File: test_custom_lowering.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (222 lines) | stat: -rw-r--r-- 7,443 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Owner(s): ["module: inductor"]

from functools import partial

import torch
from torch._inductor.ir import Pointwise
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.virtualized import ops
from torch.testing._internal.common_utils import skipIfRocm, skipIfXpu
from torch.testing._internal.inductor_utils import (
    GPU_TYPE,
    HAS_CPU,
    HAS_GPU,
    requires_gpu,
)


# These tests check issues for lowerings that aren't in the main pytorch repo
class TestCustomLowering(InductorTestCase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.test_inductor_ops = torch.library.Library(  # noqa: TOR901
            "test_inductor_ops", "DEF"
        )
        cls.device_list = ["Meta", "CUDA", "XPU"]
        for device in cls.device_list:
            setattr(
                cls,
                "impl_" + device.lower(),
                torch.library.Library(  # noqa: TOR901
                    "test_inductor_ops", "IMPL", device
                ),
            )
        cls._register_jagged_to_padded_dense()
        cls._register_asm_op()

    @classmethod
    def tearDown(cls):
        super().tearDownClass()

    @classmethod
    def _register_jagged_to_padded_dense(cls):
        # Approximation of fbgemm.jagged_to_padded_dense_forward
        cls.test_inductor_ops.define(
            "jagged_to_padded_dense(Tensor input, Tensor offsets, SymInt max_seq_len, Scalar pad_value) -> Tensor"
        )

        def j2pd_meta(inp, offsets, max_seq_len, pad_value):
            return torch.empty(
                (offsets.shape[0] - 1, max_seq_len, inp.shape[1]),
                device=inp.device,
                dtype=inp.dtype,
            )

        def j2pd_gpu(inp, offsets, max_seq_len, pad_value):
            res = torch.full(
                (offsets.shape[0] - 1, max_seq_len, inp.shape[1]),
                pad_value,
                device=inp.device,
                dtype=inp.dtype,
            )
            for b in range(offsets.shape[0] - 1):
                for r in range(offsets[b + 1] - offsets[b]):
                    res[b][r] = inp[offsets[b] + r]
            return res

        def j2pd_lowering(inp, offsets, max_seq_len, pad_value):
            offsets_loader = offsets.make_loader()
            inp_loader = inp.make_loader()
            jagged_len = inp.get_size()[0]
            offsets_dtype = offsets.get_dtype()

            def inner_fn(index):
                batch_idx, seq_idx, emb_idx = index

                begin_idx = ops.indirect_indexing(
                    offsets_loader([batch_idx]),
                    jagged_len + 1,
                )
                end_idx = offsets_loader([batch_idx + 1])
                jagged_idx = begin_idx + seq_idx

                return ops.masked(
                    ops.lt(
                        ops.index_expr(jagged_idx, offsets_dtype),
                        end_idx,
                    ),
                    lambda: inp_loader([jagged_idx, emb_idx]),
                    pad_value,
                )

            return Pointwise.create(
                device=inp.get_device(),
                dtype=inp.get_dtype(),
                inner_fn=inner_fn,
                ranges=[offsets.get_size()[0] - 1, max_seq_len, inp.get_size()[1]],
            )

        register_lowering(
            torch.ops.test_inductor_ops.jagged_to_padded_dense, type_promotion_kind=None
        )(j2pd_lowering)

        cls.impl_meta.impl("jagged_to_padded_dense", j2pd_meta)
        cls.impl_cuda.impl("jagged_to_padded_dense", j2pd_gpu)
        cls.impl_xpu.impl("jagged_to_padded_dense", j2pd_gpu)

