different":
self._assert_all_slices_unique(vmap_result)
return
assert randomness == "same"
self._assert_all_slices_equal(vmap_result)
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_feature_alpha_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.feature_alpha_dropout(
torch.ones_like(t), training=True
)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
unsqueeze_dim = -2 if batched_input == "last" else -1
passed = passed.unsqueeze(unsqueeze_dim)
in_dims = self._in_dims(batched_input)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(
passed, always_batched
)
# I have no clue how to actually test correctness of alpha dropout because the docs
# seem wrong: https://github.com/pytorch/pytorch/issues/74004
# Check the "feature" pattern
dims = [-1, -2, -3]
planes = vmap_result.sum(dims)
max_elt = planes.max()
min_elt = planes.min()
result = (planes == min_elt) ^ (planes == max_elt)
self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))
if randomness == "different":
self._assert_all_slices_unique(vmap_result)
return
assert randomness == "same"
self._assert_all_slices_equal(vmap_result)
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_like_functions(self, device, randomness, batched_input):
seed = 1234567
supported_ops = [
lambda t, _: torch.randint_like(t, 20),
lambda t, _: torch.randint_like(t, 0, 20),
lambda t, _: torch.rand_like(t),
lambda t, _: torch.randn_like(t),
]
B0 = 4
for op in supported_ops:
always_batched = torch.randn(B0)
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == "error":
with self.assertRaisesRegex(
RuntimeError,
r"called random operation while in randomness error mode",
):
vmap(op, in_dims=in_dims, randomness=randomness)(
passed, always_batched
)
return
torch.manual_seed(seed)
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(
passed, always_batched
)
torch.manual_seed(seed)
if batched_input == "last":
passed = passed.movedim(-1, 0)
if randomness == "different":
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
expected = op(passed, 0)
self._assert_all_slices_unique(vmap_result)
# RNG differs between eager and via dynamo trace on CUDA
if not (TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda"):
self.assertEqual(expected, vmap_result)
return
assert randomness == "same"
if batched_input != "none":
passed = passed[0]
expected = op(passed, 0)
self._assert_all_slices_equal(vmap_result)
# RNG differs between eager and via dynamo trace on CUDA
if not (TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda"):
for i in range(B0):
self.assertEqual(expected, vmap_result[i])
@parametrize("use_generator", [True, False])
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_random_unary_inplace(
self, device, use_generator, randomness, batched_input
):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {"generator": generator} if use_generator else {}
ops = [
lambda t, _: t.random_(**kwargs),
lambda t, _: t.random_(100, **kwargs),
lambda t, _: t.random_(-5, 100, **kwargs),
lambda t, _: t.normal_(**kwargs),
lambda t, _: t.bernoulli_(**kwargs),
lambda t, _: t.cauchy_(**kwargs),
lambda t, _: t.exponential_(**kwargs),
lambda t, _: t.geometric_(0.5, **kwargs),
lambda t, _: t.log_normal_(**kwargs),
lambda t, _: t.uniform_(**kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
for op in ops:
# because of in place updates, clone inputs
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
passed_expected = passed.clone()
if randomness == "error":
self._assert_throws_in_error_mode(
op, (passed, always_batched), in_dims=in_dims
)
return
if randomness == "different" and batched_input == "none":
self._assert_throws_in_different_mode_inplace(
op, (passed, always_batched), in_dims=in_dims
)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(
passed, always_batched
)
if batched_input == "last":
passed_expected = passed_expected.movedim(-1, 0)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
expected = op(passed_expected, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
if batched_input != "none":
passed_expected = passed_expected[
0
].clone() # bug in pytorch, normal_ on views doesn't work
expected = op(passed_expected, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("use_generator", [True, False])
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
@parametrize("batched_probability", ["first", "last", "none"])
