1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
|
# Owner(s): ["module: inductor"]
import os
import pickle
import shutil
import tempfile
import unittest
from typing import List, Optional, Union
from unittest import mock
import torch
from torch._dynamo import reset
from torch._dynamo.utils import counters
from torch._functorch._aot_autograd.autograd_cache import AOTAutogradCache
from torch._inductor import config, metrics
from torch._inductor.codecache import (
BypassFxGraphCache,
cuda_compile_command,
CUDACodeCache,
FxGraphCachePickler,
FxGraphHashDetails,
PyCodeCache,
TensorMetadata,
TensorMetadataAndValues,
)
from torch._inductor.custom_graph_pass import CustomGraphPass, get_hash_for_files
from torch._inductor.graph import GraphLowering
from torch._inductor.mock_cache import global_stats, PatchCaches, Stats
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import clear_inductor_caches, fresh_inductor_cache
from torch._library import capture_triton
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
)
from torch.testing._internal.inductor_utils import (
GPU_TYPE,
HAS_CUDA,
HAS_GPU,
HAS_MULTIGPU,
HAS_TRITON,
requires_gpu,
requires_triton,
)
from torch.testing._internal.triton_utils import requires_cuda
if HAS_TRITON:
import triton # @manual
from torch.testing._internal.triton_utils import add_kernel, sub_kernel
torch._dynamo.config.fake_tensor_cache_enabled = True
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled = True
class MyModelConv2d(torch.nn.Module):
def __init__(self, dim=512):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, dim, kernel_size=3, stride=2, bias=False)
self.conv2 = torch.nn.Conv2d(dim, dim, kernel_size=3, stride=2, bias=False)
def forward(self, x):
x = self.conv1(x)
torch._dynamo.graph_break()
x = self.conv2(x)
return x
@instantiate_parametrized_tests
class TestFxGraphCache(TestCase):
device_type = GPU_TYPE
def setUp(self):
super().setUp()
counters.clear()
PatchCaches.setUp()
def tearDown(self):
super().tearDown()
PatchCaches.tearDown()
def reset(self):
AOTAutogradCache.clear()
PyCodeCache.cache_clear(purge=True)
torch._dynamo.reset()
clear_inductor_caches()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
@parametrize("dynamic", (False, True))
@parametrize("bundle_triton", (False, True))
@parametrize("grad", (False, True))
def test_cache_load_function(self, device, dtype, dynamic, bundle_triton, grad):
"""
Verify that we can populate and load functions from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
grad_multiplier = 2 if grad else 1
def fn(x, y):
yy = y @ y
return x * 2 + yy.view(25)
a_orig = torch.rand(25, dtype=dtype, device=device)
b_orig = torch.rand(5, 5, dtype=dtype, device=device)
with config.patch(bundle_triton_into_fx_graph_cache=bundle_triton):
compiled_fn = torch.compile(fn, dynamic=dynamic)
a1 = a_orig.clone().requires_grad_(grad)
b1 = b_orig.clone().requires_grad_(grad)
a2 = a_orig.clone().requires_grad_(grad)
b2 = b_orig.clone().requires_grad_(grad)
# A first call should miss in the cache.
eager_result = fn(a1, b1)
compiled_result = compiled_fn(a2, b2)
self.assertEqual(eager_result, compiled_result)
if grad:
eager_result.sum().backward()
compiled_result.sum().backward()
self.assertEqual(a1.grad, a2.grad)
self.assertEqual(b1.grad, b2.grad)
self.assertEqual(
counters["inductor"]["fxgraph_cache_miss"], grad_multiplier * 1
)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
# "cuda" has .ptx and .cubin file, but xpu only has .spv file
save_kernel_count = 6 if device == "xpu" else 7
read_and_emit_kernel_count = 6 if device == "xpu" else 7
if bundle_triton and device != "cpu":
self.assertEqual(
counters["inductor"]["triton_bundler_save_kernel"],
grad_multiplier * save_kernel_count,
)
self.assertEqual(
counters["inductor"]["triton_bundler_read_and_emit_kernel"], 0
)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self.reset()
# Clean triton kernels
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
a1 = a_orig.clone().requires_grad_(grad)
b1 = b_orig.clone().requires_grad_(grad)
a2 = a_orig.clone().requires_grad_(grad)
b2 = b_orig.clone().requires_grad_(grad)
eager_result = fn(a1, b1)
compiled_result = compiled_fn(a2, b2)
self.assertEqual(eager_result, compiled_result)
if grad:
eager_result.sum().backward()
compiled_result.sum().backward()
self.assertEqual(a1.grad, a2.grad)
self.assertEqual(b1.grad, b2.grad)
self.assertEqual(
counters["inductor"]["fxgraph_cache_miss"], grad_multiplier * 1
)
self.assertEqual(
counters["inductor"]["fxgraph_cache_hit"], grad_multiplier * 1
