File: test_cpu_cpp_wrapper.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (386 lines) | stat: -rw-r--r-- 13,250 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Owner(s): ["oncall: cpu inductor"]
import sys
import unittest
from typing import NamedTuple

import torch
from torch._inductor import config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_device_type import (
    get_desired_device_type_test_bases,
)
from torch.testing._internal.common_utils import (
    IS_MACOS,
    IS_WINDOWS,
    slowTest,
    TEST_MKL,
    TEST_WITH_ROCM,
)
from torch.testing._internal.inductor_utils import HAS_CPU


try:
    try:
        from . import (
            test_cpu_repro,
            test_cpu_select_algorithm,
            test_mkldnn_pattern_matcher,
            test_torchinductor,
            test_torchinductor_dynamic_shapes,
        )
    except ImportError:
        import test_cpu_repro  # @manual=fbcode//caffe2/test/inductor:test_cpu_repro-library
        import test_cpu_select_algorithm  # @manual=fbcode//caffe2/test/inductor:cpu_select_algorithm_cpu-library
        import test_mkldnn_pattern_matcher  # @manual
        import test_torchinductor  # @manual=fbcode//caffe2/test/inductor:test_inductor-library
        import test_torchinductor_dynamic_shapes  # @manual=fbcode//caffe2/test/inductor:test_inductor-library_dynamic_shapes
except unittest.SkipTest:
    if __name__ == "__main__":
        sys.exit(0)
    raise


_desired_test_bases = get_desired_device_type_test_bases()
RUN_CPU = (
    HAS_CPU
    and any(getattr(x, "device_type", "") == "cpu" for x in _desired_test_bases)
    and not IS_MACOS
)


class CppWrapperTemplate:
    pass


class TestCppWrapper(InductorTestCase):
    device = "cpu"


class DynamicShapesCppWrapperCpuTests(InductorTestCase):
    device = "cpu"


test_failures_cpp_wrapper = {
    # conv2d will fallback for dynamic shapes; the fallback path is not yet supported
    "test_conv2d_unary_cpu_dynamic_shapes": test_torchinductor.TestFailure(
        ("cpp_wrapper",), is_skip=True
    ),
    "test_conv2d_binary_inplace_fusion_failed_cpu_dynamic_shapes": test_torchinductor.TestFailure(
        ("cpp_wrapper",), is_skip=True
    ),
    "test_conv2d_binary_inplace_fusion_pass_cpu_dynamic_shapes": test_torchinductor.TestFailure(
        ("cpp_wrapper",), is_skip=True
    ),
    # aten._native_multi_head_attention.default is not yet supported for dynamic shapes
    "test_multihead_attention_cpu_dynamic_shapes": test_torchinductor.TestFailure(
        ("cpp_wrapper",), is_skip=True
    ),
}
if TEST_WITH_ROCM:
    test_failures_cpp_wrapper.update(
        {
            "test_linear_packed": test_torchinductor.TestFailure(
                ("cpp_wrapper"), is_skip=True
            ),
            "test_linear_packed_dynamic_shapes": test_torchinductor.TestFailure(
                ("cpp_wrapper"), is_skip=True
            ),
        }
    )


def make_test_case(
    name,
    device,
    tests,
    condition=True,
    slow=False,
    func_inputs=None,
    code_string_count=None,
):
    test_name = f"{name}_{device}" if device else name
    if code_string_count is None:
        code_string_count = {}

    func = getattr(tests, test_name)
    assert callable(func), "not a callable"
    func = slowTest(func) if slow else func

    @config.patch(cpp_wrapper=True, search_autotune_cache=False)
    def fn(self):
        tests.setUpClass()
        tests.setUp()
        try:
            with torch._C._PreserveDispatchKeyGuard():
                torch._C._dispatch_tls_set_dispatch_key_included(
                    torch._C.DispatchKey.Dense, True
                )

