1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
|
# Owner(s): ["module: inductor"]
import sys
import unittest
import weakref
from contextlib import ExitStack
from copy import deepcopy
from typing import NamedTuple
import torch
import torch._inductor
import torch._inductor.cudagraph_trees
import torch.optim.lr_scheduler
from torch._inductor import config
from torch._inductor.test_case import TestCase
from torch.optim import (
Adadelta,
Adagrad,
Adam,
Adamax,
AdamW,
ASGD,
NAdam,
RAdam,
RMSprop,
Rprop,
SGD,
SparseAdam,
)
from torch.optim.lr_scheduler import (
ChainedScheduler,
ConstantLR,
CosineAnnealingLR,
CosineAnnealingWarmRestarts,
CyclicLR,
ExponentialLR,
LambdaLR,
LinearLR,
MultiplicativeLR,
MultiStepLR,
OneCycleLR,
PolynomialLR,
ReduceLROnPlateau,
StepLR,
)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
skipCUDAIf,
skipXPUIf,
)
from torch.testing._internal.common_optimizers import (
_get_optim_inputs_including_global_cliquey_kwargs,
optim_db,
optims,
)
from torch.testing._internal.common_utils import parametrize
from torch.testing._internal.inductor_utils import (
GPU_TYPE,
HAS_CPU,
HAS_GPU,
has_triton,
)
from torch.testing._internal.triton_utils import requires_cuda, requires_gpu
# Note: we use atypical values to amplify error
LR_SCHEDULER_TO_KWARGS = {
LambdaLR: {"lr_lambda": lambda x: 10},
MultiplicativeLR: {"lr_lambda": lambda x: 10},
StepLR: {"step_size": 1, "gamma": 100},
MultiStepLR: {"milestones": [1, 2], "gamma": 100},
ExponentialLR: {"gamma": 100},
CosineAnnealingLR: {"T_max": 7},
# These schedulers have memory leaks in eager
# https://github.com/pytorch/pytorch/issues/126131
# SequentialLR: {"schedulers": None, "milestones": [1, 2]},
# ChainedScheduler: {"schedulers": None},
CyclicLR: {"base_lr": 0.001, "max_lr": 0.02, "cycle_momentum": False},
CosineAnnealingWarmRestarts: {"T_0": 1},
OneCycleLR: {
"max_lr": 0.02,
"cycle_momentum": False,
"steps_per_epoch": 1,
"epochs": 10,
},
ConstantLR: {"factor": 0.001},
LinearLR: {},
ReduceLROnPlateau: {"factor": 0.99, "patience": 1},
PolynomialLR: {},
}
def create_scheduler(scheduler, optim):
kwargs = LR_SCHEDULER_TO_KWARGS[scheduler]
if "schedulers" in kwargs:
kwargs["schedulers"] = [
create_scheduler(torch.optim.lr_scheduler.ConstantLR, optim)
for _ in range(2)
] + [create_scheduler(torch.optim.lr_scheduler.LambdaLR, optim)]
if scheduler == ChainedScheduler:
return scheduler(**kwargs)
else:
return scheduler(optim, **kwargs)
class KernelCounts(NamedTuple):
multitensor: int
singletensor: int
# With different settings for certain
# tests you can get different kernel counts
# This maps the test name to the
# expected kernel count
KERNEL_COUNT_OVERRIDES = {
"test_rmsprop_foreach_weight_decay_cpu": 12,
"test_nadam_foreach_weight_decay_momentum_decay_cpu": 20,
"test_adamw_amsgrad_capturable_foreach_cuda": 3,
"test_adamw_amsgrad_capturable_foreach_xpu": 3,
"test_adamw_amsgrad_capturable_cuda": 6,
"test_adamw_amsgrad_capturable_xpu": 6,
"test_adamw_tensor_lr_tensor_betas_amsgrad_capturable_cuda": 6,
"test_adamw_tensor_lr_tensor_betas_capturable_cuda": 6,
"test_adamw_tensor_lr_tensor_betas_amsgrad_capturable_xpu": 6,
"test_adamw_tensor_lr_amsgrad_capturable_cuda": 6,
"test_adamw_tensor_lr_amsgrad_capturable_xpu": 6,
"test_adam_tensor_lr_amsgrad_capturable_cuda": 6,
"test_adam_tensor_lr_amsgrad_capturable_xpu": 6,
"test_adam_tensor_lr_tensor_betas_amsgrad_capturable_cuda": 6,