)
self.assertEqual(
counters["inductor"]["fxgraph_lookup_write_file"], grad_multiplier * 1
)
if bundle_triton and device != "cpu":
self.assertEqual(
counters["inductor"]["triton_bundler_save_kernel"],
grad_multiplier * save_kernel_count,
)
self.assertEqual(
counters["inductor"]["triton_bundler_read_and_emit_kernel"],
grad_multiplier * read_and_emit_kernel_count,
)
self.reset()
a1 = a_orig.clone().requires_grad_(grad)
b1 = b_orig.clone().requires_grad_(grad)
a2 = a_orig.clone().requires_grad_(grad)
b2 = b_orig.clone().requires_grad_(grad)
eager_result = fn(a1, b1)
if grad:
eager_result.sum().backward()
with torch.compiler.config.patch({"cache_key_tag": "test"}):
compiled_result = compiled_fn(a2, b2)
if grad:
compiled_result.sum().backward()
self.assertEqual(eager_result, compiled_result)
if grad:
self.assertEqual(a1.grad, a2.grad)
self.assertEqual(b1.grad, b2.grad)
self.assertEqual(
counters["inductor"]["fxgraph_cache_miss"], grad_multiplier * 2
)
self.assertEqual(
counters["inductor"]["fxgraph_cache_hit"], grad_multiplier * 1
)
self.assertEqual(
counters["inductor"]["fxgraph_lookup_write_file"], grad_multiplier * 1
)
if bundle_triton and device != "cpu":
self.assertEqual(
counters["inductor"]["triton_bundler_save_kernel"],
grad_multiplier * save_kernel_count * 2,
)
self.assertEqual(
counters["inductor"]["triton_bundler_read_and_emit_kernel"],
grad_multiplier * read_and_emit_kernel_count,
)
@requires_triton()
@config.patch({"fx_graph_remote_cache": True})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
@parametrize("dynamic", (False, True))
@parametrize("bundle_triton", (False, True))
def test_remote_cache_load_function(self, device, dtype, dynamic, bundle_triton):
from unittest.mock import patch
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25, dtype=dtype, device=device)
b = torch.rand(5, 5, dtype=dtype, device=device)
with config.patch(
{
"fx_graph_remote_cache": True,
"bundle_triton_into_fx_graph_cache": bundle_triton,
}
), patch.dict(os.environ), PatchCaches():
os.environ.pop("TRITON_CACHE_MANAGER", None)
for _ in range(4):
with fresh_inductor_cache():
compiled_fn = torch.compile(fn, dynamic=dynamic)
self.assertEqual(fn(a, b), compiled_fn(a, b))
reset()
self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1))
with torch.compiler.config.patch(
{"cache_key_tag": "test"}
), fresh_inductor_cache():
compiled_fn = torch.compile(fn, dynamic=dynamic)
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(global_stats.fx_graph, Stats(2, 3, 2))
# Check that the cache entries seem reasonable
for k in global_stats.fx_graph.cache.keys():
self.assertRegex(k, r"pt2:fx-graph-v1::[0-9a-z]{52}:c[0-9]+")
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.float64))
@parametrize("dynamic", (False, True))
def test_cache_load_model(self, device, dtype, dynamic):
"""
Verify that we can populate and load models from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
def fn(mod, x):
mod.zero_grad()
mod(x).sum().backward()
return [p.grad for p in mod.parameters()]
compiled_fn = torch.compile(fn, dynamic=dynamic)
mod = MyModelConv2d().to(device=device, dtype=dtype)
inp = torch.randn(2, 3, 16, 16, device=device, dtype=dtype)
# The first call should see all cache misses.
counters.clear()
grads1 = compiled_fn(mod, inp)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# The second should see all hits. (First reset so in-memory guards
# don't prevent compilation).
counters.clear()
self.reset()
grads2 = compiled_fn(mod, inp)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
# And the results should be the same.
self.assertEqual(grads1, grads2)
@largeTensorTest("64GB", device=GPU_TYPE)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
def test_cache_load_with_guards_int32_bounds(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different shapes, varying whether the total
# size is below or above int32. For each combination, we expect
# different guards around whether the symbolic sizes do or do
# not exceed int32.
shapes = (
((5, 6), (7, 8)),
((5, 6), (47000, 47001)),
((47000, 47001), (5, 6)),
)
for a_shape, b_shape in shapes:
a = torch.rand(a_shape, device=device, dtype=dtype)
b = torch.rand(b_shape, device=device, dtype=dtype)
# AVOID a dynamo reset here. We expect guards to have been
# added that will be violated with the new shape. We should
# see a recompilation (along with a cache miss).
counters.clear()
res1 = compiled_fn(a, b)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit. (Reset here to force compilation).
