1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# Owner(s): ["module: inductor"]
import copy
import os
import shutil
import tempfile
import types
import torch
import torch._export
import torch._inductor
import torch.export._trace
import torch.fx._pytree as fx_pytree
from torch._dynamo.testing import same
from torch._inductor import config
from torch._inductor.test_case import TestCase
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_FBCODE
from torch.utils import _pytree as pytree
class WrapperModule(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
class AOTIRunnerUtil:
@staticmethod
def compile(
model,
example_inputs,
options=None,
dynamic_shapes=None,
disable_constraint_solver=False,
):
if not isinstance(model, torch.nn.Module):
model = WrapperModule(model)
# The exact API is subject to change
if torch._inductor.config.is_predispatch:
ep = torch.export._trace._export(
model, example_inputs, dynamic_shapes=dynamic_shapes, pre_dispatch=True
)
gm = ep.module()
else:
gm = torch.export._trace._export_to_torch_ir(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
disable_constraint_solver=disable_constraint_solver,
# Disabling this flag, because instead we can rely on the mapping
# dynamo_flat_name_to_original_fqn which is coming from Dynamo.
restore_fqn=False,
)
if IS_FBCODE:
from deeplearning.aot_inductor.extern_node_thrift_serializer import (
thrift_serializer,
)
if options is None:
options = {}
options["extern_node_serializer"] = thrift_serializer
with torch.no_grad():
so_path = torch._inductor.aot_compile(gm, example_inputs, options=options) # type: ignore[arg-type]
return so_path
@staticmethod
def load_runner(device, so_path):
if IS_FBCODE:
from .fb import test_aot_inductor_model_runner_pybind # @manual
with tempfile.TemporaryDirectory() as temp_dir:
# copy *.so file to a unique path just before loading
# to avoid stale dlopen handles when an updated *.so
# from the same path is loaded repetitively in a test
temp_so_path = os.path.join(temp_dir, "model.so")
shutil.copy(so_path, temp_so_path)
# We also need to copy over the serialized extern_kernel_nodes for custom ops
extern_kernel_nodes_path = f"{so_path[:-3]}.json"
if os.path.isfile(extern_kernel_nodes_path):
temp_extern_kernel_nodes_path = os.path.join(temp_dir, "model.json")
shutil.copy(extern_kernel_nodes_path, temp_extern_kernel_nodes_path)
return test_aot_inductor_model_runner_pybind.Runner(
temp_so_path, device == "cpu"
)
else:
if device == "cpu":
return torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1)
elif device == "xpu":
return torch._C._aoti.AOTIModelContainerRunnerXpu(so_path, 1, device)
else:
return torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device)
@staticmethod
def load(device, so_path):
# TODO: unify fbcode and oss behavior to only use torch._export.aot_load
if IS_FBCODE:
runner = AOTIRunnerUtil.load_runner(device, so_path)
def optimized(*args, **kwargs):
call_spec = runner.get_call_spec()
in_spec = pytree.treespec_loads(call_spec[0])
out_spec = pytree.treespec_loads(call_spec[1])
flat_inputs = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)]
flat_outputs = runner.run(flat_inputs)
return pytree.tree_unflatten(flat_outputs, out_spec)
return optimized
else:
return torch._export.aot_load(so_path, device)
@staticmethod
def run(
device,
model,
example_inputs,
options=None,
dynamic_shapes=None,
disable_constraint_solver=False,
):
so_path = AOTIRunnerUtil.compile(
model,
example_inputs,
options=options,
dynamic_shapes=dynamic_shapes,
disable_constraint_solver=disable_constraint_solver,
)
optimized = AOTIRunnerUtil.load(device, so_path)
return optimized(*example_inputs)
@staticmethod
def run_multiple(
device,
model,
list_example_inputs,
options=None,
dynamic_shapes=None,
):
so_path = AOTIRunnerUtil.compile(
model,
list_example_inputs[0],
options=options,
dynamic_shapes=dynamic_shapes,
)
optimized = AOTIRunnerUtil.load(device, so_path)
list_output_tensors = []
for example_inputs in list_example_inputs:
list_output_tensors.append(optimized(*example_inputs))
return list_output_tensors
def check_model(
self: TestCase,
model,
example_inputs,
options=None,
dynamic_shapes=None,
disable_constraint_solver=False,
atol=None,
rtol=None,
):
with torch.no_grad(), config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
):
torch.manual_seed(0)
if not isinstance(model, types.FunctionType):
model = model.to(self.device)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(example_inputs)
expected = ref_model(*ref_inputs)
torch.manual_seed(0)
actual = AOTIRunnerUtil.run(
self.device,
model,
example_inputs,
options,
dynamic_shapes,
disable_constraint_solver,
)
self.assertEqual(actual, expected, atol=atol, rtol=rtol)
def check_model_with_multiple_inputs(
self: TestCase,
model,
list_example_inputs,
options=None,
dynamic_shapes=None,
):
with torch.no_grad(), config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
):
torch.manual_seed(0)
model = model.to(self.device)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(list_example_inputs)
list_expected = [ref_model(*inputs) for inputs in ref_inputs]
torch.manual_seed(0)
list_actual = AOTIRunnerUtil.run_multiple(
self.device, model, list_example_inputs, options, dynamic_shapes
)
self.assertTrue(same(list_actual, list_expected))
def code_check_count(
self: TestCase,
model,
example_inputs,
target_str: str,
target_count: int,
):
with torch.no_grad(), config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
):
so_path = torch._export.aot_compile(model, example_inputs)
with open(os.path.splitext(so_path)[0] + ".cpp") as cpp:
src_code = cpp.read()
FileCheck().check_count(
target_str,
target_count,
exactly=True,
).run(src_code)
|