"test_adam_tensor_lr_tensor_betas_capturable_cuda": 6,
"test_adam_amsgrad_capturable_cuda": 6,
"test_adam_amsgrad_capturable_xpu": 6,
"test_adadelta_tensor_lr_capturable_cuda": 6,
"test_adadelta_tensor_lr_capturable_xpu": 6,
"test_rmsprop_tensor_lr_capturable_cuda": 6,
"test_rmsprop_tensor_lr_capturable_xpu": 6,
"test_adadelta_foreach_weight_decay_maximize_cpu": 12,
"test_adadelta_foreach_rho_weight_decay_cpu": 12,
"test_adadelta_foreach_weight_decay_cpu": 12,
"test_sgd_foreach_momentum_weight_decay_cpu": 16,
"test_sgd_foreach_momentum_nesterov_weight_decay_cpu": 16,
"test_sgd_momentum_dampening_foreach_cuda": 5,
"test_sgd_momentum_dampening_foreach_xpu": 5,
"test_sgd_momentum_foreach_cuda": 5,
"test_sgd_momentum_foreach_xpu": 5,
"test_sgd_weight_decay_maximize_cuda": 4,
"test_sgd_weight_decay_maximize_xpu": 4,
"test_sgd_weight_decay_maximize_cpu": 4,
"test_sgd_weight_decay_cpu": 4,
"test_sgd_weight_decay_cuda": 4,
"test_sgd_weight_decay_xpu": 4,
"test_sgd_momentum_weight_decay_foreach_cuda": 2,
"test_sgd_momentum_weight_decay_foreach_xpu": 2,
"test_sgd_momentum_nesterov_weight_decay_foreach_cuda": 2,
"test_sgd_momentum_nesterov_weight_decay_foreach_xpu": 2,
"test_sgd_cuda": 4,
"test_sgd_cpu": 4,
"test_sgd_xpu": 4,
"test_adagrad_initial_accumulator_value_weight_decay_foreach_xpu": 2,
"test_adagrad_lr_decay_weight_decay_foreach_xpu": 2,
"test_adagrad_weight_decay_foreach_xpu": 2,
"test_adagrad_weight_decay_maximize_foreach_xpu": 2,
"test_adagrad_tensor_lr_cpu": 6,
"test_adagrad_tensor_lr_cuda": 6,
"test_adagrad_tensor_lr_xpu": 6,
"test_adamax_tensor_lr_weight_decay_capturable_cuda": 6,
"test_adamax_tensor_lr_weight_decay_capturable_xpu": 6,
"test_asgd_tensor_lr_weight_decay_maximize_capturable_cuda": 5,
"test_asgd_tensor_lr_weight_decay_maximize_capturable_xpu": 8,
"test_nadam_tensor_lr_weight_decay_momentum_decay_decoupled_weight_decay_capturable_cuda": 6,
"test_nadam_tensor_lr_weight_decay_momentum_decay_decoupled_weight_decay_capturable_xpu": 9,
"test_radam_tensor_lr_capturable_weight_decay_decoupled_weight_decay_cuda": 6,
"test_radam_tensor_lr_capturable_weight_decay_decoupled_weight_decay_xpu": 6,
"test_sgd_tensor_lr_cpu": 2,
"test_sgd_tensor_lr_cuda": 2,
"test_sgd_tensor_lr_xpu": 2,
}
# also tracks currently supported optimizers
KERNEL_COUNTS = {
Adam: KernelCounts(multitensor=2, singletensor=8),
AdamW: KernelCounts(multitensor=2, singletensor=8),
NAdam: KernelCounts(multitensor=2, singletensor=8),
Rprop: KernelCounts(multitensor=2, singletensor=8),
RMSprop: KernelCounts(multitensor=2, singletensor=8),
Adadelta: KernelCounts(multitensor=2, singletensor=8),
Adagrad: KernelCounts(multitensor=2, singletensor=8),
SGD: KernelCounts(multitensor=1, singletensor=8),
ASGD: KernelCounts(multitensor=2, singletensor=8),
RAdam: KernelCounts(multitensor=2, singletensor=8),
Adamax: KernelCounts(multitensor=2, singletensor=8),
}
def build_opt_kwarg_db():
compiled_opt_db = []
for optim_info in optim_db:
if optim_info.optim_cls not in KERNEL_COUNTS:
continue
for device in ["cpu", GPU_TYPE]:
for optim_inputs in _get_optim_inputs_including_global_cliquey_kwargs(
device, None, optim_info, skip=("differentiable", "fused")
):
kwargs = dict(optim_inputs.kwargs)
name = f"test_{optim_info.optim_cls.__name__.lower()}"
has_tensor_lr = False
for key, val in kwargs.items():
if (not key == "lr" and not key == "betas") and (
