File: test_aot_inductor_package.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (450 lines) | stat: -rw-r--r-- 15,150 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Owner(s): ["module: inductor"]
import copy
import functools
import io
import sys
import tempfile
import unittest
from typing import Callable

from parameterized import parameterized_class

import torch
from torch._inductor.package import AOTICompiledModel, load_package, package_aoti
from torch._inductor.test_case import TestCase
from torch._inductor.utils import fresh_inductor_cache
from torch.export import Dim
from torch.testing._internal.common_utils import IS_FBCODE, TEST_CUDA
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU


def skipif(predicate: Callable[[str, bool], bool], reason: str):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(self, *args, **kwargs):
            if predicate(self.device, self.package_cpp_only):
                self.skipTest(reason)
            return func(self, *args, **kwargs)

        return wrapper

    return decorator


def compile(
    model,
    args,
    kwargs=None,
    *,
    dynamic_shapes=None,
    package_path=None,
    inductor_configs=None,
) -> AOTICompiledModel:
    ep = torch.export.export(
        model,
        args,
        kwargs,
        dynamic_shapes=dynamic_shapes,
        strict=False,
    )
    package_path = torch._inductor.aoti_compile_and_package(
        ep, package_path=package_path, inductor_configs=inductor_configs
    )  # type: ignore[arg-type]
    loaded = load_package(package_path)
    return loaded


@unittest.skipIf(sys.platform == "darwin", "No CUDA on MacOS")
@parameterized_class(
    [
        {"device": "cpu", "package_cpp_only": False},
    ]
    + (
        [
            # FIXME: AssertionError: AOTInductor compiled library does not exist at
            {"device": "cpu", "package_cpp_only": True}
        ]
        if not IS_FBCODE
        else []
    )
    + (
        [
            {"device": GPU_TYPE, "package_cpp_only": False},
            {"device": GPU_TYPE, "package_cpp_only": True},
        ]
        if sys.platform != "darwin"
        else []
    ),
    class_name_func=lambda cls, _, params: f"{cls.__name__}{'Cpp' if params['package_cpp_only'] else ''}_{params['device']}",
)
class TestAOTInductorPackage(TestCase):
    def check_model(
        self: TestCase,
        model,
        example_inputs,
        inductor_configs=None,
        dynamic_shapes=None,
        disable_constraint_solver=False,
        atol=None,
        rtol=None,
    ) -> AOTICompiledModel:
        with torch.no_grad():
            torch.manual_seed(0)
            model = model.to(self.device)
            ref_model = copy.deepcopy(model)
            ref_inputs = copy.deepcopy(example_inputs)
            expected = ref_model(*ref_inputs)

            inductor_configs = inductor_configs or {}
            inductor_configs["aot_inductor.package_cpp_only"] = self.package_cpp_only

            torch.manual_seed(0)
            with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
                compiled_model = compile(
                    model,
                    example_inputs,
                    dynamic_shapes=dynamic_shapes,
                    inductor_configs=inductor_configs,
                    package_path=f.name,
                )

            actual = compiled_model(*example_inputs)

        self.assertEqual(actual, expected, atol=atol, rtol=rtol)
        return compiled_model

    def test_add(self):
        class Model(torch.nn.Module):
            def forward(self, x, y):
                return x + y

        example_inputs = (
            torch.randn(10, 10, device=self.device),
            torch.randn(10, 10, device=self.device),
        )
        self.check_model(Model(), example_inputs)

    def test_remove_intermediate_files(self):
        # For CUDA, generated cpp files contain absolute path to the generated cubin files.
        # With the package artifact, that cubin path should be overriden at the run time,
        # so removing those intermeidate files in this test to verify that.
        class Model(torch.nn.Module):
            def forward(self, x, y):
                return x + y

        example_inputs = (
            torch.randn(10, 10, device=self.device),
            torch.randn(10, 10, device=self.device),
        )
        model = Model()
        with torch.no_grad():
            torch.manual_seed(0)
            model = model.to(self.device)
            ref_model = copy.deepcopy(model)
            ref_inputs = copy.deepcopy(example_inputs)
            expected = ref_model(*ref_inputs)

