File: test_debug_trace.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (258 lines) | stat: -rw-r--r-- 9,705 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Owner(s): ["module: inductor"]
import logging
import os
import re
import shutil
import sys
import tempfile
import unittest
from pathlib import Path

import torch
from torch._inductor import config, test_operators
from torch._inductor.utils import fresh_inductor_cache
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU


try:
    try:
        from . import test_torchinductor
    except ImportError:
        import test_torchinductor  # @manual=fbcode//caffe2/test/inductor:test_inductor-library
except unittest.SkipTest:
    if __name__ == "__main__":
        sys.exit(0)
    raise


def filesize(filename: Path):
    assert filename.exists(), f"{filename} is missing"
    return os.stat(filename).st_size


@config.patch("trace.enabled", True)
class TestDebugTrace(test_torchinductor.TestCase):
    def test_debug_trace(self):
        @torch.compile
        def fn(a, b):
            a = test_operators.realize(a + 1) + 2
            return torch.matmul(a, b)

        # TODO(aakhundov): make this work with fresh_inductor_cache
        # instead of force_disable_caches. currently, with the latter
        # enabled, we get `inductor [('fxgraph_cache_hit', 1)]` in
        # the counters: so the cache is actually hit and the test fails.
        with config.patch(
            {
                "trace.debug_dir": tempfile.mkdtemp(),
                "force_disable_caches": True,
            }
        ):
            with self.assertLogs(
                logging.getLogger("torch._inductor.debug"), level=logging.WARNING
            ) as cm:
                fn(torch.randn(16, 16), torch.randn(16, 16))

        self.assertEqual(len(cm.output), 1)
        m = re.match(r"WARNING.* debug trace: (.*)", cm.output[0])
        self.assertTrue(m)
        filename = Path(m.group(1))
        self.assertTrue(filename.is_dir())
        self.assertGreater(filesize(filename / "fx_graph_readable.py"), 512)
        self.assertGreater(filesize(filename / "fx_graph_runnable.py"), 512)
        self.assertGreater(filesize(filename / "fx_graph_transformed.py"), 512)
        self.assertGreater(filesize(filename / "output_code.py"), 1024)
        self.assertExpectedInline(
            open(filename / "ir_pre_fusion.txt").read().rstrip(),
            """\
op0: SchedulerNode(ComputedBuffer)
op0.writes = [MemoryDep('buf0', c0, {c0: 256})]
op0.unmet_dependencies = []
op0.met_dependencies = [MemoryDep('arg0_1', c0, {c0: 256})]
op0.outputs = [
    buf0: ComputedBuffer
    buf0.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf0.users = [NodeUser(node=SchedulerNode(name='op1'), can_inplace=True, is_weak=False)]
]
op0.group.device = cpu
op0.group.iteration = ((256,), ())
op0.sizes = ([256], [])
arg0_1_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
buf0_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
class op0_loop_body:
    var_ranges = {p0: 256}
    index0 = p0
    def body(self, ops):
        get_index = self.get_index('index0')
        load = ops.load('arg0_1', get_index)
        constant = ops.constant(1.0, torch.float32)
        add = ops.add(load, constant)
        get_index_1 = self.get_index('index0')
        store = ops.store('buf0', get_index_1, add, None)
        return store


op1: SchedulerNode(ComputedBuffer)
op1.writes = [MemoryDep('buf1', c0, {c0: 256})]
op1.unmet_dependencies = [MemoryDep('buf0', c0, {c0: 256})]
op1.met_dependencies = []
op1.outputs = [
    buf1: ComputedBuffer
    buf1.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf1.users = [NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False)]
]
op1.group.device = cpu
op1.group.iteration = ((256,), ())
op1.sizes = ([256], [])
buf0_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
buf1_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
class op1_loop_body:
    var_ranges = {p0: 256}
    index0 = p0
    def body(self, ops):
        get_index = self.get_index('index0')
        load = ops.load('buf0', get_index)
        constant = ops.constant(2.0, torch.float32)
        add = ops.add(load, constant)
        get_index_1 = self.get_index('index0')
        store = ops.store('buf1', get_index_1, add, None)
        return store


