1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
# Owner(s): ["module: inductor"]
# This test requires libaoti_custom_ops.so to be built, which happnes when BUILD_TEST = 1
import logging
import sys
import unittest
import torch
import torch._export
import torch._inductor
import torch._inductor.config
from torch._inductor import config
from torch._inductor.test_case import TestCase
from torch.export import Dim, export
from torch.testing._internal import common_utils
from torch.testing._internal.common_utils import (
find_library_location,
IS_CI,
IS_FBCODE,
IS_MACOS,
IS_SANDCASTLE,
IS_WINDOWS,
)
from torch.testing._internal.logging_utils import LoggingTestCase, make_logging_test
from torch.testing._internal.triton_utils import HAS_CUDA
if IS_WINDOWS and IS_CI:
sys.stderr.write(
"Windows CI does not have necessary dependencies for test_torchinductor yet\n"
)
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("requires sympy/functorch/filelock")
try:
try:
from .test_aot_inductor_utils import (
check_model,
check_model_with_multiple_inputs,
code_check_count,
)
from .test_torchinductor import copy_tests, TestFailure
except ImportError:
from test_aot_inductor_utils import ( # @manual=fbcode//caffe2/test/inductor:aot_inductor_utils-library
check_model,
check_model_with_multiple_inputs,
code_check_count,
)
from test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
copy_tests,
TestFailure,
)
except (unittest.SkipTest, ImportError) as e:
if __name__ == "__main__":
sys.exit(0)
raise
@torch.library.custom_op(
"aoti_custom_ops::fn_with_incorrect_optional_tensor", mutates_args=()
)
def fn_with_incorrect_optional_tensor(
x: torch.Tensor, y: torch.Tensor, z: torch.Tensor
) -> torch.Tensor:
if z is None:
return x + y
else:
return x + y + z
@fn_with_incorrect_optional_tensor.register_fake
def fn_with_incorrect_optional_tensor_fake(
x: torch.Tensor, y: torch.Tensor, z: torch.Tensor
) -> torch.Tensor:
if z is None:
return x + y
else:
return x + y + z
class AOTInductorTestsTemplate:
def test_custom_op_add(self) -> None:
class M(torch.nn.Module):
def forward(self, x, y):
return torch.ops.aoti_custom_ops.custom_add(x, y)
m = M().to(device=self.device)
args = (
torch.randn(3, 3, device=self.device),
torch.randn(3, 3, device=self.device),
)
self.check_model(m, args)
def test_custom_op_add_output_path(self) -> None:
class M(torch.nn.Module):
def forward(self, x, y):
return torch.ops.aoti_custom_ops.custom_add(x, y)
m = M().to(device=self.device)
args = (
torch.randn(3, 3, device=self.device),
torch.randn(3, 3, device=self.device),
)
with config.patch("aot_inductor.output_path", "model.so"):
with self.assertRaises(Exception):
self.check_model(m, args)
def test_custom_op_all_inputs(self) -> None:
class MyModel(torch.nn.Module):
# pyre-fixme[3]: Return type must be annotated.
def __init__(self):
super().__init__()
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def forward(self, x, y):
with torch.no_grad():
x_dim0 = x.shape[0]
x_dim1 = x.shape[1]
y_dim0 = y.shape[0]
y_dim1 = y.shape[1]
symint_0 = x_dim0 + x_dim1
symint_1 = y_dim0 * y_dim1
z = torch.concat((x, x))
_2547 = torch.ops.aoti_custom_ops.fn_with_all_inputs(
tensor=x,
tensors=[x, y],
optional_tensors=[None, z],
b8=False,
b8s=[True, False],
i64=42,
i64s=[16, 17],
symint=symint_0,
symints=[symint_0, symint_1],
f64=3.14,
f64s=[2.2, 3.3],
scalar=1.23,
scalars=[45, 67],
string="hello",
strings=["ab", "cde"],
# dtype=torch.float16,
# memory_format=torch.contiguous_format,
# layout=torch.strided,
device=torch.device("cpu"),
# optional
o_tensor=None,
o_tensors=[x, y],
o_b8=False,
o_b8s=[True, False],
o_i64=None,
o_i64s=[16, 17],
o_symint=symint_1,
o_symints=[symint_1, symint_0],
o_f64=3.14,
o_f64s=None,
o_scalar=None,
o_scalars=[89, 910],
o_string="hello",
o_strings=["ab", "cde"],
# o_dtype=None,
# o_memory_format=torch.contiguous_format,
# o_layout=torch.strided,
o_device=None,
)
return _2547
m = MyModel().to(device=self.device)
x = torch.zeros(4, 8, device=self.device)
y = torch.ones(3, 9, device=self.device)
args = (x, y)
m(*args)
self.check_model(m, args)
def test_custom_op_with_multiple_outputs(self) -> None:
class Model(torch.nn.Module):
def forward(self, x, y):
out = x + y
# tuple of Tensor output
out3, out4 = torch.ops.aoti_custom_ops.fn_with_tuple_output(out, 1)
# TensorList output
out5, out6 = torch.ops.aoti_custom_ops.fn_with_list_output(
[out3, out4], 1
)
# tuple of Tensor and TensorList
out7, [out8, out9] = torch.ops.aoti_custom_ops.fn_with_mix_outputs(
out5, [out6, out4]
)
return out3, out4, out5, out6, out7, out8, out9
