File: test_common_passes.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (131 lines) | stat: -rw-r--r-- 2,760 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Owner(s): ["oncall: fx"]

import itertools

import torch
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.graph_module import GraphModule
from torch.fx.passes.dialect.common.cse_pass import CSEPass
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TestCase,
)


def FactoryFunctionCall(x, device):
    y = torch.full(x.shape, 3, device=device)
    z = torch.add(y, x)
    return z


def TorchTensorCall(x):
    y = torch.tensor(3)
    return x + y


def TakeList(x):
    z = torch.cat([x, x])
    return z


def ReturnList(x):
    a = torch.arange(10).reshape(5, 2)
    z = torch.split(a, [1, 4])
    return z


def Mutation(x):
    y = x + 2
    y.add_(1)
    return x + y


def MutationInput(x):
    x.add_(1)
    y = x + 2
    return x + y


def MutationFactory(x, device):
    y = torch.full(x.shape, 3, device=device)
    y.add_(1)
    return x + y


def MutationTorchTensorCall(x):
    y = torch.tensor(3)
    y.add_(1)
    return x + y


def MutationMetadata(x):
    x.resize_(2)
    return x


Passes = [CSEPass]
Test_Cases = [
    TakeList,
    ReturnList,
    Mutation,
    MutationInput,
    MutationMetadata,
    MutationTorchTensorCall,
]
Factory_Test_Cases = [FactoryFunctionCall, MutationFactory]
Devices = ["cpu"]
if torch.cuda.is_available():
    Devices.append("cuda")


def name_fn(common_pass, f, device):
    """Names parameterized test cases."""
    return f"{type(common_pass()).__name__}_{f.__name__}_{device}"


@instantiate_parametrized_tests
class TestCommonPass(TestCase):
    @parametrize(
        "common_pass,f,device", itertools.product(Passes, Test_Cases, Devices), name_fn
    )
    def test_correctness(self, common_pass, f, device):
        inp = torch.randn(10, device=device)

        traced_m = make_fx(f)(inp)
        P = common_pass()

        res = P(traced_m)
        modified_m = res.graph_module
        assert isinstance(modified_m, GraphModule)

        inp_copy = inp.clone()
        expected = f(inp)
        result = modified_m(inp_copy)

        self.assertEqual(result, expected)

    @parametrize(
        "common_pass,f,device",
        itertools.product(Passes, Factory_Test_Cases, Devices),
        name_fn,
    )
    def test_correctness_factory(self, common_pass, f, device):
        inp = torch.randn(10, device=device)
        traced_m = make_fx(f)(inp, device)
        P = common_pass()

        res = P(traced_m)
        modified_m = res.graph_module
        assert isinstance(modified_m, GraphModule)

        inp_copy = inp.clone()
        expected = f(inp, device)
        result = modified_m(inp_copy, device)

        self.assertEqual(result, expected)


if __name__ == "__main__":
    run_tests()