not isinstance(val, bool) or (isinstance(val, bool) and val)
):
name += "_" + key
if key == "lr" and isinstance(kwargs["lr"], torch.Tensor):
has_tensor_lr = True
name += "_tensor_lr"
if key == "betas" and isinstance(kwargs["betas"][0], torch.Tensor):
name += "_tensor_betas"
name += f"_{device}"
kwargs["device"] = device
if name in KERNEL_COUNT_OVERRIDES:
kwargs["kernel_count"] = KERNEL_COUNT_OVERRIDES[name]
else:
kwargs["kernel_count"] = (
KERNEL_COUNTS[optim_info.optim_cls].multitensor
if kwargs.get("foreach", False) and device == GPU_TYPE
else KERNEL_COUNTS[optim_info.optim_cls].singletensor
)
if kwargs["kernel_count"] is None or kwargs.get("fused", False):
continue
if has_tensor_lr:
for scheduler_cls in LR_SCHEDULER_TO_KWARGS.keys():
name_w_scheduler = name + f"_{scheduler_cls.__name__.lower()}"
compiled_opt_db.append(
(
optim_info.optim_cls,
name_w_scheduler,
kwargs,
scheduler_cls,
)
)
else:
compiled_opt_db.append((optim_info.optim_cls, name, kwargs, None))
return compiled_opt_db
COMPILED_OPT_KWARG_DB = build_opt_kwarg_db()
aten = torch.ops.aten
try:
try:
from .test_torchinductor import check_model, check_model_gpu
except ImportError:
from test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_gpu,
)
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
def call_scheduler(scheduler):
if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
scheduler.step(1.0) # we won't reduce the metric over two iters anyway
else:
scheduler.step()
def compile_opt(opt_compiled, closure=None, fullgraph=True):
# run the patcher so that step has the expected structure
torch._dynamo.eval_frame.TorchPatcher.patch()
# unwrap step TWICE to avoid a deliberate graph break due to
# a limitation of functionalization/no_grad detection
# see the [Note on graph break] in optimizer.py
# This ignores the outer _use_grad_if_differentiable wrapper
# and instead manually disables grad before calling step, which is fine
# for now as dynamo does not support differentiable optimizers anyway
step_fn = opt_compiled.step.__wrapped__.__wrapped__
# This ensures we don't receive spam of warnings from LR Scheduler
opt_compiled._opt_called = True
if closure is not None:
def fn():
step_fn(opt_compiled, closure)
else:
def fn():
step_fn(opt_compiled)
return torch.compile(fn, backend="inductor", fullgraph=fullgraph)
def check_optim(
self,
optim_cls,
params_eager,
params_compiled,
state_eager,
state_compiled,
atol=None,
rtol=None,
):
params_eager = list(params_eager)
params_compiled = list(params_compiled)
# Note on tolerances:
# test_correctness_Adadelta_cuda_float32
# Mismatched elements: 10 / 100 (10.0%)
# Greatest absolute difference: 4.838220775127411e-05 at index (7, 4) (up to 1e-05 allowed)
# Greatest relative difference: 0.007270356640219688 at index (7, 2) (up to 1e-05 allowed)
# This is due to floating point ordering error + usage of sqrt
rtol = None
atol = None
if optim_cls is Adadelta:
rtol = 5.5e-4
atol = 5e-5
# inductor/test_compiled_optimizers.py::CompiledOptimizerTests::test_nadam_tensor_lr_weight_decay_momentum_decay_decoupled_weight_decay_capturable_foreach_cuda_lambdalr
# Mismatched elements: 100 / 100 (100.0%)
# Greatest absolute difference: 1.4960765838623047e-05 at index (2, 0) (up to 1e-05 allowed)
# Greatest relative difference: 1.686977884673979e-05 at index (2, 0) (up to 1.3e-06 allowed)
if optim_cls is NAdam:
atol = 1.5e-5
rtol = 1.7e-5