                _, code = test_torchinductor.run_and_get_cpp_code(
                    func, *func_inputs if func_inputs else []
                )
                self.assertEqual("CppWrapperCodeCache" in code, True)
                self.assertTrue(
                    all(
                        code.count(string) == code_string_count[string]
                        for string in code_string_count
                    )
                )
        finally:
            tests.tearDown()
            tests.tearDownClass()

    fn.__name__ = test_name
    import copy

    fn.__dict__ = copy.deepcopy(func.__dict__)
    if condition:
        setattr(
            CppWrapperTemplate,
            test_name,
            fn,
        )


if RUN_CPU:

    class BaseTest(NamedTuple):
        name: str
        device: str = "cpu"
        tests: InductorTestCase = test_torchinductor.CpuTests()
        condition: bool = True
        slow: bool = False
        func_inputs: list = None
        code_string_count: dict = {}

    for item in [
        BaseTest("test_add_complex"),
        BaseTest("test_add_complex4"),
        BaseTest("test_as_strided"),  # buffer reuse
        BaseTest("test_bernoulli1"),
        BaseTest("test_bitwise"),  # int32
        BaseTest("test_bmm1"),
        BaseTest("test_bmm2"),
        BaseTest("test_cat"),  # alias
        BaseTest(
            "test_conv2d_binary_inplace_fusion_failed",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available(),
            func_inputs=[
                ["aoti_torch_cpu_mkldnn__convolution_pointwise_binary("],
                ["aoti_torch_cpu_mkldnn__convolution_pointwise_binary_("],
            ],
        ),
        BaseTest(
            "test_conv2d_binary_inplace_fusion_pass",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available(),
            func_inputs=[
                ["aoti_torch_cpu_mkldnn__convolution_pointwise_binary_("],
                ["aoti_torch_cpu_mkldnn__convolution_pointwise_binary("],
            ],
        ),
        BaseTest(
            "test_conv2d_unary",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available(),
            slow=True,
        ),
        BaseTest("test_conv_transpose2d_packed", "cpu", test_cpu_repro.CPUReproTests()),
        BaseTest("test_cumsum"),
        BaseTest("test_custom_op_1"),
        BaseTest("test_custom_op_2"),
        BaseTest("test_custom_op_3"),
        BaseTest("test_dtype_sympy_expr"),
        BaseTest("test_embedding_bag"),  # test default FallbackKernel
        BaseTest("test_index_put1"),
        BaseTest("test_index_put_deterministic_fallback"),
        BaseTest("test_adding_tensor_offsets"),
        BaseTest("test_inductor_layout_optimization_input_mutations"),
        BaseTest("test_int_div", "", test_cpu_repro.CPUReproTests()),
        BaseTest("test_int8_weight_only_quant"),
        BaseTest("test_linear1"),
        BaseTest("test_linear2"),
        *[
            BaseTest(func, "", test_cpu_select_algorithm.TestSelectAlgorithmCPU())
            for func in dir(test_cpu_select_algorithm.TestSelectAlgorithmCPU())
            if func.startswith("test_linear_with_pointwise")
        ],
        BaseTest("test_polar"),
        BaseTest(
            "test_linear_binary",
            "",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            torch.backends.mkldnn.is_available()
            and torch.ops.mkldnn._is_mkldnn_bf16_supported(),
        ),
        BaseTest(
            "test_linear_packed",
            "",
            test_cpu_repro.CPUReproTests(),
            torch.backends.mkldnn.is_available()
            and (
                torch.ops.mkldnn._is_mkldnn_bf16_supported()
                or torch.ops.mkldnn._is_mkldnn_fp16_supported()
            ),
        ),
        *[
            BaseTest(
                func,
                "",
                test_cpu_repro.CPUReproTests(),
                condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
            )
            for func in dir(test_cpu_repro.CPUReproTests())
            if func.startswith("test_lstm_packed_change_input_sizes")
        ],
        BaseTest("test_max_pool2d6"),
