1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
# Owner(s): ["module: inductor"]
import contextlib
import operator
from collections import defaultdict
import torch
import torch._inductor.pattern_matcher as pattern_matcher
import torch.fx as fx
from torch._dynamo.utils import counters
from torch._inductor import config
from torch._inductor.custom_graph_pass import CustomGraphPass, get_hash_for_files
from torch._inductor.lowering import lowerings as L
from torch._inductor.pattern_matcher import Arg, CallFunction, PatternMatcherPass
from torch._inductor.test_case import run_tests, TestCase
from torch.testing._internal.common_utils import IS_LINUX
from torch.testing._internal.inductor_utils import HAS_CPU
@config.patch({"freezing": True})
class TestCustomPassBase(TestCase):
def _clone_inputs(self, inputs):
def clone(x):
if not isinstance(x, torch.Tensor):
return x
return x.clone()
return tuple(clone(x) for x in inputs)
def _test_common(
self,
mod,
inputs,
matcher_count,
matcher_nodes,
atol=1e-5,
rtol=1.3e-6,
):
counters.clear()
maybe_autocast = contextlib.nullcontext()
with torch.no_grad(), maybe_autocast:
clone_inputs = self._clone_inputs(inputs)
expected = mod(*inputs)
actual = torch.compile(mod)(*clone_inputs)
torch.testing.assert_close(actual, expected, atol=atol, rtol=rtol)
self.assertEqual(
counters["inductor"]["pattern_matcher_count"], matcher_count
)
self.assertEqual(
counters["inductor"]["pattern_matcher_nodes"],
matcher_nodes,
)
aten = torch.ops.aten
mkldnn = torch.ops.mkldnn
def change_cos_pass(graph):
for node in graph.nodes:
if node.op == "call_function" and node.target == aten.cos.default:
node.target = aten.sin.default
class TestPostGradCustomPrePostPass(TestCustomPassBase):
# mkldnn fusion's pattern_matcher
# (torch/_inductor/fx_passes/mkldnn_fusion.py),
# and apply it to custom post_grad_passes.
def _register_mkldnn_conv_relu_fusion(self, custom_pass_dict):
# pattern
def _mkldnn_conv_relu_pattern():
return CallFunction(
aten.relu,
CallFunction(
mkldnn._convolution_pointwise.default,
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
Arg(),
_users=1,
),
)
# utils of pattern matcher registration
def _register_fusion_lowering(pattern, custom_pass_dict):
def dummy_check(m):
return True
def register_custom_lowering_pattern(
pattern, extra_check, custom_pass_dict
):
return pattern_matcher.register_lowering_pattern(
pattern, extra_check, pass_dict=custom_pass_dict
)
@register_custom_lowering_pattern(pattern, dummy_check, custom_pass_dict)
def fn(match, *args, **kwargs):
computation_args = list(args)[:-3] + ["relu", [], ""]
return L[mkldnn._convolution_pointwise.default](*computation_args)
return fn
_register_fusion_lowering(_mkldnn_conv_relu_pattern(), custom_pass_dict)
# custom post grad pass
class _CustomPass(PatternMatcherPass, CustomGraphPass):
def __init__(self) -> None:
super().__init__()
def __call__(self, g: torch.fx.graph.Graph):
self.apply(g)
def uuid(self) -> bytes:
return get_hash_for_files((__file__,))
# case model
class _ConvReLU(torch.nn.Module):
def __init__(self, ic, oc):
super().__init__()
self.conv = torch.nn.Conv2d(ic, oc, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x1 = self.conv(x)
return x1.relu()
def test_custom_joint_pass_pre(self):
with config.patch(joint_custom_pre_pass=change_cos_pass):
def g(x):
return x.sin().sin().sin()
def f(x):
return x.cos().cos().cos()