self.assertEqual(list(params_eager), list(params_compiled), atol=atol, rtol=rtol)
for p_eager, p_compiled in zip(params_eager, params_compiled):
self.assertEqual(
state_eager[p_eager],
state_compiled[p_compiled],
atol=atol,
rtol=rtol,
)
def make_test(
optim_cls,
closure=None,
scheduler_cls=None,
kernel_count=2,
device="cuda",
**kwargs,
):
@config.patch("score_fusion_memory_threshold", 1)
def test_fn(self):
stack = ExitStack()
try:
# https://github.com/pytorch/pytorch/issues/118715 for capturable Adagrad support
# https://github.com/pytorch/pytorch/issues/118018 for capturable SGD support
run_cudagraphs = device == "cuda" and optim_cls not in (Adagrad, SGD)
if run_cudagraphs:
stack.enter_context(config.patch({"triton.cudagraphs": True}))
kwargs_compiled = deepcopy(kwargs)
if isinstance(kwargs.get("lr", None), torch.Tensor):
kwargs["lr"] = kwargs["lr"].to(device)
kwargs_compiled["lr"] = kwargs_compiled["lr"].to(device)
if "betas" in kwargs and isinstance(kwargs["betas"][0], torch.Tensor):
kwargs["betas"] = (
kwargs["betas"][0].to(device),
kwargs["betas"][1].to(device),
)
kwargs_compiled["betas"] = (
kwargs_compiled["betas"][0].to(device),
kwargs_compiled["betas"][1].to(device),
)
torch._dynamo.reset()
torch._inductor.metrics.reset()
input = torch.ones([10, 10], device=device)
model_eager = torch.nn.Sequential(
*[torch.nn.Linear(10, 10, device=device) for _ in range(2)]
)
model_eager(input).sum().backward()
input = torch.ones([10, 10], device=device)
model_compiled = deepcopy(model_eager)
model_compiled(input).sum().backward()
opt_eager = optim_cls(model_eager.parameters(), **kwargs)
opt_compiled = optim_cls(model_compiled.parameters(), **kwargs_compiled)
compiled_step = compile_opt(opt_compiled, closure=closure)
if scheduler_cls:
scheduler_compiled = create_scheduler(scheduler_cls, opt_compiled)
scheduler_eager = create_scheduler(scheduler_cls, opt_eager)
# some schedulers only change after at least an epoch has passed
scheduler_compiled.last_epoch = 1
scheduler_eager.last_epoch = 1
with torch.set_grad_enabled(False):
for i in range(2):
compiled_step()
opt_eager.step()
if scheduler_cls:
call_scheduler(scheduler_eager)
call_scheduler(scheduler_compiled)
check_optim(
self,
optim_cls,
model_eager.parameters(),
model_compiled.parameters(),
opt_eager.state,
opt_compiled.state,
)
if run_cudagraphs:
self.check_cudagraphs_ran()
if self.check_kernel_count:
# currently, we compile the step and the rest of the computation
# separately because the step is a single element tensor
# hence, the usual kernel count is 2
self.assertEqual(
torch._inductor.metrics.generated_kernel_count, kernel_count
)
finally:
stack.close()
if device == GPU_TYPE:
test_fn = requires_gpu(test_fn)
return test_fn
def make_recompile_test(optim_cls, closure=None, kernel_count=2, **kwargs):
@config.patch("score_fusion_memory_threshold", 1)
@requires_gpu
def test_fn(self):
torch._dynamo.reset()
torch._inductor.metrics.reset()
input = torch.ones([10, 10], device=GPU_TYPE)
model = torch.nn.Sequential(
*[torch.nn.Linear(10, 10, device=GPU_TYPE) for _ in range(2)]
)
model(input).sum().backward()
opt_compiled = optim_cls(model.parameters(), **kwargs)
compiled_step = compile_opt(opt_compiled)
# check no recompile here
with torch.set_grad_enabled(False):
for _ in range(4):
compiled_step()
# perturb state to force recompile
# Adagrad doesn't reinitialize state on each step
# SGD has an empty state
if optim_cls in (Adagrad, SGD):