counters.clear()
self.reset()
res2 = compiled_fn(a, b)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(res1, res2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
def test_cache_load_with_guards_static_bounds(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for static bounds.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
# See lowering; for all of the pooling operators, we always guard and
# make the height/width static.
def fn(x):
return torch.nn.functional.adaptive_avg_pool2d(x, [5, 7])
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different input shapes. Each new shape should cause
# a cache miss.
shapes = ((1, 64, 8, 9), (1, 64, 9, 10), (1, 64, 10, 11))
for shape in shapes:
x = torch.rand(shape, device=device, dtype=dtype)
# AVOID a dynamo reset here. For each cache hit, we expect guards
# to have been added that will be violated with each new shape.
# We should see a recompilation (along with a cache miss).
counters.clear()
res1 = compiled_fn(x)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit.
counters.clear()
self.reset()
res2 = compiled_fn(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(res1, res2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
def test_constant_handling(self, device):
"""
Test that different constants are recognized correctly.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
def fn1(x):
return x + torch.tensor(list(range(0, 12)), device=device)
def fn2(x):
return x + torch.tensor(list(range(1, 13)), device=device)
a = torch.rand(12, device=device)
compiled_fn1 = torch.compile(fn1)
compiled_fn2 = torch.compile(fn2)
# A call to fn1 should miss in the cache.
self.assertEqual(fn1(a), compiled_fn1(a))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A call to fn2 should also miss (the constant is different)
self.assertEqual(fn2(a), compiled_fn2(a))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
@requires_cuda
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_flex_attention_caching(self):
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
block_mask = create_block_mask(
lambda b, h, q, kv: q >= kv, None, None, 512, 512
)
def score_mod(score, b, h, q, kv):
return score + (q - kv)
def fn(q, k, v):
return flex_attention(q, k, v, score_mod=score_mod, block_mask=block_mask)
def score_mod2(score, b, h, q, kv):
return score
def fn2(q, k, v):
return flex_attention(q, k, v, score_mod=score_mod2, block_mask=block_mask)
a, b, c = (torch.randn(1, 4, 512, 64).cuda() for _ in range(3))
compiled_fn = torch.compile(fn)
compiled_fn2 = torch.compile(fn2)
atol, rtol = 1e-4, 1e-4
# A first call should miss in the cache.
self.assertEqual(fn(a, b, c), compiled_fn(a, b, c), atol=atol, rtol=rtol)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self.reset()
self.assertEqual(fn(a, b, c), compiled_fn(a, b, c), atol=atol, rtol=rtol)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 1)
# A third call with different score_mod should have a cache miss
self.reset()
self.assertEqual(fn2(a, b, c), compiled_fn2(a, b, c), atol=atol, rtol=rtol)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 1)
@requires_gpu()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("bundle_triton", (False, True))
def test_higher_order_op_bypass(self, bundle_triton):
"""
Verify that we bypass the cache when we have a higher order ops
and that bundler start/end works with a cache bypass.