def test_bernoulli_in_place(
self, device, use_generator, randomness, batched_input, batched_probability
):
B0 = 4
seed = 1234567
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {"generator": generator} if use_generator else {}
in_dims = self._in_dims(batched_input, batched_probability)
def op(t, p, ignored):
return t.bernoulli_(p, **kwargs)
# because of in place updates, clone inputs
always_batched = torch.randn(B0, device=device)
input = self._get_image(batched_input, B0, device)
input_expected = input.clone()
probability = self._get_image(batched_probability, B0, device) - 0.5
if randomness == "error":
self._assert_throws_in_error_mode(
op, (input, probability, always_batched), in_dims=in_dims
)
return
if randomness == "same" and batched_probability != "none":
self._assert_throws_in_same_mode_batched(
op, (input, probability, always_batched), in_dims=in_dims
)
return
if batched_input == "none" and batched_probability != "none":
regex = r"there exists a Tensor `other` in extra_args that has more elements than `self`"
with self.assertRaisesRegex(RuntimeError, regex):
vmap(op, in_dims=in_dims, randomness=randomness)(
input, probability, always_batched
)
return
if randomness == "different" and batched_input == "none":
self._assert_throws_in_different_mode_inplace(
op, (input, probability, always_batched), in_dims=in_dims
)
return
self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(
input, probability, always_batched
)
self._reset_random(generator, orig_state, use_generator, seed)
if batched_input == "last":
input_expected = input_expected.movedim(-1, 0)
if batched_probability == "last":
probability = probability.movedim(-1, 0)
if randomness == "different":
expected = op(input_expected, probability, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
if batched_input != "none":
input_expected = input_expected[0]
expected = op(input_expected, probability, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("use_generator", [True, False])
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
@parametrize("batched_other", ["first", "last", "none"])
def test_random_binary_out_of_place(
self, device, use_generator, randomness, batched_input, batched_other
):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {"generator": generator} if use_generator else {}
ops = [
lambda t, o, _: torch.normal(t, o, **kwargs),
lambda t, o, _: torch.binomial(t, (o - 0.5), **kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input, batched_other)
for op in ops:
always_batched = torch.randn(B0, device=device)
input = self._get_image(batched_input, B0, device)
other = self._get_image(batched_other, B0, device)
if randomness == "error":
self._assert_throws_in_error_mode(
op, (input, other, always_batched), in_dims=in_dims
)
return
if randomness == "same" and (
batched_input != "none" or batched_other != "none"
):
self._assert_throws_in_same_mode_batched(
op, (input, other, always_batched), in_dims=in_dims
)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(
input, other, always_batched
)
if batched_input == "last":
input = input.movedim(-1, 0)
if batched_other == "last":
other = other.movedim(-1, 0)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
input = input.expand(B0, *input.shape)
expected = op(input, other, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
assert batched_input == "none" and batched_other == "none"
expected = op(input, other, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("use_generator", [True, False])
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_input", ["first", "last", "none"])
def test_random_unary_out_of_place(
self, device, use_generator, randomness, batched_input
):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {"generator": generator} if use_generator else {}
ops = [
lambda t, _: torch.normal(0.0, torch.abs(t), **kwargs),
lambda t, _: torch.normal(t, 1.0, **kwargs),
lambda t, _: torch.bernoulli(t - 0.5, **kwargs),
lambda t, _: torch.bernoulli(t, 0.5, **kwargs),
lambda t, _: torch._standard_gamma(t, **kwargs),
lambda t, _: torch._sample_dirichlet(t, **kwargs),
lambda t, _: torch.poisson(t, **kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
for op in ops:
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
if randomness == "error":
self._assert_throws_in_error_mode(