opt_compiled.param_groups[0]["lr"] = 0.02
elif optim_cls is Adam: # ensure we are guarding on the data_ptr of states
state_tensor = opt_compiled.state[
opt_compiled.param_groups[0]["params"][0]
]["exp_avg"]
opt_compiled.state[opt_compiled.param_groups[0]["params"][0]][
"exp_avg"
] = torch.zeros_like(state_tensor)
else:
opt_compiled.state.clear()
compiled_step()
if self.check_kernel_count:
# currently, we compile the step and the rest of the computation
# separately because the step is a single element tensor
# hence, the usual kernel count is 2
# multiply by 2 to account for the recompile
multiplier = 2
self.assertEqual(
torch._inductor.metrics.generated_kernel_count,
multiplier * kernel_count,
)
return test_fn
class CompiledOptimizerParityTests(TestCase):
@skipCUDAIf(not has_triton(), "torch.compile with cuda requires triton")
@skipXPUIf(not has_triton(), "torch.compile with xpu requires triton")
@optims(optim_db, dtypes=[torch.float32])
@parametrize("use_closure", [True, False])
def test_correctness(self, device, dtype, optim_info, use_closure):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
if optim_info.step_requires_closure and not use_closure:
return
for optim_input in all_optim_inputs:
kwargs = optim_input.kwargs
use_scheduler = isinstance(kwargs.get("lr", None), torch.Tensor)
scheduler_classes = (
list(LR_SCHEDULER_TO_KWARGS.keys()) if use_scheduler else [None]
)
for scheduler_cls in scheduler_classes:
torch._dynamo.reset()
torch._inductor.metrics.reset()
input = torch.ones([10, 10], device=device)
model_eager = torch.nn.Sequential(
*[torch.nn.Linear(10, 10, device=device) for _ in range(2)]
)
model_eager(input).sum().backward()
model_compiled = deepcopy(model_eager)
model_compiled(input).sum().backward()
if optim_cls is SparseAdam:
for param in model_eager.parameters():
param.grad = param.grad.to_sparse()
for param in model_compiled.parameters():
param.grad = param.grad.to_sparse()
opt_compiled = optim_cls(
model_compiled.parameters(), **deepcopy(kwargs)
)
opt_eager = optim_cls(model_eager.parameters(), **deepcopy(kwargs))
if scheduler_cls:
scheduler_compiled = create_scheduler(scheduler_cls, opt_compiled)
scheduler_eager = create_scheduler(scheduler_cls, opt_eager)
# some schedulers only change after at least an epoch has passed
scheduler_compiled.last_epoch = 1
scheduler_eager.last_epoch = 1
num_steps = 2
if use_closure:
@torch.compile()
def fn():
def closure():
loss = model_compiled(input).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
for param in model_compiled.parameters():
param.grad = param.grad.to_sparse()
return loss
opt_compiled.step(closure)
if scheduler_cls:
call_scheduler(scheduler_compiled)
def closure_eager():
loss = model_eager(input).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
for param in model_eager.parameters():
param.grad = param.grad.to_sparse()
return loss
for _ in range(num_steps):
opt_eager.step(closure_eager)
if scheduler_cls:
call_scheduler(scheduler_eager)
else:
@torch.compile()
def fn():
opt_compiled.step()
if scheduler_cls:
call_scheduler(scheduler_compiled)
for _ in range(num_steps):
opt_eager.step()
if scheduler_cls:
call_scheduler(scheduler_eager)
for _ in range(num_steps):
fn()
check_optim(
self,
optim_cls,
model_eager.parameters(),
model_compiled.parameters(),
opt_eager.state,
opt_compiled.state,