"""
def fn(x):
def true_fn(x: torch.Tensor):
return x.cos()
def false_fn(x: torch.Tensor):
return x.sin()
return torch.cond(x.shape[0], true_fn, false_fn, (x,))
with config.patch(bundle_triton_into_fx_graph_cache=bundle_triton):
compiled_fn = torch.compile(fn, dynamic=True, fullgraph=True)
x = torch.randn(4, 4, device=GPU_TYPE)
result = compiled_fn(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_bypass"], 0)
@requires_gpu()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("bundle_triton", (False, True))
def test_triton_higher_order_op(self, bundle_triton):
"""
Verify that we can cache user defined triton kernel higher order op
"""
def fn(x, y):
n_elements = x.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
add_kernel[grid](x, y, x, n_elements, BLOCK_SIZE=4)
return x
def fn2(x, y):
n_elements = x.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
sub_kernel[grid](x, y, x, n_elements, BLOCK_SIZE=4)
return x
with config.patch(bundle_triton_into_fx_graph_cache=bundle_triton):
compiled_fn = torch.compile(fn, fullgraph=True)
compiled_fn2 = torch.compile(fn2, fullgraph=True)
x = torch.randn(4, device=GPU_TYPE)
y = torch.randn(4, device=GPU_TYPE)
result = compiled_fn(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self.reset()
# Clean PyCodeCache and triton kernels
PyCodeCache.cache_clear()
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
result = compiled_fn(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self.reset()
# Clean PyCodeCache and triton kernels
PyCodeCache.cache_clear()
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
result = compiled_fn2(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
@requires_gpu()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("bundle_triton", (False, True))
def test_triton_op(self, bundle_triton):
libname = "my_cool_namespace"
opname = "my_triton_operator"
@torch._library.triton_op(f"{libname}::{opname}", mutates_args={})
def add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
output = torch.empty_like(x)
n_elements = output.numel()
def grid(meta):
return (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
capture_triton(add_kernel)[grid](x, y, output, n_elements, 16)
return output
def f(x, y):
return add(x, y)
with config.patch(bundle_triton_into_fx_graph_cache=bundle_triton):
compiled_fn = torch.compile(f, fullgraph=True)
x = torch.randn(4, device=GPU_TYPE)
y = torch.randn(4, device=GPU_TYPE)
result = compiled_fn(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self.reset()
# Clean PyCodeCache and triton kernels
PyCodeCache.cache_clear()
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
result = compiled_fn(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_generated_kernel_count(self):
"""
Test that we bump the generated_kernel_count metric on a cache hit.
"""
def fn(x, y):
return (x * y + y,)
a = torch.rand(5, 5)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn)
metrics.reset()
self.assertEqual(metrics.generated_kernel_count, 0)
# Verify the "miss" case.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(metrics.generated_kernel_count, 1)
# Verify the "hit" case
self.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(metrics.generated_kernel_count, 2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_inductor_counters(self):
"""
Test that we bump the inductor counters on a cache hit.
"""
def fn(a, b):
return torch.mm(a, b)
a = torch.rand(8, 32, device="cpu")
b = torch.rand(32, 8, device="cpu")
compiled_fn = torch.compile(fn)
# Verify the "miss" case.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# Verify the "hit" case.
self.reset()
counter_val = 5
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_clear(self):
"""
Test clearing the cache.
"""
def fn(x, y):
return (x * y,)
a = torch.rand(5, 5)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn)
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit.
counters.clear()
self.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
# Clear the cache; now we should miss.
counters.clear()
self.reset()
torch._inductor.codecache.FxGraphCache.clear()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_with_nt(self):
def gen_nt(r):
values = torch.randn(r, 16)
offsets = torch.tensor([0, 2, 3, 6, 13, r])
return torch.nested.nested_tensor_from_jagged(values, offsets)
def fn(nt):
if nt.values().size(0) % 16 == 0:
return nt.sin()
return nt.cos()
inp1 = gen_nt(19)
inp2 = gen_nt(20)
counters.clear()
torch.compile(fn)(inp1)
torch.compile(fn)(inp2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
torch.compile(fn)(inp1)
torch.compile(fn)(inp2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_with_symint_non_arg_guard(self):
def fn(x, ref_id):
self_id = 22
if self_id == ref_id:
x = torch.mul(x, 1.0)
else:
x = torch.mul(x, 0)
return x
x = torch.ones(2)
counters.clear()
torch.compile(fn, fullgraph=True, dynamic=True)(x, 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
torch.compile(fn, fullgraph=True, dynamic=True)(x, 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_guard(self):
def f(x, val):
if val > 5:
return x.sin()
else:
return x.cos()
x = torch.ones(2)
a = torch.compile(f, dynamic=True)(x, 6)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
b = torch.compile(f, dynamic=True)(x, 4)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertNotEqual(a, b)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@config.patch({"freezing": True})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("inlinable", (True, False))
def test_freezing(self, device, inlinable):
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
# For machines with mkldnn_fp16 support, weight_pack in mkldnn_fusion.py causes
# the creation of a mkldnn format tensor which the current implementation does
# not support.
if (
device == "cpu"
and torch.backends.mkldnn.is_available()
and torch.ops.mkldnn._is_mkldnn_fp16_supported()
):
raise unittest.SkipTest("mkldnn tensors unsupported")
# The shape of the frozen constant determines if it will be inlined.
shape = (4,) if inlinable else (8, 8)
class MM(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.rand(shape))
def forward(self, x):