            torch.manual_seed(0)
            with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
                ep = torch.export.export(
                    model,
                    example_inputs,
                )
                with fresh_inductor_cache():
                    # cubin files are removed when exiting this context
                    package_path = torch._inductor.aoti_compile_and_package(
                        ep,
                        package_path=f.name,
                    )  # type: ignore[arg-type]
                loaded = torch._inductor.aoti_load_package(package_path)
                actual = loaded(*example_inputs)

            self.assertEqual(actual, expected)

    def test_linear(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(10, 10)

            def forward(self, x, y):
                return x + self.linear(y)

        example_inputs = (
            torch.randn(10, 10, device=self.device),
            torch.randn(10, 10, device=self.device),
        )
        self.check_model(Model(), example_inputs)

    def test_metadata(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(10, 10)

            def forward(self, x, y):
                return x + self.linear(y)

        example_inputs = (
            torch.randn(10, 10, device=self.device),
            torch.randn(10, 10, device=self.device),
        )
        metadata = {"dummy": "moo"}
        compiled_model = self.check_model(
            Model(),
            example_inputs,
            inductor_configs={"aot_inductor.metadata": metadata},
        )

        loaded_metadata = compiled_model.get_metadata()  # type: ignore[attr-defined]

        self.assertEqual(loaded_metadata.get("dummy"), "moo")

    def test_bool_input(self):
        # Specialize on whichever branch the example input for b is
        class Model(torch.nn.Module):
            def forward(self, x, b):
                if b:
                    return x * x
                else:
                    return x + x

        example_inputs = (torch.randn(3, 3, device=self.device), True)
        self.check_model(Model(), example_inputs)

    def test_multiple_methods(self):
        options = {
            "aot_inductor.package": True,
            "aot_inductor.package_cpp_only": self.package_cpp_only,
        }

        class Model1(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, a, b):
                return torch.cat([a, b], dim=0)

        b = torch.randn(3, 4, device=self.device)
        dim0_a = Dim("dim0_a", min=1, max=10)
        dim0_b = Dim("dim0_b", min=1, max=20)
        dynamic_shapes = {"a": {0: dim0_a}, "b": {0: dim0_b}}
        example_inputs1 = (
            torch.randn(2, 4, device=self.device),
            torch.randn(3, 4, device=self.device),
        )
        ep1 = torch.export.export(
            Model1(), example_inputs1, dynamic_shapes=dynamic_shapes
        )
        aoti_files1 = torch._inductor.aot_compile(
            ep1.module(), example_inputs1, options=options
        )

        class Model2(torch.nn.Module):
            def __init__(self, device):
                super().__init__()
                self.device = device

            def forward(self, x):
                t = torch.tensor(x.size(-1), device=self.device, dtype=torch.float)
                t = torch.sqrt(t * 3)
                return x * t

        example_inputs2 = (torch.randn(5, 5, device=self.device),)
        ep2 = torch.export.export(Model2(self.device), example_inputs2)
        aoti_files2 = torch._inductor.aot_compile(
            ep2.module(), example_inputs2, options=options
        )

        with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
            package_path = package_aoti(
                f.name, {"model1": aoti_files1, "model2": aoti_files2}
            )
            loaded1 = load_package(package_path, "model1")
            loaded2 = load_package(package_path, "model2")

        self.assertEqual(loaded1(*example_inputs1), ep1.module()(*example_inputs1))
        self.assertEqual(loaded2(*example_inputs2), ep2.module()(*example_inputs2))

    @unittest.skipIf(not TEST_CUDA, "requires cuda")
    def test_duplicate_calls(self):
        options = {
            "aot_inductor.package": True,
        }

        device = "cuda"

        class Model1(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, a, b):
                return torch.cat([a, b], dim=0)

        dim0_a = Dim("dim0_a", min=1, max=10)
        dim0_b = Dim("dim0_b", min=1, max=20)
        dynamic_shapes = {"a": {0: dim0_a}, "b": {0: dim0_b}}
        example_inputs1 = (
            torch.randn(2, 4, device=device),
            torch.randn(3, 4, device=device),
        )
        self.check_model(Model1(), example_inputs1)
        ep1 = torch.export.export(
            Model1(), example_inputs1, dynamic_shapes=dynamic_shapes
        )
        aoti_files1 = torch._inductor.aot_compile(
            ep1.module(), example_inputs1, options=options
        )

