1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
import sys
import torch
from torch.testing._internal.inductor_utils import GPU_TYPE
def first_arg(x, y):
return x[y]
def second_arg(x, y):
return x[:, y]
def same_pm_one(x, y):
return x[y + 1, y - 1]
def same_pp_one(x, y):
return x[y + 1, y + 1]
def store(x, y, z):
x[y + 1, y + 1] = z
def upper1(x):
b = torch.arange(4, device=x.device)
return x[b]
def lower1(x):
b = x.new_full((), -4, dtype=torch.int64)
return x[b]
def upper2(x):
b = x.new_full((), 4, dtype=torch.int64)
return x[b]
def lower2(x):
b = x.new_zeros((), dtype=torch.int64)
return x[b - 4]
if __name__ == "__main__":
fns = [
name
for name, obj in locals().items()
if callable(obj) and obj.__module__ == __name__
]
_, fn_name, dims, dyn_shape, one_size = sys.argv
assert fn_name in fns
assert one_size in ("True", "False")
one_size = one_size == "True"
assert dims in ("2", "3")
shape_x = [3, 2, 4] if dims == "3" else [3, 2]
if one_size:
assert (
fn_name == "first_arg"
), "only first_arg can be tested for a special case of 1-size tensor"
shape_x[0] = 1
assert dyn_shape in ("True", "False")
dynamic_shapes = dyn_shape == "True"
x = torch.randn(shape_x, device=GPU_TYPE)
y = torch.arange(4, device=GPU_TYPE)
fn = vars()[fn_name]
fn = torch.compile(dynamic=dynamic_shapes)(fn)
if fn_name == "store":
shape = (y.numel(),) + x.shape[2:]
z = torch.randn(shape, device=GPU_TYPE)
fn(x, y, z)
elif fn_name in ("upper1", "upper2", "lower1", "lower2"):
fn(x)
else:
fn(x, y)
|