return x @ self.param
dtype = torch.float16
# Populate a cache entry.
mod1 = MM().to(device=device, dtype=dtype)
with torch.no_grad():
x = torch.rand(shape).to(device=device, dtype=dtype)
out0 = mod1(x)
out1 = torch.compile(mod1)(x)
self.assertEqual(out0, out1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
counters.clear()
self.reset()
# Same nn.Module, but with different parameters. In the case that the param can
# be inlined, we should consider the actual tensor value and we expect a cache
# miss (because the values are different here). If the param cannot be inlined,
# then we consider only the tensor metadata and we expect a cache hit.
mod2 = MM().to(device=device, dtype=dtype)
self.assertNotEqual(mod1.param, mod2.param)
with torch.no_grad():
x = torch.rand(shape).to(device=device, dtype=dtype)
out0 = mod2(x)
out1 = torch.compile(mod2)(x)
self.assertEqual(out0, out1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
self.assertEqual(
counters["inductor"]["fxgraph_cache_miss"], 1 if inlinable else 0
)
self.assertEqual(
counters["inductor"]["fxgraph_cache_hit"], 0 if inlinable else 1
)
class TestFxGraphCacheHashing(TestCase):
def test_tensor_constants(self):
"""
Test the hashing of tensor constants.
"""
small = torch.tensor(list(range(8)))
large = torch.tensor(list(range(32)))
self.assertTrue(GraphLowering.can_inline_constant(small))
self.assertFalse(GraphLowering.can_inline_constant(large))
# By default, we hash the metadata and values independent of the size.
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
data = pickler.dumps(small)
self.assertIsInstance(pickle.loads(data), TensorMetadataAndValues)
data = pickler.dumps(large)
self.assertIsInstance(pickle.loads(data), TensorMetadataAndValues)
# If include_non_inlined=False, we only hash the values of small tensors.
pickler = FxGraphCachePickler(gm, False)
data = pickler.dumps(small)
self.assertIsInstance(pickle.loads(data), TensorMetadataAndValues)
data = pickler.dumps(large)
self.assertIsInstance(pickle.loads(data), TensorMetadata)
def test_hash_fake_tensors(self):
"""
Test hashing (pickling) FakeTensors with various characteristics.
"""
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
with torch._subclasses.FakeTensorMode():
# Verify that FakeTensors get pickled into a TensorMetadata:
data = pickler.dumps(torch.randn(1))
self.assertIsInstance(pickle.loads(data), TensorMetadata)
# Different shapes:
self.assertEqual(
pickler.dumps(torch.randn(3)),
pickler.dumps(torch.randn(3)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3)),
pickler.dumps(torch.randn(4)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3)),
pickler.dumps(torch.randn(3, 3)),
)
self.assertEqual(
pickler.dumps(torch.randn(3, 3)),
pickler.dumps(torch.randn(3, 3)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, 3)),
pickler.dumps(torch.randn(3, 4)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, 3)),
pickler.dumps(torch.randn(4, 3)),
)
# Different strides:
self.assertEqual(
pickler.dumps(torch.randn(3, 3)),
pickler.dumps(torch.randn(3, 3).transpose(0, 1).transpose(0, 1)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, 3)),
pickler.dumps(torch.randn(3, 3).transpose(0, 1)),
)
# Different storage offsets:
self.assertEqual(
pickler.dumps(torch.randn(3)[1:]),
pickler.dumps(torch.randn(3)[1:]),
)
self.assertEqual(
pickler.dumps(torch.randn(3)[1:]),
pickler.dumps(torch.randn(2)),
)
# Different dtypes:
self.assertEqual(
pickler.dumps(torch.randn(3, dtype=torch.float32)),
pickler.dumps(torch.randn(3, dtype=torch.float32)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, dtype=torch.float32)),
pickler.dumps(torch.randn(3, dtype=torch.float64)),
)
# Different 'requires_grad':
self.assertEqual(
pickler.dumps(torch.randn(3, requires_grad=True)),
pickler.dumps(torch.randn(3, requires_grad=True)),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, requires_grad=True)),
pickler.dumps(torch.randn(3, requires_grad=False)),
)
# Different memory formats:
self.assertNotEqual(
pickler.dumps(torch.randn(1, 2, 3, 4)),
pickler.dumps(
torch.randn(1, 2, 3, 4).to(memory_format=torch.channels_last)
),
)
# Different devices:
self.assertEqual(
pickler.dumps(torch.randn(3, device="meta")),
pickler.dumps(torch.randn(3, device="meta")),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, device="meta")),
pickler.dumps(torch.randn(3, device="cpu")),
)
if HAS_MULTIGPU:
self.assertEqual(
pickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
pickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
)
self.assertNotEqual(
pickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:0")),
pickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
)
def test_hash_kwargs(self):
"""
Test the special handling of the kwargs when hashing, i.e.,
ordering of the kwargs dict and any set arguments.
