File: test_fx_split.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (226 lines) | stat: -rw-r--r-- 7,674 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Owner(s): ["module: fx"]

from collections import defaultdict
from typing import Dict, List, Tuple

import torch
from torch.fx.passes.split_utils import split_by_tags
from torch.testing._internal.common_utils import TestCase


class TestFXSplit(TestCase):
    def test_split_preserve_node_meta(self):
        class TestModule(torch.nn.Module):
            def forward(self, x, y):
                x = x + x
                y = y * y
                return x - y

        gm = torch.fx.symbolic_trace(TestModule())
        for node in gm.graph.nodes:
            node.meta["name"] = node.name
            if node.name == "add":
                node.tag = "a"
            elif node.name == "mul":
                node.tag = "b"
            elif node.name == "sub":
                node.tag = "c"

        split_gm = split_by_tags(gm, ["a", "b", "c"])
        for m in split_gm.children():
            for n in m.graph.nodes:
                if n.op != "output":
                    self.assertIn("name", n.meta)
                    self.assertEqual(n.meta["name"], n.name)

        # Validate that metadata is copied correctly for graph placeholder nodes
        for node in split_gm.graph.nodes:
            if node.op == "placeholder":
                self.assertIn("name", node.meta)
                self.assertEqual(node.meta["name"], node.name)


class TestSplitByTags(TestCase):
    class TestModule(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.linear1 = torch.nn.Linear(2, 3)
            self.linear2 = torch.nn.Linear(4, 5)
            self.linear3 = torch.nn.Linear(6, 7)
            self.linear4 = torch.nn.Linear(8, 6)

        def forward(
            self,
            x1: torch.Tensor,
            x2: torch.Tensor,
            x3: torch.Tensor,
        ) -> torch.Tensor:
            v1 = self.linear1(x1)
            v2 = self.linear2(x2)
            v3 = self.linear3(x3)
            v4 = torch.cat([v1, v2, v3])
            return self.linear4(v4)

    @staticmethod
    def trace_and_tag(
        module: torch.nn.Module, tags: List[str]
    ) -> Tuple[torch.fx.GraphModule, Dict[str, List[str]]]:
        """
        Test simple gm consists of nodes with tag (only show call_module nodes here):
            linear1 - tag: "red"
            linear2 - tag: "blue"
            linear3, linear4 - tag: "green"

        At the beginning we have:
            gm:
                linear1
                linear2
                linear3
                linear4

        split_gm = split_by_tags(gm, tags)

        Then we have:
            split_gm:
                red:
                    linear1
                blue:
                    linear2
                green:
                    linear3
                    linear4
        """
        tag_node = defaultdict(list)
        gm: torch.fx.GraphModule = torch.fx.symbolic_trace(module)

        # Add tag to all nodes and build dictionary record tag to call_module nodes
        for node in gm.graph.nodes:
            if "linear1" in node.name:
                node.tag = tags[0]
                tag_node[tags[0]].append(node.name)
            elif "linear2" in node.name:
                node.tag = tags[1]
                tag_node[tags[1]].append(node.name)
            else:
                node.tag = tags[2]
                if node.op == "call_module":
                    tag_node[tags[2]].append(node.name)
        return gm, tag_node

    def test_split_by_tags(self) -> None:
        tags = ["red", "blue", "green"]
        module = TestSplitByTags.TestModule()
        gm, tag_node = TestSplitByTags.trace_and_tag(module, tags)
        split_gm, orig_to_split_fqn_mapping = split_by_tags(
            gm, tags, return_fqn_mapping=True
        )
        # Ensure split_gm has (and only has) ordered submodules named
        # red_0, blue_1, green_2
        for idx, (name, _) in enumerate(split_gm.named_children()):
            if idx < len(tags):
                self.assertTrue(
                    name == tags[idx],
                    f"split_gm has an incorrect submodule named {name}",
                )

        # Ensure each submodule has expected (ordered) call_module node(s).
        # For example, a submodule named split_gm.red_0 has (and only has) linear1;
        # split_gm.green_2 has (and only has) linear3 and linear4 with order
        sub_graph_idx = 0
        for sub_name, sub_graph_module in split_gm.named_children():
            node_idx = 0
            for node in sub_graph_module.graph.nodes:
                if node.op != "call_module":
                    continue
                self.assertTrue(
                    node.name == tag_node[f"{sub_name}"][node_idx],
                    # pyre-fixme[61]: `name` is undefined, or not always defined.
                    f"{sub_name} has incorrectly include {node.name}",
                )
                node_idx += 1
            sub_graph_idx += 1

        self.assertEqual(
            orig_to_split_fqn_mapping,
            {
                "linear1": "red.linear1",
                "linear2": "blue.linear2",
                "linear3": "green.linear3",
                "linear4": "green.linear4",
            },
            f"{orig_to_split_fqn_mapping=}",
        )


class TestSplitOutputType(TestCase):
    class TestModule(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.conv = torch.nn.Conv2d(3, 16, 3, stride=1, bias=True)
            self.relu = torch.nn.ReLU()

        def forward(self, x):
            conv = self.conv(x)
            conv = conv * 0.5
            relu = self.relu(conv)
            return relu

    @staticmethod
    def trace_and_tag(
        module: torch.nn.Module, inputs: torch.Tensor, tags: List[str]
    ) -> Tuple[torch.fx.GraphModule, Dict[str, List[str]]]:
        """
        Test simple gm consists of nodes with tag (only show call_module nodes here):
            conv - tag: "red"
            mul - tag: "blue"
            relu - tag: "green"

        At the beginning we have:
            gm:
                conv
                mul
                relu

        split_gm = split_by_tags(gm, tags)

        Then we have:
            split_gm:
                red:
                    conv
                blue:
                    mul
                green:
                    relu
        """
        tag_node = defaultdict(list)
        gm: torch.fx.GraphModule = torch.export.export(module, (inputs,)).module()
        # Add tag to all nodes and build dictionary record tag to call_module nodes
        for node in gm.graph.nodes:
            if "conv" in node.name:
                node.tag = tags[0]
                tag_node[tags[0]].append(node.name)
            elif "mul" in node.name:
                node.tag = tags[1]
                tag_node[tags[1]].append(node.name)
            else:
                node.tag = tags[2]
                if node.op == "call_module":
                    tag_node[tags[2]].append(node.name)
        return gm, tag_node

    def test_split_by_tags(self) -> None:
        tags = ["red", "blue", "green"]
        module = TestSplitOutputType.TestModule()

        inputs = torch.randn((1, 3, 224, 224))

        gm, tag_node = TestSplitOutputType.trace_and_tag(module, inputs, tags)
        split_gm, orig_to_split_fqn_mapping = split_by_tags(
            gm, tags, return_fqn_mapping=True
        )

        gm_output = module(inputs)
        split_gm_output = split_gm(inputs)

        self.assertTrue(type(gm_output) == type(split_gm_output))
        self.assertTrue(torch.equal(gm_output, split_gm_output))