op2: ExternKernelSchedulerNode(ExternKernelOut)
op2.writes = [StarDep(name='buf2', mode=None)]
op2.unmet_dependencies = [StarDep(name='buf1', mode=None)]
op2.met_dependencies = [StarDep(name='arg1_1', mode=None)]
op2.outputs = [
    buf2: ExternKernelOut
    buf2.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf2.users = [NodeUser(node=OUTPUT, can_inplace=False, is_weak=False)]
]
op2.node.kernel = extern_kernels.mm""",
        )
        self.assertExpectedInline(
            open(filename / "ir_post_fusion.txt").read().rstrip(),
            """\
op0_op1: FusedSchedulerNode(SchedulerNode,SchedulerNode)
op0_op1.writes = [MemoryDep('buf0', c0, {c0: 256}), MemoryDep('buf1', c0, {c0: 256})]
op0_op1.unmet_dependencies = []
op0_op1.met_dependencies = [MemoryDep('arg0_1', c0, {c0: 256})]
op0_op1.outputs = [
    buf0: ComputedBuffer
    buf0.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf0.users = [NodeUser(node=SchedulerNode(name='op1'), can_inplace=True, is_weak=False)]
    buf1: ComputedBuffer
    buf1.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf1.users = [NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False)]
]
op0_op1.snodes[0] =
op0: SchedulerNode(ComputedBuffer)
op0.writes = [MemoryDep('buf0', c0, {c0: 256})]
op0.unmet_dependencies = []
op0.met_dependencies = [MemoryDep('arg0_1', c0, {c0: 256})]
op0.outputs = [
    buf0: ComputedBuffer
    buf0.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf0.users = [NodeUser(node=SchedulerNode(name='op1'), can_inplace=True, is_weak=False)]
]
op0.group.device = cpu
op0.group.iteration = ((256,), ())
op0.sizes = ([256], [])
arg0_1_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
buf0_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
class op0_loop_body:
    var_ranges = {p0: 256}
    index0 = p0
    def body(self, ops):
        get_index = self.get_index('index0')
        load = ops.load('arg0_1', get_index)
        constant = ops.constant(1.0, torch.float32)
        add = ops.add(load, constant)
        get_index_1 = self.get_index('index0')
        store = ops.store('buf0', get_index_1, add, None)
        return store
op0_op1.snodes[1] =
op1: SchedulerNode(ComputedBuffer)
op1.writes = [MemoryDep('buf1', c0, {c0: 256})]
op1.unmet_dependencies = [MemoryDep('buf0', c0, {c0: 256})]
op1.met_dependencies = []
op1.outputs = [
    buf1: ComputedBuffer
    buf1.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf1.users = [NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False)]
]
op1.group.device = cpu
op1.group.iteration = ((256,), ())
op1.sizes = ([256], [])
buf0_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
buf1_layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
class op1_loop_body:
    var_ranges = {p0: 256}
    index0 = p0
    def body(self, ops):
        get_index = self.get_index('index0')
        load = ops.load('buf0', get_index)
        constant = ops.constant(2.0, torch.float32)
        add = ops.add(load, constant)
        get_index_1 = self.get_index('index0')
        store = ops.store('buf1', get_index_1, add, None)
        return store


op2: ExternKernelSchedulerNode(ExternKernelOut)
op2.writes = [StarDep(name='buf2', mode=None)]
op2.unmet_dependencies = [StarDep(name='buf1', mode=None)]
op2.met_dependencies = [StarDep(name='arg1_1', mode=None)]
op2.outputs = [
    buf2: ExternKernelOut
    buf2.layout = FixedLayout('cpu', torch.float32, size=[16, 16], stride=[16, 1])
    buf2.users = [NodeUser(node=OUTPUT, can_inplace=False, is_weak=False)]
]
op2.node.kernel = extern_kernels.mm""",
        )
        # intentionally only cleanup on success so debugging test is easier
        shutil.rmtree(filename)

    def test_debug_printer_const(self):
        """Test that having a const example_input does not break the debug printer."""

        class Model(torch.nn.Module):
            def forward(self, x, ks0):
                return x.sum()

        example_inputs = (
            torch.tensor([0, 3, 6], dtype=torch.int64),
            70,  # const input, that will be filtered in the examples
        )
        _ = torch._export.aot_compile(
            Model(),
            example_inputs,
        )

    @unittest.skipIf(not HAS_GPU, "requires GPU")
    def test_debug_multi_tempalte(self):
        class ToyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.l = torch.nn.Linear(100, 100)
                self.relu = torch.nn.ReLU()

            def forward(self, x):
                return self.relu(self.l(x))

        # no failure
        with self.assertLogs(
            logging.getLogger("torch._inductor.debug"), level=logging.WARNING
        ), fresh_inductor_cache():
            m = ToyModel().to(device=GPU_TYPE)
            m = torch.compile(m, mode="max-autotune")
            input_tensor = torch.randn(100).to(device=GPU_TYPE)
            m(input_tensor)


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests
    from torch.testing._internal.inductor_utils import HAS_CPU

    if HAS_CPU:
        run_tests(needs="filelock")