1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
#include <torch/csrc/api/include/torch/types.h> // @manual=fbcode//caffe2:libtorch
#include <cstdint>
#include <iostream>
#include <string>
namespace at {
Tensor custom_add_impl(Tensor t1, Tensor t2) {
return t1 + t2;
}
Tensor fn_with_all_inputs_impl(
const Tensor& tensor,
const c10::List<Tensor>& tensors,
const c10::List<std::optional<Tensor>>& optional_tensors,
const bool b8,
const c10::List<bool>& b8s,
const int64_t i64,
const c10::List<int64_t>& i64s,
const int64_t& symint,
const IntArrayRef symints,
const double f64,
const c10::List<double>& f64s,
const at::Scalar& scalar,
at::ArrayRef<at::Scalar> scalars,
const std::string& string,
const std::vector<std::string>& strings,
// const c10::ScalarType& dtype,
// const MemoryFormat& memory_format,
// const Layout& layout,
const Device& device,
// optional
const std::optional<Tensor>& o_tensor,
const std::optional<c10::List<Tensor>>& o_tensors,
const std::optional<bool>& o_b8,
const std::optional<c10::List<bool>>& o_b8s,
const std::optional<int64_t>& o_i64,
const std::optional<c10::List<int64_t>>& o_i64s,
const std::optional<int64_t>& o_symint,
const std::optional<IntArrayRef>& o_symints,
const std::optional<double>& o_f64,
const std::optional<c10::List<double>>& o_f64s,
const std::optional<at::Scalar>& o_scalar,
const std::optional<at::ArrayRef<at::Scalar>>& o_scalars,
const std::optional<std::string>& o_string,
const std::optional<std::vector<std::string>>& o_strings,
// const std::optional<c10::ScalarType>& o_dtype,
// const std::optional<MemoryFormat>& o_memory_format,
// const std::optional<Layout>& o_layout,
const std::optional<Device>& o_device) {
std::cout << "tensor shape: " << tensor.sizes() << std::endl;
std::cout << "tensors shape: ";
for (auto t : tensors) {
std::cout << t.get().toTensor().sizes() << ", ";
}
std::cout << std::endl;
std::cout << "optional tensors shape: ";
for (auto t : optional_tensors) {
if (t.get().toOptional<Tensor>().has_value()) {
std::cout << t.get().toTensor().sizes() << ", ";
} else {
std::cout << "None, ";
}
}
std::cout << std::endl;
std::cout << "b8 " << c10::IValue(b8) << std::endl;
std::cout << "b8s " << c10::IValue(b8s) << std::endl;
std::cout << "i64 " << c10::IValue(i64) << std::endl;
std::cout << "i64s " << c10::IValue(i64s) << std::endl;
std::cout << "symint " << c10::IValue(symint) << std::endl;
std::cout << "symints " << c10::IValue(symints) << std::endl;
std::cout << "f64 " << c10::IValue(f64) << std::endl;
std::cout << "f64s " << c10::IValue(f64s) << std::endl;
std::cout << "scalar " << c10::IValue(scalar) << std::endl;
std::cout << "scalars " << c10::IValue(scalars) << std::endl;
std::cout << "string " << c10::IValue(string) << std::endl;
std::cout << "strings " << c10::IValue(strings) << std::endl;
// std::cout << "dtype " << c10::IValue(dtype) << std::endl;
// std::cout << "memory_format " << c10::IValue(memory_format) << std::endl;
// std::cout << "layout " << c10::IValue(layout) << std::endl;
std::cout << "device " << c10::IValue(device) << std::endl;
std::cout << "o_tensor "
<< (o_tensor.has_value() ? c10::IValue(o_tensor.value().sizes())
: "None")
<< std::endl;
std::cout << "o_tensors shape: ";
if (o_tensors.has_value()) {
for (auto t : o_tensors.value()) {
std::cout << t.get().toTensor().sizes() << ", ";
}
} else {
std::cout << "None";
}
std::cout << std::endl;
std::cout << "o_b8 "
<< (o_b8.has_value() ? c10::IValue(o_b8.value()) : "None")
<< std::endl;
std::cout << "o_b8s "
<< (o_b8s.has_value() ? c10::IValue(o_b8s.value()) : "None")
<< std::endl;
std::cout << "o_i64 "
<< (o_i64.has_value() ? c10::IValue(o_i64.value()) : "None")
<< std::endl;
std::cout << "o_i64s "
