1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# Owner(s): ["module: fx"]
import json
import torch
from torch._inductor.compile_fx import aot_export_module
from torch.fx.traceback import get_graph_provenance_json, NodeSource, NodeSourceAction
from torch.testing._internal.common_utils import TestCase
class TestFXNodeSource(TestCase):
def test_node_source(self):
node_source = NodeSource(
node=None, pass_name="test_pass", action=NodeSourceAction.CREATE
)
self.assertExpectedInline(
node_source.print_readable().strip(),
"""(name=, pass_name=test_pass, action=create, graph_id=-1)""",
)
dummy_source_dict = {
"name": "",
"target": "",
"pass_name": "test_pass",
"action": NodeSourceAction.CREATE,
"graph_id": -1,
"from_node": [],
}
self.assertEqual(
node_source.to_dict(),
dummy_source_dict,
)
# Dummy node
node = torch.fx.Node(
graph=torch.fx.Graph(),
name="add",
op="call_function",
target=torch.ops.aten.add.Tensor, # type: ignore[attr-defined]
args=(torch.tensor(3), torch.tensor(4)),
kwargs={},
)
node.meta["from_node"] = [node_source]
graph_id = id(node.graph)
node_source = NodeSource(
node=node, pass_name="test_pass", action=NodeSourceAction.CREATE
)
self.assertExpectedInline(
node_source.print_readable().strip(),
f"""\
(name=add, pass_name=test_pass, action=create, graph_id={graph_id})
(name=, pass_name=test_pass, action=create, graph_id=-1)""",
)
self.assertEqual(
node_source.to_dict(),
{
"name": "add",
"target": "aten.add.Tensor",
"pass_name": "test_pass",
"action": NodeSourceAction.CREATE,
"graph_id": graph_id,
"from_node": [dummy_source_dict],
},
)
def test_graph_provenance(self):
def check_node_source(node_source_dict, name, pass_name, action):
self.assertEqual(node_source_dict["name"], name)
self.assertEqual(node_source_dict["pass_name"], pass_name)
self.assertEqual(node_source_dict["action"], action)
def get_first_node_source_and_check(node_source_dict):
"""
Get the first node source from the from_node list.
"""
self.assertEqual(len(node_source_dict["from_node"]), 1)
return node_source_dict["from_node"][0]
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(16, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return (x,)
model = Model()
example_inputs = (torch.randn(8, 10),)
ep = torch.export.export(
model,
example_inputs,
)
gm = ep.module()
provenance = get_graph_provenance_json(gm.graph)
provenance = json.loads(provenance)
self.assertEqual(
set(provenance.keys()), {"relu", "linear", "sigmoid", "linear_1"}
)
# Check node "linear" is created from node "x" in PropagateUnbackedSymInts
key_provenance = provenance["linear"]
self.assertEqual(len(key_provenance), 1)
key_provenance = key_provenance[0]
check_node_source(
key_provenance,
"x",
"Interpreter_PropagateUnbackedSymInts",
NodeSourceAction.CREATE,
)
# Check node "x" is then created from another node "x" in FlattenInputOutputSignature
key_provenance = get_first_node_source_and_check(key_provenance)
check_node_source(
key_provenance,
"x",
"Interpreter_FlattenInputOutputSignature",
NodeSourceAction.CREATE,
)
gm, graph_signature = aot_export_module(
gm,
example_inputs,
trace_joint=False,
)
provenance = get_graph_provenance_json(gm.graph)
provenance = json.loads(provenance)
self.assertEqual(
set(provenance.keys()), {"t", "addmm", "relu", "t_1", "addmm_1", "sigmoid"}
)
for key in ["t", "addmm"]:
# The node provenance hierarchy should be:
# t -> linear -> x -> x
#
# x -> y means x is created from y
key_provenance = provenance[key]
self.assertEqual(len(key_provenance), 1)
key_provenance = key_provenance[0]
# Check node "t" and "addmm" is created from node "linear" in PropagateUnbackedSymInts
check_node_source(
key_provenance,
"linear",
"Interpreter_PropagateUnbackedSymInts",
NodeSourceAction.CREATE,
)
# Check node "linear" is then created from node "x" in PropagateUnbackedSymInts
key_provenance = get_first_node_source_and_check(key_provenance)
check_node_source(
key_provenance,
"x",
"Interpreter_PropagateUnbackedSymInts",
NodeSourceAction.CREATE,
)
# Check node "x" is then created from another node "x" in FlattenInputOutputSignature
key_provenance = get_first_node_source_and_check(key_provenance)
check_node_source(
key_provenance,
"x",
"Interpreter_FlattenInputOutputSignature",
NodeSourceAction.CREATE,
)
|