)
class CompiledOptimizerTests(TestCase):
check_model_gpu = check_model_gpu
check_model_cpu = check_model
check_kernel_count = True
def setUp(self):
super().setUp()
torch._dynamo.reset()
torch._inductor.metrics.reset()
def tearDown(self):
super().tearDown()
torch._dynamo.reset()
torch._inductor.metrics.reset()
def check_cudagraphs_ran(self):
# We run the zeroth device currently
manager = torch._inductor.cudagraph_trees.get_container(0).tree_manager
self.assertIsNotNone(manager)
self.assertEqual(manager.new_graph_id().id, 1)
test_adam_recompile = make_recompile_test(Adam, lr=0.01)
test_adamw_recompile = make_recompile_test(AdamW, lr=0.01)
test_adamax_recompile = make_recompile_test(Adamax, lr=0.01)
test_nadam_recompile = make_recompile_test(NAdam, lr=0.01)
test_rprop_recompile = make_recompile_test(Rprop, lr=0.01, kernel_count=2)
test_rmsprop_recompile = make_recompile_test(RMSprop, lr=0.01)
test_adadelta_recompile = make_recompile_test(Adadelta, lr=0.01)
test_adagrad_recompile = make_recompile_test(Adagrad, lr=0.01)
test_asgd_recompile_default = make_recompile_test(ASGD, lr=0.01)
test_asgd_recompile_single = make_recompile_test(
ASGD, kernel_count=8, lr=0.01, foreach=False
)
test_asgd_recompile_foreach = make_recompile_test(ASGD, lr=0.01, foreach=True)
test_sgd_recompile_single = make_recompile_test(
SGD, kernel_count=4, lr=0.01, foreach=False
)
test_sgd_recompile_foreach = make_recompile_test(
SGD, kernel_count=1, lr=0.01, foreach=True
)
@requires_gpu
def test_static_address_finalizer(self):
import gc
gc.disable()
p_ref = None
def fn():
nonlocal p_ref
mod = torch.nn.Linear(10, 10, device=GPU_TYPE, bias=False)
for p in mod.parameters():
p.grad = torch.rand_like(p)
opt = torch.optim.Adam(mod.parameters(), lr=0.1)
def fn():
opt.step()
with torch.set_grad_enabled(False):
step_fn_compiled = torch.compile(fn)
step_fn_compiled()
p_ref = weakref.ref(p)
self.assertTrue(p_ref() is not None)
fn()
self.assertTrue(p_ref() is None)
gc.enable()
def test_guard_on_none_grads(self):
def training_loop():
input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]).reshape(3, 2)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
)
params = list(model.parameters())
optimizer = torch.optim.Adam(params)
step_list = []
for i in range(6):
optimizer.zero_grad()
# Test that step behaves as expected (a no-op) when grads are set to None
if i != 3:
output = model(input)
loss = output.sum()
loss.backward()
optimizer.step()
step_list.append(optimizer.state[params[0]]["step"])
return step_list
compiled_training_loop = torch._dynamo.optimize("eager")(training_loop)
actual_steps = compiled_training_loop()
expected_steps = training_loop()
self.assertEqual(actual_steps, expected_steps)
# Basic shampoo test to verify we support compiling the various ops without error
@requires_gpu
def test_basic_shampoo(self):
param_buf = torch.rand((1024, 128))
param_buf_c = param_buf.detach().clone()
params_c = [param_buf_c[0:512, :].t(), param_buf_c[512:, :].t()]
params = [param_buf[0:512, :].t(), param_buf[512:, :].t()]
for p, p_c in zip(params, params_c):
p.grad = torch.rand_like(p)
p_c.grad = p.grad.detach().clone()
# note this skips the root inverse because this has a lot of internal dependencies
# we also don't compile it regardless
@torch.no_grad()
def shampoo_functional_basic(params):
step = 1
weight_decay = 0.1
grads = [p.grad for p in params]
beta1 = 0.9