x = torch.randn(8, dtype=torch.float32)
torch.testing.assert_close(torch.compile(f)(x), g(x))
def test_custom_joint_pass_post(self):
with config.patch(joint_custom_post_pass=change_cos_pass):
def g(x):
return x.sin().sin().sin()
def f(x):
return x.cos().cos().cos()
x = torch.randn(8, dtype=torch.float32)
torch.testing.assert_close(torch.compile(f)(x), g(x))
def test_custom_pre_pass(self):
with config.patch(
# leave custom pass only in post_grad_passes()
pattern_matcher=False,
post_grad_custom_pre_pass=self._CustomPass(),
# define pattern match as custom post grad opt pass
post_grad_custom_post_pass=None,
):
# init mkldnn fusion on custom_matcher
self._register_mkldnn_conv_relu_fusion(config.post_grad_custom_pre_pass)
mod = self._ConvReLU(16, 16).eval()
x = torch.randn((1, 16, 56, 56), dtype=torch.float32)
match_count = 1
match_nodes = 2
other_match_count = 1 # conv prepack weight
other_match_nodes = 1 # conv prepack weight
self._test_common(
mod,
(x,),
match_count + other_match_count,
match_nodes + other_match_nodes,
)
def test_custom_post_pass(self):
with config.patch(
# leave custom pass only in post_grad_passes()
pattern_matcher=False,
# define pattern match as custom post grad opt pass
post_grad_custom_pre_pass=None,
post_grad_custom_post_pass=self._CustomPass(),
):
# init mkldnn fusion on custom_matcher
self._register_mkldnn_conv_relu_fusion(config.post_grad_custom_post_pass)
mod = self._ConvReLU(16, 16).eval()
x = torch.randn((1, 16, 56, 56), dtype=torch.float32)
match_count = 1
match_nodes = 2
other_match_count = 1 # conv prepack weight
other_match_nodes = 1 # conv prepack weight
self._test_common(
mod,
(x,),
match_count + other_match_count,
match_nodes + other_match_nodes,
)
def test_custom_pre_grad_pass(self):
saved_graph = [None]
def merge_mm_shared_rhs(graph: fx.Graph):
"""
Bad POC of merging mm with a shared RHS.
i.e. [mm(x, W), mm(x2, W)] => mm(cat(x, x2), W).split()
Isn't actually safe for a couple reasons. For example, it doesn't handle the
case where the LHS inputs depend on each other
"""
saved_graph[0] = graph
matmuls = [n for n in graph.nodes if n.target == torch.mm]
rhs_vals = defaultdict(set)
for m in matmuls:
rhs_vals[m.args[1]].add(m)
order = {}
for idx, n in enumerate(graph.nodes):
order[n] = idx
for rhs, matmuls in rhs_vals.items():
if len(matmuls) == 1:
continue
matmuls = sorted(matmuls, key=lambda x: order[x])
with graph.inserting_before(matmuls[0]):
lhs_vals = [m.args[0] for m in matmuls]
new_cat = graph.create_node(
"call_function", torch.cat, args=(lhs_vals, 0)
)
new_mm = graph.create_node(
"call_function", torch.mm, args=(new_cat, rhs)
)
split_vals = graph.create_node(
"call_function",
torch.split,
args=(
new_mm,
[l.meta["example_value"].shape[0] for l in lhs_vals],
),
)
for idx, m in enumerate(matmuls):
m.target = operator.getitem
m.args = (split_vals, idx)
@config.patch(pre_grad_custom_pass=merge_mm_shared_rhs)
def inner_test():
@torch.compile
def f(W, nested_seqs):
outs = [torch.mm(s, W) for s in nested_seqs]
return outs
W = torch.randn(16, 16, dtype=torch.bfloat16)
nested_seqs = [
torch.randn(l, 16, dtype=torch.bfloat16) for l in [4, 8, 5, 3]
]
f(W, nested_seqs)
assert saved_graph[0] is not None
matmuls = [n for n in saved_graph[0].nodes if n.target == torch.mm]
assert len(matmuls) == 1
inner_test()
if __name__ == "__main__":
if IS_LINUX and HAS_CPU and torch.backends.mkldnn.is_available():
run_tests()
|