1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
# Owner(s): ["module: inductor"]
import functools
import importlib
import itertools
import os
import sys
import torch
from torch import nn
from torch._dynamo.utils import counters
from torch._inductor import config as inductor_config
from torch.testing._internal.common_cuda import TEST_CUDNN
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from inductor.test_inductor_freezing import ( # @manual=fbcode//caffe2/test/inductor:inductor_freezing-library
TestCase,
)
from inductor.test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_gpu,
copy_tests,
)
from torch.testing._internal.common_utils import TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import skipCUDAIf
importlib.import_module("functorch")
importlib.import_module("filelock")
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, HAS_GPU
aten = torch.ops.aten
class BinaryFoldingTemplate(TestCase):
@skipCUDAIf(TEST_CUDNN, "CUDNN has accuracy issues for this test")
def test_conv_binary_folding(self):
@torch.no_grad()
def test_conv_fusion(use_bias, module, op, scalar, add_tensor, expect_success):
class ConvOp(nn.Module):
__constants__ = ["use_scalar"]
def __init__(self, in_channels, out_channels, device, **kwargs):
super().__init__()
self.conv = module(
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.use_scalar = scalar
tensor_size = [1 for _ in range(self.conv.weight.ndim)]
tensor_size[1] = self.conv.weight.size(0)
self.tensor = torch.nn.Parameter(
add_tensor
if add_tensor is not None
else torch.rand(tensor_size).to(device)
)
self.op = op
def forward(self, x):
x = self.conv(x)
if self.use_scalar:
return self.op(x, 2.0)
else:
return self.op(x, self.tensor)
torch._dynamo.reset()
counters.clear()
mod_eager = ConvOp(3, 32, self.device, kernel_size=3, stride=2).eval()
out_optimized = torch.compile(mod_eager)
inps = [4, 3, 4]
if module == nn.Conv2d:
inps.append(inps[-1])
if module == nn.Conv3d:
inps.append(inps[-1])
inps.append(inps[-1])
torch.manual_seed(1234)
inp = torch.rand(inps).to(self.device)
out_eager = mod_eager(inp)
out_optimized = out_optimized(inp)
self.assertEqual(out_optimized, out_eager)
if expect_success:
self.assertEqual(counters["inductor"]["binary_folding"], 1)
else:
self.assertEqual(counters["inductor"]["binary_folding"], 0)
conv_bias = [True, False]
modules = [nn.Conv1d, nn.Conv2d, nn.Conv3d]
use_scalar = [True, False]
ops = [torch.add, torch.sub, torch.mul, torch.div]
for use_bias, module, pytorch_op, scalar in itertools.product(
conv_bias, modules, ops, use_scalar
):
test_conv_fusion(
use_bias,
module,
pytorch_op,
scalar,
add_tensor=None,
expect_success=True,
)
for use_bias, pytorch_op in itertools.product(conv_bias, ops):
# broadcasting add
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.rand(
32,
1,
32,
).to(self.device),
expect_success=False,
)
# broadcasting add
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.rand(1, 1).to(self.device),
expect_success=True,
)
# add with different dtype
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.tensor([2]).to(torch.float64).to(self.device),
expect_success=False,
)
@inductor_config.patch({"freezing": True})
def test_conv_bn_folding(self):
@torch.no_grad()
def test_conv_fusion(use_bias, module, expect_success):
class ConvOp(nn.Module):
def __init__(self, in_channels, out_channels, device, **kwargs):
super().__init__()
self.conv = module[0](
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.bn = module[1](out_channels).to(device)
def forward(self, x):
x = self.conv(x)
return self.bn(x)
from torch._inductor.compile_fx import compile_fx, compile_fx_inner
aten_binary = [
aten.add.Tensor,
aten.sub.Tensor,
aten.mul.Tensor,
aten.div.Tensor,
]
n_binary_ops = 0
def my_inner_compile(gm, example_inputs, *args, **kwargs):
out = compile_fx_inner(gm, example_inputs, *args, **kwargs)
nonlocal n_binary_ops
binarry_ops = [n for n in gm.graph.nodes if n.target in aten_binary]