beta2 = 1.0
epsilon = 1e-10
preconditioners = [torch.zeros_like(p) for p in params]
lr = 0.01
# pt2 region 1
# weight decay
torch._foreach_add_(grads, params, alpha=weight_decay)
# update preconditioners
torch._foreach_addcmul_(preconditioners, grads, grads, value=1.0)
torch._foreach_mul_(grads, beta1)
torch._foreach_add_(
grads,
grads,
alpha=1 - beta1,
)
bias_correction1 = 1.0 - beta1**step
grad_list = torch._foreach_div(grads, bias_correction1)
# pt2 region 2
# precondition (with shampoo branch), with no grafting
bias_correction2 = 1.0 - beta2**step
bias_corrected_preconditioner_list = torch._foreach_div(
preconditioners, bias_correction2
)
torch._foreach_sqrt_(bias_corrected_preconditioner_list)
torch._foreach_add_(bias_corrected_preconditioner_list, epsilon)
search_directions = torch._foreach_div(
grad_list, bias_corrected_preconditioner_list
)
torch._foreach_add_(
search_directions,
params,
alpha=weight_decay,
)
torch._foreach_mul_(search_directions, -lr)
# pt2 region 3 update params
torch._foreach_add_(params, search_directions)
return params, preconditioners, grads
compiled_fn = torch.compile(shampoo_functional_basic)
self.assertEqual(compiled_fn(params_c), shampoo_functional_basic(params))
@requires_gpu
def test_closure_graph_break(self):
param = torch.rand(
2, 3, dtype=torch.float32, device=GPU_TYPE, requires_grad=True
)
param_c = param.detach().clone().requires_grad_(True)
def closure():
param.grad = torch.ones_like(param) * 2
return param.grad
def closure_c():
param_c.grad = torch.ones_like(param_c) * 2
return param_c.grad
optimizer = torch.optim.AdamW([param])
optimizer_c = torch.optim.AdamW([param_c])
def loop(opt, c):
opt.step(c)
compiled_loop = torch._dynamo.optimize("eager")(loop)
compiled_loop(optimizer, closure)
loop(optimizer_c, closure_c)
self.assertEqual(param, param_c)
def test_get_value_on_static_address(self):
from torch._dynamo.decorators import mark_static_address
from torch.optim.optimizer import _get_value
compiled = torch.compile(_get_value)
x = torch.ones(2, 2)
mark_static_address(x)
ret_val = compiled(x)
self.assertEqual(ret_val, x)
# compile a large foreach op and verify
# that the time taken is within an expected range
@requires_gpu
def test_compile_time_smoketest(self):
import time
xs = [torch.ones(2, 2, device=GPU_TYPE) for _ in range(100)]
ys = [torch.ones(2, 2, device=GPU_TYPE) for _ in range(100)]
@torch.compile
def fn(xs, ys):
return torch._foreach_add(xs, ys)
start = time.perf_counter()
fn(xs, ys)
end = time.perf_counter()
self.assertLess(end - start, 90)
@requires_cuda
def test_S429861(self):
# Just verify we can compile this function without error
try:
from . import s429861_repro
except ImportError:
import s429861_repro # @manual
forward = s429861_repro.forward
import torch._dynamo
import torch._inductor
from torch._dynamo.debug_utils import aot_graph_input_parser
from torch._inductor.utils import fresh_inductor_cache
with fresh_inductor_cache():
kwargs = aot_graph_input_parser(forward)
torch.compile(forward)(**kwargs)
for optim_cls, name, kwargs, scheduler_cls in COMPILED_OPT_KWARG_DB:
setattr(
CompiledOptimizerTests,
name,
make_test(optim_cls, scheduler_cls=scheduler_cls, **kwargs),
)
instantiate_device_type_tests(
CompiledOptimizerParityTests, globals(), allow_xpu=True, except_for="cpu"
)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_GPU:
run_tests(needs="filelock")
|