op, (passed, always_batched), in_dims=in_dims
)
return
if randomness == "same" and batched_input != "none":
self._assert_throws_in_same_mode_batched(
op, (passed, always_batched), in_dims=in_dims
)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(
passed, always_batched
)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
if batched_input == "last":
passed = passed.movedim(-1, 0)
expected = op(passed, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize("use_generator", [True, False])
@parametrize("randomness", ["error", "same", "different"])
@parametrize("batched_call", [True, False])
@parametrize("batched_input", ["first", "last", "none"])
def test_multinomial(
self, device, use_generator, randomness, batched_call, batched_input
):
def flatten_input(input, batch_call, batch_location):
if batch_call and batch_location != "none":
final_size = 3 # [B0, B, N]
elif not batch_call and batch_location == "none":
final_size = 1 # [N]
else:
final_size = 2 # [B0, N] or [B, N]
start_idx = final_size - 1
end_idx = -1
if batch_location == "last":
start_idx -= 1
end_idx -= (
1 # gets to correct final size because using negative indices
)
ret = input.flatten(start_idx, end_idx)
assert ret.dim() == final_size
return ret
def op(input, _):
return torch.multinomial(input, 10, **kwargs)
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {"generator": generator} if use_generator else {}
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
passed = flatten_input(passed, batched_call, batched_input)
if randomness == "error":
self._assert_throws_in_error_mode(
op, (passed, always_batched), in_dims=in_dims
)
return
if randomness == "same" and batched_input != "none":
self._assert_throws_in_same_mode_batched(
op, (passed, always_batched), in_dims=in_dims
)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(
passed, always_batched
)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
if batched_input == "last":
passed = passed.movedim(-1, 0)
orig_passed_size = passed.shape[:2] if batched_call else passed.shape[:1]
passed = passed.flatten(0, 1) if batched_call else passed
expected = op(passed, always_batched)
expected = expected.reshape(*orig_passed_size, 10)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
def test_unsupported_random(self, device):
x = torch.randn(3, device=device)
y = x.abs()
z = x.abs()
with self.assertRaisesRegex(RuntimeError, "calling out variants"):
def f(x):
return torch.randn(3, device=device, out=y)
vmap(f, randomness="same")(x)
with self.assertRaisesRegex(RuntimeError, "calling out variants"):
def f(x0, x1):
return torch.normal(x, y, out=x)
vmap(f, randomness="same")(z, z)
with self.assertRaisesRegex(RuntimeError, "do not yet support"):
def f(z):
return torch.rrelu(x)
vmap(f, randomness="same")(z)
@parametrize("in_dim", [0, 1, 2])
@parametrize("out_dim", [0, 1, 2])
def test_chunk_vmap(self, in_dim, out_dim):
randomness = "different"
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin() + torch.rand_like(x)
return y
for chunks in [1, 2, 3, 4, 7, 10, 16]:
output = chunk_vmap(
f,
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunks=chunks,
)(x)
self._assert_all_slices_unique(output)
@parametrize("in_dim", [0, 1, 2])
@parametrize("out_dim", [0, 1, 2])
def test_vmap_chunksize(self, in_dim, out_dim):
randomness = "different"
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin() + torch.rand_like(x)
return y
for chunk_size in [1, 2, 3, 4, 7, 10, 16, 100]:
output = vmap(
f,
in_dims=in_dim,
out_dims=out_dim,
randomness=randomness,
chunk_size=chunk_size,
)(x)
self._assert_all_slices_unique(output)
def test_jacfwd_with_random(self):
# checks on behavior are above, this just checks that jacfwd respects
# the randomness param
x = torch.rand(3, 4)
with self.assertRaisesRegex(
RuntimeError, r"called random operation while in randomness error mode"
):
jacfwd(torch.bernoulli)(x)
# x isn't batched so use bernoulli since it doesn't do inplace randomness
jacfwd(torch.bernoulli, randomness="same")(x)
jacfwd(torch.bernoulli, randomness="different")(x)
@parametrize("randomness", ["error", "same", "different"])
def test_dropout_unbatched(self, device, randomness):
x = torch.randn(3, device=device)
y = torch.randn(1, 3, device=device)
def fn(x, y):
# output from dropout should be a Tensor[B, 1, 3] (B=3)
return x + torch.nn.functional.dropout(y, p=0.5).mean(1)