<< (o_i64s.has_value() ? c10::IValue(o_i64s.value()) : "None")
<< std::endl;
std::cout << "o_symint "
<< (o_symint.has_value() ? c10::IValue(o_symint.value()) : "None")
<< std::endl;
std::cout << "o_symints "
<< (o_symints.has_value() ? c10::IValue(o_symints.value()) : "None")
<< std::endl;
std::cout << "o_f64 "
<< (o_f64.has_value() ? c10::IValue(o_f64.value()) : "None")
<< std::endl;
std::cout << "o_f64s "
<< (o_f64s.has_value() ? c10::IValue(o_f64s.value()) : "None")
<< std::endl;
std::cout << "o_scalar "
<< (o_scalar.has_value() ? c10::IValue(o_scalar.value()) : "None")
<< std::endl;
std::cout << "o_scalars "
<< (o_scalars.has_value() ? c10::IValue(o_scalars.value()) : "None")
<< std::endl;
std::cout << "o_string "
<< (o_string.has_value() ? c10::IValue(o_string.value()) : "None")
<< std::endl;
std::cout << "o_strings "
<< (o_strings.has_value() ? c10::IValue(o_strings.value()) : "None")
<< std::endl;
// std::cout << "o_dtype "
// << (o_dtype.has_value() ? c10::IValue(o_dtype.value()) : "None")
// << std::endl;
// std::cout << "o_memory_format "
// << (o_memory_format.has_value()
// ? c10::IValue(o_memory_format.value())
// : "None")
// << std::endl;
// std::cout << "o_layout "
// << (o_layout.has_value() ? c10::IValue(o_layout.value()) : "None")
// << std::endl;
std::cout << "o_device "
<< (o_device.has_value() ? c10::IValue(o_device.value()) : "None")
<< std::endl;
int64_t int_hash = 0;
int_hash ^= i64;
for (auto i : i64s) {
int_hash ^= i;
}
if (o_i64.has_value()) {
int_hash ^= o_i64.value();
}
if (o_i64s.has_value()) {
for (auto i : o_i64s.value()) {
int_hash ^= i;
}
}
int_hash ^= symint;
for (auto i : symints) {
int_hash ^= i;
}
if (o_symint.has_value()) {
int_hash ^= o_symint.value();
}
if (o_symints.has_value()) {
for (auto i : o_symints.value()) {
int_hash ^= i;
}
}
return tensor + int_hash;
}
Tensor fn_with_default_input_impl(const Tensor& tensor, const int64_t i64) {
return tensor + i64;
}
std::tuple<Tensor, Tensor> fn_with_tuple_output_impl(
const Tensor& tensor,
const int64_t i64) {
return {tensor + i64, tensor - i64};
}
std::vector<Tensor> fn_with_list_output_impl(
TensorList tensors,
const int64_t i64) {
std::vector<Tensor> outputs;
for (auto& t : tensors) {
outputs.emplace_back(t + i64);
}
return outputs;
}
std::tuple<Tensor, std::vector<Tensor>> fn_with_mix_outputs_impl(
const Tensor& tensor,
TensorList tensors) {
std::vector<Tensor> outputs;
for (auto& t : tensors) {
outputs.emplace_back(t + 2);
}
return {tensor + 1, outputs};
}
std::tuple<Tensor, Tensor> fn_with_input_mutation_impl(
Tensor& t0,
const Tensor& t1,
Tensor& t2) {
t0.add_(1);
t2.sub_(1);
return {t1 + 1, t1 + 2};
}
void fn_out_variant_without_return_impl(
const Tensor& x,
Tensor& out) {
out.add_(x);
}
// NOLINTBEGIN(clang-diagnostic-unused-parameter)
Tensor fn_with_all_inputs_meta(
const Tensor& tensor,
const c10::List<Tensor>& tensors,
const c10::List<std::optional<Tensor>>& optional_tensors,
const bool b8,
const c10::List<bool>& b8s,
const int64_t i64,
const c10::List<int64_t>& i64s,
const c10::SymInt& symint,
c10::SymIntArrayRef symints,
const double f64,
const c10::List<double>& f64s,
const at::Scalar& scalar,
at::ArrayRef<at::Scalar> scalars,
const std::string& string,
const std::vector<std::string>& strings,
// const c10::ScalarType& dtype,
// const MemoryFormat& memory_format,
// const Layout& layout,
const Device& device,
// optional
const std::optional<Tensor>& o_tensor,
const std::optional<c10::List<Tensor>>& o_tensors,
const std::optional<bool>& o_b8,
const std::optional<c10::List<bool>>& o_b8s,
const std::optional<int64_t>& o_i64,
const std::optional<c10::List<int64_t>>& o_i64s,
const std::optional<c10::SymInt>& o_symint,
at::OptionalSymIntArrayRef o_symints,
const std::optional<double>& o_f64,