"""
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
# Dict order of the kwargs should not affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": 0, "z": 1}, [])
details2 = FxGraphHashDetails(None, [], {"z": 1, "a": 0}, [])
self.assertEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
# Different kwarg values should affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": 0}, [])
details2 = FxGraphHashDetails(None, [], {"a": 1}, [])
self.assertNotEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
# Set order should not affect hashes. Sets are unordered, but
# sorting and creating a new set seems to change the order.
set1 = {"a", "b", "c", "d", "e", "f", "g"}
set2 = set(sorted(set1)) # noqa: C414
details1 = FxGraphHashDetails(None, [], {"a": set1}, [])
details2 = FxGraphHashDetails(None, [], {"a": set2}, [])
self.assertEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
# But different set contents should affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": {1, 2, 3}}, [])
details2 = FxGraphHashDetails(None, [], {"a": {1, 2}}, [])
self.assertNotEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
def test_hash_config_changes(self):
"""
Test that different config settings affect hashes.
"""
with config.patch({"max_autotune": False}):
details1 = FxGraphHashDetails(None, [], {}, [])
details2 = FxGraphHashDetails(None, [], {}, [])
with config.patch({"max_autotune": True}):
details3 = FxGraphHashDetails(None, [], {}, [])
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
self.assertEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
self.assertNotEqual(
pickler.dumps(details1),
pickler.dumps(details3),
)
def test_hash_custom_passes(self):
"""
Test CustomGraphPass usage.
"""
class TestCustomGraphPass(CustomGraphPass):
def __init__(self):
self._uuid = None
def __call__(self, graph: torch.fx.graph.Graph) -> None:
return None
def uuid(self) -> Optional[Union[bytes, str]]:
return self._uuid
custom_pass = TestCustomGraphPass()
with config.patch({"post_grad_custom_pre_pass": custom_pass}):
custom_pass._uuid = "1"
details1 = FxGraphHashDetails(None, [], {}, [])
details2 = FxGraphHashDetails(None, [], {}, [])
custom_pass._uuid = "2"
details3 = FxGraphHashDetails(None, [], {}, [])
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
self.assertEqual(
pickler.dumps(details1),
pickler.dumps(details2),
)
self.assertNotEqual(
pickler.dumps(details1),
pickler.dumps(details3),
)
def test_bypass_unsupported(self):
"""
Test _reduce_unsupported
"""
gm = torch.fx.GraphModule({}, torch.fx.Graph())
with self.assertRaises(BypassFxGraphCache):
FxGraphCachePickler(gm).dumps(
torch.fx.experimental._backward_state.BackwardState()
)
def test_stable_strings(self):
"""
Test that objects containing identical strings pickle the same
even if they are not the same id.
"""
s1 = "string"
s2 = "strin"
s2 += "g"
self.assertNotEqual(id(s1), id(s2))
gm = torch.fx.GraphModule({}, torch.fx.Graph())
pickler = FxGraphCachePickler(gm)
self.assertEqual(
pickler.dumps([s1, s1]),
pickler.dumps([s1, s2]),
)
def test_get_hash_for_files(self):
"""
Test the get_hash_for_files helper.