n_binary_ops += len(binarry_ops)
return out
torch._dynamo.reset()
mod_eager = ConvOp(3, 32, self.device, kernel_size=3, stride=2).eval()
out_optimized = torch.compile(
mod_eager,
backend=functools.partial(compile_fx, inner_compile=my_inner_compile),
)
inps = [4, 3, 4]
if module[0] == nn.Conv2d:
inps.append(inps[-1])
if module[0] == nn.Conv3d:
inps.append(inps[-1])
inps.append(inps[-1])
inp = torch.rand(inps).to(self.device)
out_eager = mod_eager(inp)
out_optimized = out_optimized(inp)
self.assertEqual(out_optimized, out_eager, atol=2e-04, rtol=1e-5)
if expect_success:
self.assertTrue(n_binary_ops == 0)
else:
self.assertTrue(n_binary_ops > 1)
conv_bias = [True, False]
modules = [
(nn.Conv1d, nn.BatchNorm1d),
(nn.Conv2d, nn.BatchNorm2d),
(nn.Conv3d, nn.BatchNorm3d),
]
for use_bias, module in itertools.product(conv_bias, modules):
test_conv_fusion(
use_bias,
module,
expect_success=True,
)
@inductor_config.patch({"enable_linear_binary_folding": True})
def test_linear_binary_folding(self):
@torch.no_grad()
def test_linear_fusion(
use_bias, op, scalar, add_tensor, expect_success, input_3d=False
):
class LinearOp(nn.Module):
__constants__ = ["use_scalar"]
def __init__(self, in_channels, out_channels, device, **kwargs):
super().__init__()
self.linear = nn.Linear(
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.use_scalar = scalar
tensor_size = [
self.linear.weight.size(0),
]
self.tensor = torch.nn.Parameter(
add_tensor
if add_tensor is not None
else torch.rand(tensor_size).to(device)
)
self.op = op
def forward(self, x):
x = self.linear(x)
if self.use_scalar:
return self.op(x, 2.0)
else:
return self.op(x, self.tensor)
torch._dynamo.reset()
counters.clear()
mod_eager = LinearOp(3, 32, self.device).eval()
out_optimized = torch.compile(mod_eager)
torch.manual_seed(1234)
if input_3d:
inp = torch.rand([2, 4, 3]).to(self.device)
else:
inp = torch.rand([4, 3]).to(self.device)
out_eager = mod_eager(inp)
out_optimized = out_optimized(inp)
self.assertEqual(out_optimized, out_eager, atol=5e-05, rtol=5e-06)
if expect_success:
self.assertEqual(counters["inductor"]["binary_folding"], 1)
else:
self.assertEqual(counters["inductor"]["binary_folding"], 0)
linear_bias = [True, False]
use_scalar = [True, False]
ops = [torch.add, torch.sub, torch.mul, torch.div]
add_tensor_size = [
[
32,
],
[1, 32],
[
1,
],
[1, 1],
]
for use_bias, pytorch_op, scalar, tensor_size in itertools.product(
linear_bias, ops, use_scalar, add_tensor_size
):
test_linear_fusion(
use_bias,
pytorch_op,
scalar,
add_tensor=torch.rand(tensor_size).to(self.device),
expect_success=True,
)
add_tensor_size.extend([[1, 1, 32], [1, 1, 1]])
for use_bias, pytorch_op, scalar, tensor_size in itertools.product(
linear_bias, ops, use_scalar, add_tensor_size
):
test_linear_fusion(
use_bias,
pytorch_op,
scalar,
add_tensor=torch.rand(tensor_size).to(self.device),
expect_success=True,
input_3d=True,
)
# In the following test, the shape of 'add_tensor' does not satisfy
# the requirements of binary folding, so it will not be folded.
for use_bias, pytorch_op in itertools.product(linear_bias, ops):
test_linear_fusion(
use_bias,
pytorch_op,
False,
add_tensor=torch.rand(
4,
32,
).to(self.device),
expect_success=False,
)
test_linear_fusion(
use_bias,
pytorch_op,
False,
add_tensor=torch.rand(
4,
1,
).to(self.device),
expect_success=False,
)
if HAS_CPU and not torch.backends.mps.is_available():
class FreezingCpuTests(TestCase):
common = check_model
device = "cpu"
autocast = torch.cpu.amp.autocast
copy_tests(BinaryFoldingTemplate, FreezingCpuTests, "cpu")
if HAS_GPU and not TEST_WITH_ASAN:
class FreezingGpuTests(TestCase):
common = check_model_gpu
device = GPU_TYPE
autocast = torch.amp.autocast(device_type=GPU_TYPE)
copy_tests(BinaryFoldingTemplate, FreezingGpuTests, GPU_TYPE)
del BinaryFoldingTemplate
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_GPU:
run_tests(needs="filelock")
|