# We just verify that this doesn't raise an error for
# `same` and `different` randomness.
# Ref: https://github.com/pytorch/pytorch/issues/92283
context = (
self.assertRaises(RuntimeError)
if randomness == "error"
else contextlib.nullcontext()
)
with context:
vmap(fn, in_dims=(0, None), randomness=randomness)(x, y)
@markDynamoStrictTest
class TestTransformFailure(TestCase):
@skipIfTorchDynamo()
@parametrize(
"transform",
["vmap", "grad", "grad_and_value", "vjp", "jvp", "jacrev", "jacfwd"],
)
def test_fails_with_autograd_function(self, device, transform):
failed_build_envs = ("linux-focal-py3.8-clang10", "linux-focal-py3.11-clang10")
if (
device == "cpu"
and transform in ["grad", "vmap"]
and TEST_WITH_TORCHDYNAMO
and os.getenv("BUILD_ENVIRONMENT", "") in failed_build_envs
):
raise unittest.SkipTest(
"Unexpected successes on focal with dynamo,"
+ " see https://github.com/pytorch/pytorch/issues/107173"
)
class Test(torch.autograd.Function):
@staticmethod
def forward(_, input):
return input
@staticmethod
def backward(_, grad_input):
return grad_input
transform = getattr(functorch, transform)
def f(x):
return Test.apply(x)
if transform in (grad, grad_and_value):
input = torch.tensor(4.0)
else:
input = torch.randn(5)
if transform == vjp:
transform = functools.partial(transform, f)
elif transform == jvp:
input = (input,)
transform = functools.partial(transform, f, input)
else:
transform = transform(f)
with self.assertRaisesRegex(RuntimeError, "autograd.Function"):
transform(input)
@markDynamoStrictTest
class TestVmapDeviceType(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
def test__is_all_true(self, device):
def test():
def f(x, *, expected_result):
result = torch.ops.aten._is_all_true(x)
self.assertFalse(torch._C._functorch.is_batchedtensor(result))
self.assertEqual(result.shape, torch.Size([]))
self.assertEqual(result.item(), expected_result)
return result
x = torch.rand(10, device=device)
vmap(f)(x >= 0, expected_result=True)
vmap(f)(x < 0, expected_result=False)
x[random.choice(range(10))] *= -1
vmap(f)(x >= 0, expected_result=False)
vmap(f)(x < 0, expected_result=False)
x = -torch.rand(10, device=device)
vmap(f)(x > 0, expected_result=False)
vmap(f)(x <= 0, expected_result=True)
check_vmap_fallback(self, test, torch._is_all_true)
def test__is_any_true(self, device):
def test():
def f(x, *, expected_result):
result = torch.ops.aten._is_any_true(x)
self.assertFalse(torch._C._functorch.is_batchedtensor(result))
self.assertEqual(result.shape, torch.Size([]))
self.assertEqual(result.item(), expected_result)
return result
x = torch.zeros(10, device=device, dtype=torch.bool)
vmap(f)(x > 0, expected_result=False)
x[5] = True
vmap(f)(x > 0, expected_result=True)
vmap(f)(x[1::2], expected_result=True)
vmap(f)(x[0::2], expected_result=False)
check_vmap_fallback(self, test, torch._is_any_true)
def test_check_tensor(self, device):
def test():
test_sizes = [
(1,),
(10,),
(1, 1),
(1, 10),
(10, 1),
(10, 10),
(1, 1, 1),
(10, 1, 1),
(1, 10, 1),
(10, 10, 10),
]
def check_gte_0(t):
return torch._test_check_tensor(t >= 0)
error_message = "Test message for TORCH_CHECK_TENSOR_ALL"
for size in test_sizes:
t_all_gte_0 = torch.rand(size, device=device)
t_all_lt_0 = t_all_gte_0 - 1
vmap(check_gte_0)(t_all_gte_0)
if len(size) >= 2:
vmap(vmap(check_gte_0))(t_all_gte_0)
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(check_gte_0)(t_all_lt_0)
if len(size) >= 2:
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(vmap(check_gte_0))(t_all_lt_0)
if t_all_gte_0.numel() > 1:
t_all_gte_0_but_one = t_all_gte_0.clone()
idx = (random.choice(range(dim_size)) for dim_size in size)
t_all_gte_0_but_one[(..., *idx)] = -1
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(check_gte_0)(t_all_gte_0_but_one)
if len(size) >= 2:
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(vmap(check_gte_0))(t_all_gte_0_but_one)
check_vmap_fallback(self, test, torch._test_check_tensor)
@markDynamoStrictTest
class TestVmapNestedTensor(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
# dims should be something like [5, None, 10], with None indicating that a
# random ragged structure should be used
def _create_nt(self, dims, device):
sizes = [
[
d if d is not None else torch.randint(2, 10, size=(1,)).item()
for d in dims[1:]
]
for d in range(dims[0])
]
return torch.nested.nested_tensor(
[torch.randn(*size) for size in sizes], device=device
)