        BaseTest(
            "test_mkl_linear", "", test_cpu_repro.CPUReproTests(), condition=TEST_MKL
        ),
        BaseTest("test_mm_views"),
        BaseTest("test_multihead_attention", "cpu", test_cpu_repro.CPUReproTests()),
        BaseTest(
            "test_multi_threading",
            condition=not IS_WINDOWS,
            # Two threads compile, so we expect the output code to be printed twice.
            code_string_count={"py::gil_scoped_release release;": 2},
        ),
        BaseTest("test_profiler_mark_wrapper_call"),
        BaseTest(
            "test_qconv2d",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_qconv2d_relu",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_qconv2d_add",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_qconv2d_add_relu",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_qconv2d_dequant_promotion",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_qconv2d_maxpool2d_linear_dynamic",
            "cpu",
            test_mkldnn_pattern_matcher.TestDynamicPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
            func_inputs=[
                [
                    "aoti_torch_cpu__qconv2d_pointwise_tensor",
                    "torch.ops.quantized.max_pool2d",
                    "aoti_torch_cpu__qlinear_pointwise_tensor",
                ]
            ],
        ),
        *[
            BaseTest(
                func,
                "",
                test_mkldnn_pattern_matcher.TestPatternMatcher(),
                condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
            )
            for func in dir(test_mkldnn_pattern_matcher.TestPatternMatcher())
            if func.startswith("test_qlinear")
        ],
        BaseTest(
            "test_qconv2d_with_concat",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_dynamic_qlinear",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest(
            "test_dynamic_qlinear_qat",
            "cpu",
            test_mkldnn_pattern_matcher.TestPatternMatcher(),
            condition=torch.backends.mkldnn.is_available() and not IS_WINDOWS,
        ),
        BaseTest("test_randint"),
        BaseTest("test_randn_with_dtype_and_device"),
        BaseTest("test_reduction1"),  # Reduction
        BaseTest("test_relu"),  # multiple inputs
        BaseTest("test_repeat_interleave", "", test_cpu_repro.CPUReproTests()),
        BaseTest("test_scalar_input"),
        BaseTest("test_scalar_output"),
        BaseTest("test_scaled_dot_product_attention"),
        BaseTest("test_scatter1"),
        BaseTest("test_scatter2"),
        BaseTest("test_scatter3"),
        BaseTest("test_scatter4"),
        BaseTest("test_scatter5"),
        BaseTest("test_scatter6"),
        BaseTest("test_scatter_reduce1"),
        BaseTest("test_scatter_reduce2"),
        BaseTest("test_scatter_reduce3"),
        BaseTest("test_silu"),  # single input, single output
        BaseTest("test_sort"),
        BaseTest("test_sum_dtype"),  # float64
        BaseTest("test_sum_int"),  # bool, int64, int8, uint8
        BaseTest("test_tensor2"),  # constant input
        BaseTest(
            "test_transpose", code_string_count={".reset();": 2}
        ),  # multiple outputs, buffer clear
        BaseTest("test_view_as_complex"),
        BaseTest("test_view_as_real"),
    ]:
        make_test_case(
            item.name,
            item.device,
            item.tests,
            item.condition,
            item.slow,
            item.func_inputs,
            item.code_string_count,
        )

    test_torchinductor.copy_tests(
        CppWrapperTemplate,
        TestCppWrapper,
        "cpp_wrapper",
        test_failures_cpp_wrapper,
    )

    DynamicShapesCppWrapperTemplate = (
        test_torchinductor_dynamic_shapes.make_dynamic_cls(CppWrapperTemplate)
    )

    test_torchinductor.copy_tests(
        DynamicShapesCppWrapperTemplate,
        DynamicShapesCppWrapperCpuTests,
        "cpp_wrapper",
        test_failures_cpp_wrapper,
        xfail_prop="_expected_failure_dynamic_wrapper",
    )


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    if RUN_CPU:
        run_tests(needs="filelock")