1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
# Owner(s): ["module: inductor"]
import math
import os
import sys
import torch
from torch._inductor.codegen.triton import TritonScheduling
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.test_operators import realize
from torch._inductor.utils import fresh_inductor_cache, is_big_gpu, run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.common_utils import slowTest, TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
import contextlib
import unittest
from inductor.test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_cuda,
copy_tests,
)
from torch._inductor import config
from torch._inductor.scheduler import Scheduler
class TestCase(InductorTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._stack = contextlib.ExitStack()
cls._stack.enter_context(
config.patch(
{
"benchmark_kernel": True,
"benchmark_fusion": True,
}
)
)
@classmethod
def tearDownClass(cls):
cls._stack.close()
super().tearDownClass()
class BenchmarkFusionTestTemplate:
def test_softmax(self):
def f(x):
return torch.nn.functional.softmax(x, dim=-1)
self.common(f, (torch.rand(2, 8192),))
@slowTest
def test_resnet18(self):
import torchvision
model = torchvision.models.resnet18()
model.eval()
batch_size = 16
inputs = (torch.randn((batch_size, 3, 224, 224)),)
self.common(model, inputs, atol=1e-2, rtol=1e-2)
def test_register_spills(self):
"""
The test can potentially trigger register spills
"""
old_benchmark_fn = Scheduler.benchmark_fused_nodes
def new_benchmark_fn(scheduler, nodes):
"""
We override Scheduler.benchmark_fused_nodes to return latency 1.0
if there are no register spills. Without this, we may not able to
test the code path handling register spilling because before register
start spilling, the related fusion may have already been skipped
due to longer lantency.
"""
ms, path = old_benchmark_fn(scheduler, nodes)
if not math.isinf(ms):
ms = 1.0
return ms, path
# Disable dynamic_scale_rblock to make it easier to trigger register
# spilling.
with unittest.mock.patch.object(
Scheduler, "benchmark_fused_nodes", new_benchmark_fn
), config.patch("dynamic_scale_rblock", False):
S = 512
def f(*inputs):
inputs = list(inputs)
outputs = []
out = torch.zeros(S, device=self.device)
for x in inputs:
x = x * 2
x = x + 1
x = x.sum(dim=-1)
outputs.append(x)
out = out + x
return outputs, out
N = int(os.environ.get("NINP", "30"))
inputs = [torch.randn(S, 2560, device=self.device) for _ in range(N)]
opt_f = torch.compile(f)
opt_f(*inputs)
def test_foreach_kernel(self):
"""
Benchmark fusion should skip benchmarking kernels involves foreach kernel
for now. Without the skipping logic, `codegen_node_schedule` may fail.
"""
a = torch.randn(1024, 256, device=self.device)
b = torch.randn(1024, 512, device=self.device)
def f(a, b):
a, b = torch._foreach_abs([a, b])
return a + 1, b + 2
self.common(f, (a, b))
@torch._inductor.config.patch(max_autotune_gemm_backends="TRITON")
def test_avoid_register_spilling(self):
if self.device != "cuda":
raise unittest.SkipTest("CUDA only")
from torch.nn.functional import gelu
def foo(m, inp):
curr = m(inp)
tmps = []
for _ in range(4):
curr = gelu(curr)
for t in tmps:
curr = curr + t
tmps.append(curr)
return curr
m = torch.nn.Linear(2048, 2048, bias=True).half().cuda()
inp = torch.rand([2048, 2048]).half().cuda()
with torch.no_grad():
foo_c = torch.compile(mode="max-autotune-no-cudagraphs")(foo)
_, out_code = run_and_get_code(foo_c, m, inp)
# occasionally, CI will make this one kernel. just skip in this case
if not out_code[0].count("def triton_") == 2:
return
# should be multiple triton invocations
FileCheck().check("async_compile.wait").check_count(
".run", 2, exactly=True
).run(out_code[0])
with config.patch(
{"benchmark_fusion": False, "epilogue_fusion": False}
), torch.no_grad():
torch._dynamo.reset()
foo_c = torch.compile(mode="max-autotune-no-cudagraphs")(foo)
_, out_code2 = run_and_get_code(foo_c, m, inp)
for c in out_code[0], out_code2[0]:
FileCheck().check("async_compile.wait").check("DeviceGuard").check_count(
"empty_strided_cuda", 1, exactly=True
).check_regex("buf[0-9]* = buf[0-9]*; del buf[0-9]*").check("return").run(c)
def test_tield_kernel_fusion(self):
def f(x):
y = realize(x + x.t())
return y + 1
x = torch.randn(1024, 1024, device=self.device)
self.common(f, (x,))
if HAS_CUDA and not TEST_WITH_ASAN:
class BenchmarkFusionCudaTest(TestCase):
common = check_model_cuda
device = "cuda"
copy_tests(BenchmarkFusionTestTemplate, BenchmarkFusionCudaTest, "cuda")
class BenchmarkingTest(TestCase):
@unittest.skipIf(
torch.cuda.device_count() < 2, "The test need at least 2 devices"
)
def test_benchmark_on_non_zero_device(self):
hit_count = 0
with torch.cuda.device("cuda:0"):
@torch.compile
def relu(x):
return realize(x.relu()) + x
x = torch.randn(int(16e6), device="cuda:1")
orig_benchmark_fused_nodes = TritonScheduling.benchmark_fused_nodes
def mock_benchmark_fused_nodes(*args, **kwargs):
nonlocal hit_count
hit_count += 1
ms, path = orig_benchmark_fused_nodes(*args, **kwargs)
self.assertTrue(ms > 0)
return ms, path
with unittest.mock.patch.object(
TritonScheduling,
"benchmark_fused_nodes",
mock_benchmark_fused_nodes,
):
relu(x)
self.assertTrue(hit_count > 0)
class BenchmarkMultiTemplateFusionCudaTest(InductorTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._stack = contextlib.ExitStack()
cls._stack.enter_context(
config.patch(
{
"benchmark_kernel": True,
"benchmark_fusion": True,
"benchmark_epilogue_fusion": True,
}
)
)
@classmethod
def tearDownClass(cls):
cls._stack.close()
super().tearDownClass()
def setUp(self):
super().setUp()
if not is_big_gpu():
return self.skipTest("Need a big GPU to run max_autotune=True")
def _equivalent_output_code_impl(self, size, first_dim=None, activation=True):
def foo(m, inp):
a = m(inp)
if activation:
return torch.nn.functional.relu(a)
return a
foo_c = torch.compile(mode="max-autotune-no-cudagraphs")(foo)
first_dim = first_dim if first_dim is not None else size
m = torch.nn.Linear(size, size, bias=True).half().cuda()
inp = torch.rand([first_dim, size]).half().cuda()
with torch.no_grad():
res, code = run_and_get_code(foo_c, m, inp)
torch._dynamo.reset()
with unittest.mock.patch.object(
torch._inductor.config, "benchmark_epilogue_fusion", False
):
foo_c = torch.compile(mode="max-autotune-no-cudagraphs")(foo)
with torch.no_grad():
res2, code2 = run_and_get_code(foo_c, m, inp)
self.assertEqual(res, res2, atol=1e-4, rtol=1.1)
return code, code2
@fresh_inductor_cache()
@torch._inductor.config.patch(max_autotune_gemm_backends="TRITON")
def test_equivalent_template_code(self):
code, code2 = self._equivalent_output_code_impl(256)
for out_code in [code, code2]:
FileCheck().check("def call").check_count(
"empty_strided_cuda", 1, exactly=True
).check("triton_tem_fused_addmm_relu_0.run").check_count(
"del", 3, exactly=True
).check(
"return"
).run(
out_code[0]
)
@fresh_inductor_cache()
@torch._inductor.config.patch(max_autotune_gemm_backends="ATEN")
def test_equivalent_extern_code(self):
torch._dynamo.reset()
code, code2 = self._equivalent_output_code_impl(512, 1, False)
for out_code in [code, code2]:
FileCheck().check("def call").check_count(
"empty_strided_cuda", 1, exactly=True
).check("extern_kernels.").check_count("del", 3, exactly=True).check(
"return"
).run(
out_code[0]
)
def test_changed_layout(self):
# cat addmm planning will change layout - make sure propagated
def fn(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor):
return torch.cat(
[
torch.addmm(a, b, c),
torch.addmm(b, c, a),
],
1,
)
args = [
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
]
expected = fn(*args)
actual = torch.compile(fn, mode="max-autotune")(*args)
self.assertEqual(expected, actual)
torch._dynamo.reset()
if HAS_CPU and not torch.backends.mps.is_available():
class BenchmarkFusionCpuTest(TestCase):
common = check_model
device = "cpu"
copy_tests(BenchmarkFusionTestTemplate, BenchmarkFusionCpuTest, "cpu")
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests()
|