# Creates an NT matching another NT's number of components and
# shape / ragged structure for all dims specified to be -1.
def _nt_from_similar(self, other, dims):
assert len(dims) == other.dim()
assert dims[0] == -1 or dims[0] == other.size(0)
ret_sizes = []
for t in other.unbind():
other_size = t.shape
ret_size = []
for i, d in enumerate(dims[1:]):
if d == -1:
ret_size.append(other_size[i])
else:
ret_size.append(d)
ret_sizes.append(ret_size)
return torch.nested.nested_tensor(
[torch.randn(*size) for size in ret_sizes], device=other.device
)
@allowVmapFallbackUsage
def test_fallback_unary(self, device):
def f(x):
return x.sin() * 5.0 + 4.0
nt = self._create_nt([4, None, 3], device=device)
self._vmap_test(f, (nt,))
@allowVmapFallbackUsage
def test_fallback_binary(self, device):
def f(x, y):
return x @ y
x = self._create_nt([5, None, 3], device=device)
y = self._create_nt([5, 3, None], device=device)
self._vmap_test(f, (x, y))
@allowVmapFallbackUsage
def test_fallback_binary_nt_and_unbatched_dense(self, device):
def f(x, y):
return x @ y
x = self._create_nt([5, None, 3], device=device)
y = torch.randn(3, 4, device=device)
self._vmap_test(f, (x, y), in_dims=(0, None))
@allowVmapFallbackUsage
def test_fallback_binary_nt_and_batched_dense(self, device):
def f(x, y):
return x @ y
x = self._create_nt([5, None, 3], device=device)
y = torch.randn(5, 3, 4, device=device)
self._vmap_test(f, (x, y))
def test_nt_acts_as_dense_in_vmap(self, device):
def f(x):
assert not x.is_nested
return x
x = self._create_nt([5, None, 3], device=device)
self._vmap_test(f, (x,))
def test_cat_batching_rule(self, device):
def f(x, y, dim):
return torch.cat([x, y], dim=dim)
# Different nested structure, same other dims
x = self._create_nt([3, None, 2], device=device)
y = self._create_nt([3, None, 2], device=device)
self._vmap_test(functools.partial(f, dim=0), (x, y))
x = self._create_nt([3, 2, None], device=device)
y = self._create_nt([3, 2, None], device=device)
self._vmap_test(functools.partial(f, dim=1), (x, y))
# Same nested structure, different other dims
x = self._create_nt([3, 2, None], device=device)
y = self._nt_from_similar(x, [-1, 4, -1])
self._vmap_test(functools.partial(f, dim=0), (x, y))
x = self._create_nt([3, None, 2], device=device)
y = self._nt_from_similar(x, [-1, -1, 4])
self._vmap_test(functools.partial(f, dim=1), (x, y))
# .shape calls don't work on NTs
# TODO: Fix this somehow?
@unittest.expectedFailure
def test_shape_call(self, device):
def f(x):
x.shape[0]
return x
x = self._create_nt([3, None, 2])
self._vmap_test(f, (x,))
def test_nt_with_nonzero_in_dim_raises(self, device):
def f(x):
return x
x = self._create_nt([3, None, 2], device=device)
with self.assertRaisesRegex(
RuntimeError, "Nested tensors can only be vmapped over dim=0"
):
vmap(f, in_dims=2)(x)
def test_nt_with_nonzero_out_dim_raises(self, device):
def f(x):
return x
x = self._create_nt([3, None, 2], device=device)
with self.assertRaisesRegex(
RuntimeError, "Nested tensors can only be vmapped over dim=0"
):
vmap(f, out_dims=2)(x)
def test_fallback_with_nt_and_batched_dense_with_nonzero_bdim_raises(self, device):
def f(x, y):
return x @ y
x = self._create_nt([5, None, 3], device=device)
y = torch.randn(3, 5, 4, device=device)
with self.assertRaisesRegex(
RuntimeError,
"Fallback not supported for mixed nested / non-nested arguments without bdim=0",
):
vmap(f, in_dims=(0, 1))(x, y)
def test_multilevel_vmap_raises(self, device):
def f(x):
return x.sin() * 4.0 + 3.0
x = self._create_nt([2, 2, 2, None], device=device)
with self.assertRaisesRegex(
RuntimeError, "Only one level of vmap is supported"
):
vmap(vmap(f))(x)
with self.assertRaisesRegex(
RuntimeError, "Only one level of vmap is supported"
):
vmap(vmap(vmap(f)))(x)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestVmapOperatorsOpInfo, globals(), only_for=only_for)
instantiate_device_type_tests(
TestVmapBatchedGradient,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(TestTransformFailure, globals(), only_for=only_for)
instantiate_device_type_tests(TestRandomness, globals(), only_for=only_for)
instantiate_device_type_tests(TestVmapDeviceType, globals(), only_for=only_for)
instantiate_device_type_tests(TestVmapNestedTensor, globals(), only_for=only_for)
if __name__ == "__main__":
run_tests()
|