    @classmethod
    def _register_asm_op(cls):
        # Approximation of fbgemm.jagged_to_padded_dense_forward
        cls.test_inductor_ops.define("tanh_approx(Tensor input) -> Tensor")

        def tanh_approx_meta(inp):
            return torch.tanh(inp)

        cls.impl_meta.impl("tanh_approx", tanh_approx_meta)

        def tanh_approx_lowering(inp):
            fn = partial(ops.inline_asm_elementwise, asm="tanh.approx.f32 $0, $1;")
            return make_pointwise(fn)(inp)

        register_lowering(
            torch.ops.test_inductor_ops.tanh_approx, type_promotion_kind=None
        )(tanh_approx_lowering)

        cls.test_inductor_ops.define("add_custom(Tensor a, Tensor b) -> Tensor")

        def add_custom(a, b):
            return a + b

        cls.impl_meta.impl("add_custom", add_custom)

        def add_custom_lowering(a, b):
            fn = partial(ops.inline_asm_elementwise, asm="add.f32 $0, $1, $2;")
            return make_pointwise(fn)(a, b)

        register_lowering(
            torch.ops.test_inductor_ops.add_custom, type_promotion_kind=None
        )(add_custom_lowering)

    @requires_gpu()
    def test_jagged_to_padded_dense_sanity_cuda(self):
        def fn(inp, offsets, max_seq_len):
            return torch.ops.test_inductor_ops.jagged_to_padded_dense(
                inp, offsets, max_seq_len, 60.0
            )

        inp = torch.rand((9, 96), device=GPU_TYPE)
        offsets = torch.tensor([0, 2, 5, 9], dtype=torch.int32, device=GPU_TYPE)
        max_seq_len = 4

        res = fn(inp, offsets, max_seq_len)
        self.assertEqual(inp[0], res[0][0])
        self.assertEqual(inp[1], res[0][1])
        self.assertEqual(inp[2], res[1][0])
        self.assertEqual(inp[3], res[1][1])
        self.assertEqual(inp[5], res[2][0])
        self.assertEqual(inp[8], res[2][3])

        fn_opt = torch.compile(fn)

        self.assertEqual(
            fn(inp, offsets, max_seq_len), fn_opt(inp, offsets, max_seq_len)
        )

    @requires_gpu()
    def test_jagged_to_padded_dense_zero_size(self):
        # Previously, the masking was being completely stripped for the
        # masked load of the input value. That would lead to an IMA
        # because cuda was trying to read index 0 of a zero-size tensor.
        def fn(inp, offsets, max_seq_len):
            inp = torch.bmm(inp, torch.ones((1, 96, 1), device=GPU_TYPE)).view((0, 1))
            return torch.ops.test_inductor_ops.jagged_to_padded_dense(
                inp, offsets, max_seq_len, 60.0
            )

        inp = torch.rand((1, 0, 96), device=GPU_TYPE)
        offsets = torch.zeros(1025, device=GPU_TYPE, dtype=torch.int32)
        max_seq_len = 20

        fn_opt = torch.compile(fn)

        self.assertEqual(
            fn(inp, offsets, max_seq_len), fn_opt(inp, offsets, max_seq_len)
        )

    @requires_gpu()
    @skipIfRocm
    @skipIfXpu
    def test_tanh_approx(self):
        def fn(inp):
            return torch.ops.test_inductor_ops.tanh_approx(inp)

        inp = torch.randn(32, device=GPU_TYPE)
        fn_opt = torch.compile(fn)

        a = torch.tanh(inp)
        b = fn_opt(inp)
        self.assertEqual(a, b)

    @requires_gpu()
    @skipIfRocm
    @skipIfXpu
    def test_multi_inp_asm(self):
        def fn(a, b):
            return torch.ops.test_inductor_ops.add_custom(a, b)

        a = torch.randn(32, device=GPU_TYPE)
        b = torch.randn(32, device=GPU_TYPE)
        fn_opt = torch.compile(fn)

        out1 = a + b
        out2 = fn_opt(a, b)
        self.assertEqual(out1, out2)


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    if HAS_CPU or HAS_GPU:
        run_tests(needs="filelock")