"""
with tempfile.NamedTemporaryFile(delete=True) as temp:
temp.write(b"contents")
temp.flush()
hash1 = get_hash_for_files((temp.name,))
get_hash_for_files.cache_clear()
hash2 = get_hash_for_files((temp.name,))
temp.write(b" ")
temp.flush()
get_hash_for_files.cache_clear()
hash3 = get_hash_for_files((temp.name,))
self.assertEqual(hash1, hash2)
self.assertNotEqual(hash1, hash3)
class TestCudaCompileCommand(TestCase):
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_cuda_compile_command(self):
cmd_no_extra_args: str = cuda_compile_command(
["abc.cu", "def.cu"], "output", "so"
)
assert "nvcc " in cmd_no_extra_args, cmd_no_extra_args
assert "abc.cu" in cmd_no_extra_args, cmd_no_extra_args
assert "def.cu" in cmd_no_extra_args, cmd_no_extra_args
assert "output" in cmd_no_extra_args, cmd_no_extra_args
cmd_extra_args: str = cuda_compile_command(
["abc.cu", "def.cu"], "output", "so", ["-Wwhatever", "-nothing"]
)
assert "nvcc " in cmd_extra_args, cmd_extra_args
assert " -Wwhatever" in cmd_extra_args, cmd_extra_args
assert " -nothing" in cmd_extra_args, cmd_extra_args
assert "abc.cu" in cmd_extra_args, cmd_extra_args
assert "def.cu" in cmd_extra_args, cmd_extra_args
assert "output " in cmd_extra_args, cmd_extra_args
with mock.patch("subprocess.check_output") as check_output_mock:
CUDACodeCache.compile("test123.cu", "so", ["-Wsomething"])
check_output_mock.assert_called()
cmd_parts: List[str] = check_output_mock.call_args[0][0]
assert cmd_parts[0] == "nvcc", cmd_parts
assert "-Wsomething" in cmd_parts, cmd_parts
assert "-DNDEBUG" in cmd_parts, cmd_parts
@instantiate_parametrized_tests
class TestAutotuneCache(TestCase):
device_type = GPU_TYPE
def setUp(self):
super().setUp()
counters.clear()
PatchCaches.setUp()
def tearDown(self):
super().tearDown()
PatchCaches.tearDown()
def reset(self):
PyCodeCache.cache_clear(purge=True)
torch._dynamo.reset()
clear_inductor_caches()
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(not SM80OrLater, "Requires SM80+")
@config.patch({"fx_graph_cache": False})
@config.patch({"fx_graph_remote_cache": False})
@config.patch({"autotune_local_cache": False})
@config.patch({"autotune_remote_cache": True})
@config.patch({"bundled_autotune_remote_cache": False})
@config.patch({"max_autotune": True})
def test_autotune_cache(self):
class Model(torch.nn.Module):
def forward(self, x, y, a, b):
return x + y, a + b
def f(x, y, a, b):
return Model()(x, y, a, b)
x = torch.randn(100, 100).cuda()
y = torch.randn(100, 100).cuda()
a = torch.randn(1000, 100).cuda()
b = torch.randn(1000, 100).cuda()
f_compiled = torch.compile(f, fullgraph=True)
with PatchCaches():
f_compiled(x, y, a, b)
self.assertEqual(global_stats.autotune_remote, Stats(2, 0, 2))
self.reset()
f_compiled(x, y, a, b)
self.assertEqual(global_stats.autotune_remote, Stats(2, 2, 2))
# Check that the cache entries seem reasonable
for k in global_stats.autotune_remote.cache.keys():
self.assertRegex(k, r"[0-9a-z]{52}")
for k in global_stats.triton.cache.keys():
self.assertRegex(k, r"triton:[0-9a-f]{64}::[0-9a-f]{64}:c[0-9]+")
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(not SM80OrLater, "Requires SM80+")
@config.patch({"fx_graph_cache": False})
@config.patch({"fx_graph_remote_cache": False})
@config.patch({"autotune_local_cache": True})
@config.patch({"autotune_remote_cache": False})
@config.patch({"bundled_autotune_remote_cache": True})
@config.patch({"max_autotune": True})
def test_bundled_autotune_remote_cache(self):
class Model(torch.nn.Module):
def forward(self, a, b, c, d, e, f):
return a + b, c + d, e + f
def f(a, b, c, d, e, f):
return Model()(a, b, c, d, e, f)
f_compiled = torch.compile(f, fullgraph=True)
a = torch.randn(101, 100).cuda()
b = torch.randn(101, 100).cuda()
c = torch.randn(102, 100).cuda()
d = torch.randn(102, 100).cuda()
e = torch.randn(103, 100).cuda()
f = torch.randn(103, 100).cuda()
with PatchCaches():
f_compiled(a, b, c, d, e, f)
self.assertEqual(global_stats.autotune_local, Stats(3, 0, 3))
self.assertEqual(global_stats.bundled_autotune, Stats(1, 0, 1))
self.reset()
f_compiled(a, b, c, d, e, f)
self.assertEqual(global_stats.autotune_local, Stats(6, 3, 3))
self.assertEqual(global_stats.bundled_autotune, Stats(1, 1, 1))
with torch.compiler.config.patch({"cache_key_tag": "test"}):
global_stats.reset()
self.reset()
