1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
# Owner(s): ["module: fx"]
import copy
import unittest
from collections import defaultdict
import torch
import torch.fx as fx
from torch._dynamo.source import LocalSource
from torch.fx.experimental.shape_inference.infer_shape import infer_shape
from torch.fx.experimental.shape_inference.infer_symbol_values import (
infer_symbol_values,
)
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
class TestShapeInference(unittest.TestCase):
def test_infer_symbol_values(self):
def mksym(shape_env, value, source, dynamic_dim) -> None:
return shape_env.create_symintnode(
shape_env.create_symbol(
value,
source=source,
dynamic_dim=dynamic_dim,
),
hint=value,
source=source,
)
shape_env = ShapeEnv()
N = 8
sample = {f"s{i}": 2 for i in range(N)}
init_symints = [
mksym(shape_env, v, LocalSource(k), DimDynamic.DYNAMIC)
for k, v in sample.items()
]
symints = copy.deepcopy(init_symints)
symbol_to_idx_dict = {f"s{i}": i for i in range(N)}
padding_constraints = defaultdict(list)
# prepare constraints strings
constraints = []
constraints.append(
"The size of tensor a (s1) must match the size of tensor b (1773) at non-singleton dimension 1)"
)
constraints.append(
"Expected size for first two dimensions of batch2 tensor to be: [s0, (s2//2) + 12] but got: [s0, 120]."
)
constraints.append("shape '[s0, -1, 32]' is invalid for input of size s0*s3")
constraints.append(
"a and b must have same reduction dim, but got [32*s0, s3] X [20, 15]."
)
constraints.append(
"a and b must have same reduction dim, but got [s0, s4 + 1568] X [5728, 1024]."
)
constraints.append(
"Expected size for first two dimensions of batch2 tensor to be: [s0, 40] but got: [s0, s5]."
)
constraints.append(
"shape '[s0, -1, 32]' is invalid for input of size s0*s6 + 1344*s0"
)
constraints.append(
"shape '[-1, 47]' is invalid for input of size 32*s0*s6 + 1344*s0"
)
constraints.append(
"Expected size for first two dimensions of batch2 tensor to be: [s0, 47*s6] but got: [s0*s6, 47]."
)
constraints.append("Split sizes add up to 4258 but got the tensor's size of s7")
for constraint in constraints:
infer_symbol_values(
symints,
init_symints,
symbol_to_idx_dict,
padding_constraints,
constraint,
)
self.assertEqual(symints[1], 1773)
self.assertEqual(symints[2], 216)
self.assertEqual(symints[3], 640)
self.assertEqual(symints[4], 4160)
self.assertEqual(symints[5], 40)
self.assertEqual(symints[6], 160)
self.assertEqual(symints[7], 4258)
def test_infer_shape(self):
class TestModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.w_1 = torch.empty([256, 328])
self.b_1 = torch.empty([256])
self.w_2 = torch.empty([328, 256])
self.b_2 = torch.empty([328])
def forward(self, x):
l_1 = torch.nn.functional.linear(x, self.w_1, bias=self.b_1)
s_1 = torch.sigmoid(l_1)
l_2 = torch.nn.functional.linear(s_1, self.w_2, bias=self.b_2)
t_1 = torch.tanh(l_2)
return t_1
def generate_graph_module(model):
gm = fx.symbolic_trace(model)
return gm
m = TestModule()
gm = generate_graph_module(m)
input_tensors = [torch.randn(1, 1)]
infer_shape(gm, input_tensors)
|