const std::optional<c10::List<double>>& o_f64s,
const std::optional<at::Scalar>& o_scalar,
const std::optional<at::ArrayRef<at::Scalar>>& o_scalars,
const std::optional<std::string>& o_string,
const std::optional<std::vector<std::string>>& o_strings,
// const std::optional<c10::ScalarType>& o_dtype,
// const std::optional<MemoryFormat>& o_memory_format,
// const std::optional<Layout>& o_layout,
const std::optional<Device>& o_device) {
return tensor;
}
Tensor fn_with_default_input_meta(const Tensor& tensor, const int64_t i64) {
return tensor.clone();
}
std::tuple<Tensor, Tensor> fn_with_tuple_output_meta(
const Tensor& tensor,
const int64_t i64) {
return {tensor.clone(), tensor.clone()};
}
std::vector<Tensor> fn_with_list_output_meta(
TensorList tensors,
const int64_t i64) {
std::vector<Tensor> outputs;
for (auto& t : tensors) {
outputs.push_back(t.clone());
}
return outputs;
}
std::tuple<Tensor, std::vector<Tensor>> fn_with_mix_outputs_meta(
const Tensor& tensor,
TensorList tensors) {
std::vector<Tensor> outputs;
for (auto& t : tensors) {
outputs.push_back(t.clone());
}
return {tensor.clone(), outputs};
}
std::tuple<Tensor, Tensor> fn_with_input_mutation_meta(
Tensor& t0,
const Tensor& t1,
Tensor& t2) {
return {t1.clone(), t1.clone()};
}
void fn_out_variant_without_return_meta(
const Tensor& x,
Tensor& out) {
}
} // namespace at
TORCH_LIBRARY(aoti_custom_ops, m) {
m.def("custom_add(Tensor t1, Tensor t2) -> Tensor");
m.def(
"fn_with_all_inputs(Tensor tensor, "
"Tensor[] tensors, "
"Tensor?[] optional_tensors, "
"bool b8, bool[] b8s, "
"int i64, int[] i64s, "
"SymInt symint, SymInt[] symints, "
"float f64, float[] f64s, "
"Scalar scalar, Scalar[] scalars, "
"str string, str[] strings, "
// "ScalarType dtype, "
// "MemoryFormat memory_format, "
// "Layout layout, "
"Device device, "
"*, "
"Tensor? o_tensor, Tensor[]? o_tensors, "
"bool? o_b8, bool[]? o_b8s, "
"int? o_i64, int[]? o_i64s, "
"SymInt? o_symint, SymInt[]? o_symints, "
"float? o_f64, float[]? o_f64s, "
"Scalar? o_scalar, Scalar[]? o_scalars, "
"str? o_string, str[]? o_strings, "
// "ScalarType? o_dtype, "
// "MemoryFormat? o_memory_format, "
// "Layout? o_layout, "
"Device? o_device) -> Tensor");
m.def("fn_with_default_input(Tensor t, int i=3) -> Tensor");
m.def("fn_with_tuple_output(Tensor t, int i) -> (Tensor, Tensor)");
m.def("fn_with_list_output(Tensor[] tensors, int i) -> Tensor[]");
m.def(
"fn_with_mix_outputs(Tensor t, Tensor[] tensors) -> (Tensor, Tensor[])");
m.def(
"fn_with_input_mutation(Tensor(a!) t0, Tensor t1, Tensor(b!) t2) -> (Tensor, Tensor)");
m.def("fn_out_variant_without_return(Tensor x, Tensor(a!) out) -> ()");
}
TORCH_LIBRARY_IMPL(aoti_custom_ops, CompositeExplicitAutograd, m) {
m.impl("custom_add", at::custom_add_impl);
m.impl("fn_with_all_inputs", at::fn_with_all_inputs_impl);
m.impl("fn_with_default_input", at::fn_with_default_input_impl);
m.impl("fn_with_tuple_output", at::fn_with_tuple_output_impl);
m.impl("fn_with_list_output", at::fn_with_list_output_impl);
m.impl("fn_with_mix_outputs", at::fn_with_mix_outputs_impl);
m.impl("fn_with_input_mutation", at::fn_with_input_mutation_impl);
m.impl("fn_out_variant_without_return", at::fn_out_variant_without_return_impl);
}
TORCH_LIBRARY_IMPL(aoti_custom_ops, Meta, m) {
m.impl("fn_with_all_inputs", at::fn_with_all_inputs_meta);
m.impl("fn_with_default_input", at::fn_with_default_input_meta);
m.impl("fn_with_tuple_output", at::fn_with_tuple_output_meta);
m.impl("fn_with_list_output", at::fn_with_list_output_meta);
m.impl("fn_with_mix_outputs", at::fn_with_mix_outputs_meta);
m.impl("fn_with_input_mutation", at::fn_with_input_mutation_meta);
m.impl("fn_out_variant_without_return", at::fn_out_variant_without_return_meta);
}
|