f_compiled(a, b, c, d, e, f)
self.assertEqual(global_stats.autotune_local, Stats(3, 0, 3))
self.assertEqual(global_stats.bundled_autotune, Stats(1, 0, 1))
self.reset()
f_compiled(a, b, c, d, e, f)
self.assertEqual(global_stats.autotune_local, Stats(6, 3, 3))
self.assertEqual(global_stats.bundled_autotune, Stats(1, 1, 1))
# Check that the cache entries seem reasonable
for k in global_stats.autotune_local.cache.keys():
self.assertRegex(k, r"tmp[^/]*/([^/]{2})/[^/]{64}\.best_config")
for k in global_stats.bundled_autotune.cache.keys():
self.assertRegex(k, r"pt2:bundled-autotune-v1::[0-9a-z]{64}:c[0-9]+")
for k in global_stats.triton.cache.keys():
self.assertRegex(k, r"triton:[0-9a-f]{64}::[0-9a-f]{64}:c[0-9]+")
class TestRemoteAOTAutogradCache(TestCase):
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(not SM80OrLater, "Requires SM80+")
@config.patch({"fx_graph_cache": False})
@config.patch({"fx_graph_remote_cache": True})
@torch._functorch.config.patch({"enable_autograd_cache": False})
@torch._functorch.config.patch({"enable_remote_autograd_cache": True})
def test_autograd_remote_cache(self):
def f(a, b):
return a + b
f_compiled = torch.compile(f)
a = torch.randn(101, 100, device="cuda", requires_grad=False)
b = torch.randn(101, 100, device="cuda", requires_grad=False)
with PatchCaches():
f_compiled(a, b)
self.assertEqual(global_stats.aot_autograd, Stats(1, 0, 1))
self.assertEqual(global_stats.fx_graph, Stats(1, 0, 1))
torch._dynamo.reset()
f_compiled(a, b)
self.assertEqual(global_stats.aot_autograd, Stats(1, 1, 1))
self.assertEqual(global_stats.fx_graph, Stats(1, 1, 1))
torch._dynamo.reset()
with torch.compiler.config.patch({"cache_key_tag": "test"}):
f_compiled(a, b)
self.assertEqual(global_stats.aot_autograd, Stats(2, 1, 2))
self.assertEqual(global_stats.fx_graph, Stats(2, 1, 2))
# Check that the cache entries seem reasonable
for k in global_stats.aot_autograd.cache.keys():
self.assertRegex(k, r"pt2:autograd-experimental::[0-9a-z]{52}:c[0-9]+")
for k in global_stats.fx_graph.cache.keys():
self.assertRegex(k, r"pt2:fx-graph-v1::[0-9a-z]{52}:c[0-9]+")
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(not SM80OrLater, "Requires SM80+")
@config.patch({"fx_graph_cache": False})
@config.patch({"fx_graph_remote_cache": True})
@torch._functorch.config.patch({"enable_autograd_cache": False})
@torch._functorch.config.patch({"enable_remote_autograd_cache": True})
def test_autograd_remote_lazy_backward(self):
"""
Lazily compile the backward, and lazily save to cache
"""
def fn(a, b):
return a.cos() + b
with PatchCaches():
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(global_stats.aot_autograd, Stats(0, 0, 1))
# Clear dynamo and run again. Should be a cache miss still, because backward hasn't run
torch._dynamo.reset()
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(global_stats.aot_autograd, Stats(0, 0, 2))
# Now let's run the backward
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(global_stats.aot_autograd, Stats(1, 0, 2))
# Clear dynamo and rerun everything, now there should be a cache hit
torch._dynamo.reset()
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(global_stats.aot_autograd, Stats(1, 1, 2))
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
class TestUtils(TestCase):
@config.patch({"fx_graph_remote_cache": False})
def test_fresh_inductor_cache(self):
def fn(x, y):
return x + y
a = torch.rand(10)
b = torch.rand(10)
with fresh_inductor_cache():
self.assertEqual(len(PyCodeCache.modules), 0)
res1 = torch.compile(fn)(a, b)
cache_dir1 = cache_dir()
torch._dynamo.reset()
with fresh_inductor_cache():
self.assertEqual(len(PyCodeCache.modules), 0)
res2 = torch.compile(fn)(a, b)
cache_dir2 = cache_dir()
self.assertEqual(res1, res2)
self.assertNotEqual(cache_dir1, cache_dir2)
# This combination of settings exposed a bug where we cleared the
# PyCodeCache disk artifacts while they were still needed:
@requires_cuda
@config.patch(
{
"coordinate_descent_tuning": True,
"force_disable_caches": True,
}
)
def test_force_disable_coordinate_descent(self):
def fn():
inp = torch.randn(32, 50, 768, device="cuda")
weight = torch.randn(768, 768, device="cuda")
layer = torch.nn.LayerNorm(768, device="cuda")
return layer(inp @ weight)
torch.compile(fn)()
if __name__ == "__main__":
run_tests()
|