        device = "cpu"
        example_inputs2 = (
            torch.randn(2, 4, device=device),
            torch.randn(3, 4, device=device),
        )
        ep2 = torch.export.export(
            Model1(), example_inputs2, dynamic_shapes=dynamic_shapes
        )
        aoti_files2 = torch._inductor.aot_compile(
            ep2.module(), example_inputs2, options=options
        )

        with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
            package_path = package_aoti(
                f.name, {"model1": aoti_files1, "model2": aoti_files2}
            )
            loaded1 = load_package(package_path, "model1")
            loaded2 = load_package(package_path, "model2")

        self.assertTrue(
            torch.allclose(loaded1(*example_inputs1), ep1.module()(*example_inputs1))
        )
        self.assertTrue(
            torch.allclose(loaded2(*example_inputs2), ep2.module()(*example_inputs2))
        )

    def test_specified_output_dir(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, a, b):
                return torch.cat([a, b], dim=0)

        example_inputs = (
            torch.randn(2, 4, device=self.device),
            torch.randn(3, 4, device=self.device),
        )
        ep = torch.export.export(Model(), example_inputs)
        aoti_files = torch._inductor.aot_compile(
            ep.module(),
            example_inputs,
            options={
                "aot_inductor.output_path": "tmp_output_",
                "aot_inductor.package": True,
                "aot_inductor.package_cpp_only": self.package_cpp_only,
            },
        )
        with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
            package_path = package_aoti(f.name, {"model1": aoti_files})
            loaded = load_package(package_path, "model1")
        self.assertTrue(
            torch.allclose(loaded(*example_inputs), ep.module()(*example_inputs))
        )

    def test_save_buffer(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, a, b):
                return torch.cat([a, b], dim=0)

        example_inputs = (
            torch.randn(2, 4, device=self.device),
            torch.randn(3, 4, device=self.device),
        )
        ep = torch.export.export(Model(), example_inputs)

        buffer = io.BytesIO()
        buffer = torch._inductor.aoti_compile_and_package(
            ep, package_path=buffer
        )  # type: ignore[arg-type]
        for _ in range(2):
            loaded = load_package(buffer)
            self.assertTrue(
                torch.allclose(loaded(*example_inputs), ep.module()(*example_inputs))
            )

    @skipif(
        lambda device, package_cpp_only: device == "cpu" or package_cpp_only,
        "No support for cpp only and cpu",
    )
    def test_package_without_weight(self):
        class Model(torch.nn.Module):
            def __init__(self, n, k, device):
                super().__init__()
                self.linear = torch.nn.Linear(k, n, device=device)

            def forward(self, a):
                return self.linear(a)

        M, N, K = 128, 2048, 4096
        model = Model(N, K, self.device)
        example_inputs = (torch.randn(M, K, device=self.device),)

        inductor_configs = {
            "always_keep_tensor_constants": True,
            "aot_inductor.package_constants_in_so": False,
        }
        compiled = compile(model, example_inputs, inductor_configs=inductor_configs)

        self.assertEqual(
            set(compiled.get_constant_fqns()), set(model.state_dict().keys())
        )

        compiled.load_constants(model.state_dict(), check_full_update=True)

        test_inputs = torch.randn(M, K, device=self.device)
        expected = model(test_inputs)
        output = compiled(test_inputs)
        self.assertEqual(expected, output)

    @skipif(
        lambda device, package_cpp_only: device == "cpu" or package_cpp_only,
        "No support for cpp only and cpu",
    )
    def test_update_weights(self):
        class Model(torch.nn.Module):
            def __init__(self, n, k, device):
                super().__init__()
                self.linear = torch.nn.Linear(k, n, device=device)

            def forward(self, a):
                return self.linear(a)

        M, N, K = 128, 2048, 4096
        model = Model(N, K, self.device)
        example_inputs = (torch.randn(M, K, device=self.device),)

        compiled = self.check_model(model, example_inputs)

        new_state_dict = {
            "linear.weight": torch.randn(N, K, device=self.device),
            "linear.bias": torch.randn(N, device=self.device),
        }
        model.load_state_dict(new_state_dict)

        compiled.load_constants(model.state_dict(), check_full_update=True)

        test_inputs = torch.randn(M, K, device=self.device)
        expected = model(test_inputs)
        output = compiled(test_inputs)
        self.assertEqual(expected, output)


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    # cpp_extension N/A in fbcode
    if HAS_GPU or sys.platform == "darwin":
        run_tests(needs="filelock")