1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
# Owner(s): ["module: inductor"]
import math
import unittest
import torch
from torch._inductor import config
from torch._inductor.test_case import run_tests, TestCase
from torch.testing._internal.inductor_utils import HAS_CPU
def dummy_fn(x):
return torch.sigmoid(x + math.pi) / 10.0
class DummyModule(torch.nn.Module):
def forward(self, x):
return dummy_fn(x)
class TestInductorConfig(TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._saved_config = config.save_config()
def tearDown(self):
super().tearDown()
config.load_config(self._saved_config)
def test_set(self):
config.max_fusion_size = 13337
self.assertEqual(config.max_fusion_size, 13337)
self.assertEqual(config.get_config_copy()["max_fusion_size"], 13337)
config.max_fusion_size = 32
self.assertEqual(config.max_fusion_size, 32)
# a nested config
prior = config.triton.cudagraphs
config.triton.cudagraphs = not prior
self.assertEqual(config.triton.cudagraphs, not prior)
self.assertEqual(config.get_config_copy()["triton.cudagraphs"], not prior)
def test_save_load(self):
config.max_fusion_size = 123
config.triton.cudagraphs = True
saved1 = config.save_config()
config.max_fusion_size = 321
config.triton.cudagraphs = False
saved2 = config.save_config()
self.assertEqual(config.max_fusion_size, 321)
self.assertEqual(config.triton.cudagraphs, False)
config.load_config(saved1)
self.assertEqual(config.max_fusion_size, 123)
self.assertEqual(config.triton.cudagraphs, True)
config.load_config(saved2)
self.assertEqual(config.max_fusion_size, 321)
self.assertEqual(config.triton.cudagraphs, False)
def test_hasattr(self):
self.assertTrue(hasattr(config, "max_fusion_size"))
self.assertFalse(hasattr(config, "missing_name"))
def test_invalid_names(self):
self.assertRaises(AttributeError, lambda: config.does_not_exist)
self.assertRaises(AttributeError, lambda: config.triton.does_not_exist)
def store1():
config.does_not_exist = True
def store2():
config.triton.does_not_exist = True
self.assertRaises(AttributeError, store1)
self.assertRaises(AttributeError, store2)
def test_patch(self):
with config.patch(max_fusion_size=456):
self.assertEqual(config.max_fusion_size, 456)
with config.patch(max_fusion_size=789):
self.assertEqual(config.max_fusion_size, 789)
self.assertEqual(config.max_fusion_size, 456)
with config.patch({"cpp.threads": 9000, "max_fusion_size": 9001}):
self.assertEqual(config.cpp.threads, 9000)
self.assertEqual(config.max_fusion_size, 9001)
with config.patch("cpp.threads", 8999):
self.assertEqual(config.cpp.threads, 8999)
self.assertEqual(config.cpp.threads, 9000)
@unittest.skipIf(not HAS_CPU, "requires C++ compiler")
def test_compile_api(self):
# these are mostly checking config processing doesn't blow up with exceptions
x = torch.randn(8)
y = dummy_fn(x)
checks = [
{},
{"mode": "default"},
{"mode": "reduce-overhead"},
{"mode": "max-autotune"},
{
"options": {
"max-fusion-size": 128,
"unroll_reductions_threshold": 32,
"triton.cudagraphs": False,
}
},
{"dynamic": True},
{"fullgraph": True, "backend": "inductor"},
{"disable": True},
]
for kwargs in checks:
torch._dynamo.reset()
opt_fn = torch.compile(dummy_fn, **kwargs)
torch.testing.assert_allclose(
opt_fn(x), y, msg=f"torch.compile(..., **{kwargs!r}) failed"
)
def test_get_compiler_config(self):
from torch._inductor import config as inductor_default_config
default_cudagraphs = inductor_default_config.triton.cudagraphs
# nn.Module: should update default config with a new value
model = DummyModule()
optimized_module = torch.compile(
model, options={"triton.cudagraphs": not default_cudagraphs}
)
compiler_config = optimized_module.get_compiler_config()
self.assertEqual(compiler_config["triton.cudagraphs"], not default_cudagraphs)
# nn.Module: keep default config
model = DummyModule()
optimized_module = torch.compile(model)
compiler_config = optimized_module.get_compiler_config()
self.assertEqual(
compiler_config["triton.cudagraphs"],
default_cudagraphs,
)
# compile user func: should update default config with a new value
optimized_module = torch.compile(
dummy_fn, options={"triton.cudagraphs": not default_cudagraphs}
)
compiler_config = optimized_module.get_compiler_config()
self.assertEqual(compiler_config["triton.cudagraphs"], not default_cudagraphs)
# compile user func: keep default config
optimized_module = torch.compile(dummy_fn)
compiler_config = optimized_module.get_compiler_config()
self.assertEqual(
compiler_config["triton.cudagraphs"],
default_cudagraphs,
)
# backend=eager: expect None
optimized_module = torch.compile(dummy_fn, backend="eager")
compiler_config = optimized_module.get_compiler_config()
self.assertTrue(compiler_config is None)
def test_compile_api_passes_config(self):
# ensure configs are actually passed down to inductor
self.assertRaises(
torch._dynamo.exc.BackendCompilerFailed,
lambda: torch.compile(dummy_fn, options={"_raise_error_for_testing": True})(
torch.randn(10)
),
)
def test_api_options(self):
reduce_overhead_opts = torch._inductor.list_mode_options("reduce-overhead")
self.assertEqual(reduce_overhead_opts["triton.cudagraphs"], True)
self.assertEqual(reduce_overhead_opts.get("max_autotune", False), False)
max_autotune_opts = torch._inductor.list_mode_options("max-autotune")
self.assertEqual(max_autotune_opts["max_autotune"], True)
self.assertEqual(max_autotune_opts["triton.cudagraphs"], True)
max_autotune_opts = torch._inductor.list_mode_options(
"max-autotune", dynamic=True
)
self.assertEqual(max_autotune_opts["max_autotune"], True)
self.assertEqual(max_autotune_opts["triton.cudagraphs"], True)
max_autotune_no_cudagraphs_opts = torch._inductor.list_mode_options(
"max-autotune-no-cudagraphs"
)
self.assertEqual(max_autotune_no_cudagraphs_opts["max_autotune"], True)
self.assertEqual(
max_autotune_no_cudagraphs_opts.get("triton.cudagraphs", False), False
)
def test_invalid_backend(self):
self.assertRaises(
torch._dynamo.exc.InvalidBackend,
lambda: torch.compile(dummy_fn, backend="does_not_exist")(torch.randn(10)),
)
def test_non_inductor_backend(self):
def assert_options(expected_mode=None, expected_options=None):
def backend(gm, _, *, mode=None, options=None):
nonlocal call_count
self.assertEqual(mode, expected_mode)
self.assertEqual(options, expected_options)
call_count += 1
return gm
return backend
inp = torch.randn(8)
def fn(x):
return x + 1
for mode, options in [
(None, None),
("fast-mode", None),
(None, {"foo": "bar"}),
]:
call_count = 0
torch.compile(
fn, backend=assert_options(mode, options), mode=mode, options=options
)(inp)
torch._dynamo.reset()
self.assertEqual(call_count, 1)
if __name__ == "__main__":
run_tests()
|