m = Model().to(device=self.device)
args = (
torch.randn(4, 4, device=self.device),
torch.randn(4, 4, device=self.device),
)
m(*args)
self.check_model(m, args)
def test_custom_op_out_variant_without_return(self) -> None:
class Model(torch.nn.Module):
def forward(self, x, y):
torch.ops.aoti_custom_ops.fn_out_variant_without_return(x, y)
return y
m = Model().to(device=self.device)
args = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
m(*args)
self.check_model(m, args)
def test_custom_op_with_reinterpret_view_inputs(self) -> None:
class Model(torch.nn.Module):
def forward(self, x):
out = x.permute([1, 0])
return torch.ops.aoti_custom_ops.fn_with_default_input(out, 1)
m = Model().to(device=self.device)
args = (torch.randn(2, 3, device=self.device),)
self.check_model(m, args)
def test_custom_op_with_concat_inputs(self) -> None:
class Model(torch.nn.Module):
def forward(self, x, y):
out = torch.concat([x, y], dim=0)
return torch.ops.aoti_custom_ops.fn_with_default_input(out, 1)
m = Model().to(device=self.device)
args = (
torch.randn(2, 3, device=self.device),
torch.randn(2, 3, device=self.device),
)
self.check_model(m, args)
def test_custom_op_missing_arg_with_default_value(self) -> None:
class Model(torch.nn.Module):
def forward(self, x):
# missing second arg
return torch.ops.aoti_custom_ops.fn_with_default_input(x)
m = Model().to(device=self.device)
args = (torch.randn(2, 3, device=self.device),)
self.check_model(m, args)
@unittest.skipIf(IS_FBCODE, "FbProxyExecutor doesn't have these error msgs")
def test_incorrect_custom_op_schema(self):
class M(torch.nn.Module):
def forward(self, x, y):
return torch.ops.aoti_custom_ops.fn_with_incorrect_optional_tensor(
x, y, None
)
m = M().to(device=self.device)
args = (
torch.randn(2, 3, device=self.device),
torch.randn(2, 3, device=self.device),
)
with self.assertRaisesRegex(RuntimeError, "Expected extern kernel"):
self.check_model(m, args)
class AOTInductorLoggingTest(LoggingTestCase):
@make_logging_test(dynamic=logging.DEBUG)
def test_shape_env_reuse(self, records):
# make sure ShapeEnv is only created once and reused afterwards
class Foo(torch.nn.Module):
def forward(self, x):
return x + 2
inputs = (torch.randn(4, 4),)
dynamic_shapes = {
"x": {0: Dim.AUTO, 1: Dim.AUTO},
}
ep = export(Foo(), inputs, dynamic_shapes=dynamic_shapes, strict=False)
with torch.no_grad():
torch._inductor.aot_compile(ep.module(), inputs)
self.assertEqual([r.msg == "create_env" for r in records].count(True), 1)
common_utils.instantiate_parametrized_tests(AOTInductorTestsTemplate)
class AOTICustomOpTestCase(TestCase):
def setUp(self):
if IS_SANDCASTLE or IS_FBCODE:
torch.ops.load_library("//caffe2/test/inductor:custom_ops")
elif IS_MACOS:
raise unittest.SkipTest("non-portable load_library call used in test")
else:
lib_file_path = find_library_location("libaoti_custom_ops.so")
if IS_WINDOWS:
lib_file_path = find_library_location("aoti_custom_ops.dll")
torch.ops.load_library(str(lib_file_path))
super().setUp()
def fail_cpu(is_skip=False):
return TestFailure(
("cpu",),
is_skip=is_skip,
)
def fail_cuda(is_skip=False):
return TestFailure(
("cuda"),
is_skip=is_skip,
)
# test_failures, xfail by default, set is_skip=True to skip
CPU_TEST_FAILURES = {
# TODO: failed internally
"test_multiple_output_alias": fail_cpu(is_skip=True),
}
# test_failures, xfail by default, set is_skip=True to skip
CUDA_TEST_FAILURES = {
# quantized unsupported for GPU
"test_quantized_linear": fail_cuda(),
"test_quanatized_int8_linear": fail_cuda(),
}
class AOTInductorTestABICompatibleCpu(AOTICustomOpTestCase):
device = "cpu"
device_type = "cpu"
check_model = check_model
check_model_with_multiple_inputs = check_model_with_multiple_inputs
code_check_count = code_check_count
allow_stack_allocation = False
use_minimal_arrayref_interface = False
copy_tests(
AOTInductorTestsTemplate,
AOTInductorTestABICompatibleCpu,
"cpu",
CPU_TEST_FAILURES,
)
@unittest.skipIf(sys.platform == "darwin", "No CUDA on MacOS")
class AOTInductorTestABICompatibleCuda(AOTICustomOpTestCase):
device = "cuda"
device_type = "cuda"
check_model = check_model
check_model_with_multiple_inputs = check_model_with_multiple_inputs
code_check_count = code_check_count
allow_stack_allocation = False
use_minimal_arrayref_interface = False
copy_tests(
AOTInductorTestsTemplate,
AOTInductorTestABICompatibleCuda,
"cuda",
CUDA_TEST_FAILURES,
)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
# cpp_extension N/A in fbcode
if HAS_CUDA or sys.platform == "darwin":
run_tests(needs="filelock")
|