File: test_dependencies.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (176 lines) | stat: -rw-r--r-- 5,461 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Owner(s): ["module: inductor"]
import contextlib

import torch
from torch._inductor.dependencies import MemoryDep
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import Buffer, FixedLayout, Pointwise
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import sympy_index_symbol
from torch._inductor.virtualized import ops, V
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, HAS_GPU


class TestDependencies(InductorTestCase):
    def _create_buffer(self, name, shape, dtype=torch.float32):
        return Buffer(
            name=name,
            layout=FixedLayout(torch.device(GPU_TYPE), dtype=dtype, size=shape),
        )

    def setUp(self):
        super().setUp()

        class DummyModule(torch.nn.Module):
            def forward(self, x):
                return x * 2

        self._gm = torch.fx.symbolic_trace(DummyModule())
        self._graph = GraphLowering(self._gm)

        self._stack = contextlib.ExitStack()
        self._stack.enter_context(V.set_graph_handler(self._graph))

    def tearDown(self):
        self._stack.close()
        super().tearDown()

    def test_bucketize_dependencies_no_sorter(self):
        offsets = self._create_buffer("offsets", (1025,), torch.int32)

        def inner_fn(index):
            idx = index[0]
            return ops.bucketize(
                values=idx,
                boundaries=(
                    offsets.get_name(),
                    offsets.get_size()[-1],
                    offsets.get_size()[0] * offsets.get_stride()[0],
                    offsets.get_stride()[-1],
                ),
                boundary_indices=0,
                indexing_dtype=torch.int32,
                right=True,
            )

        pointwise = Pointwise.create(
            device=torch.device(GPU_TYPE),
            dtype=torch.int32,
            inner_fn=inner_fn,
            ranges=[1024 * 4],
        )

        self.assertEqual(len(pointwise.get_reads()), 1)

    def test_bucketize_dependencies_sorter(self):
        offsets = self._create_buffer("offsets", (1025,), torch.int32)
        sorter = self._create_buffer("sorter", (1025,), torch.int32)

        def inner_fn(index):
            idx = index[0]
            return ops.bucketize(
                values=idx,
                boundaries=(
                    offsets.get_name(),
                    offsets.get_size()[-1],
                    offsets.get_size()[0] * offsets.get_stride()[0],
                    offsets.get_stride()[-1],
                ),
                boundary_indices=0,
                indexing_dtype=torch.int32,
                right=True,
                sorter=(
                    sorter.get_name(),
                    sorter.get_stride()[-1],
                ),
                sorter_indices=0,
            )

        pointwise = Pointwise.create(
            device=torch.device(GPU_TYPE),
            dtype=torch.int32,
            inner_fn=inner_fn,
            ranges=[1024 * 4],
        )

        self.assertEqual(len(pointwise.get_reads()), 2)

    def test_get_offset(self):
        x = sympy_index_symbol("x")
        y = sympy_index_symbol("y")
        var_ranges = {
            x: 1024,
            y: 2048,
        }
        dep1 = MemoryDep(
            "dep1",
            x * 2048 + y,
            list(var_ranges.keys()),
            list(var_ranges.values()),
        )
        dep2 = MemoryDep(
            "dep2",
            x * 2048 + y + 1024,
            list(var_ranges.keys()),
            list(var_ranges.values()),
        )
        self.assertEqual(dep1.get_offset(), 0)
        self.assertEqual(dep2.get_offset(), 1024)

    def test_normalize_with_stride_order_equal(self):
        x = sympy_index_symbol("x")
        y = sympy_index_symbol("y")
        var_ranges = {
            x: 1024,
            y: 2048,
        }

        loop_order1 = MemoryDep(
            "access_the_same_buffer",
            x * 2048 + y,
            [x, y],
            [1024, 2048],
        )
        loop_order2 = MemoryDep(
            "access_the_same_buffer",
            x * 2048 + y,
            [y, x],
            [2048, 1024],
        )
        self.assertTrue(loop_order1 != loop_order2)
        normalized_loop_order1 = loop_order1.normalize_with_stride_order()
        normalized_loop_order2 = loop_order2.normalize_with_stride_order()
        self.assertTrue(normalized_loop_order1 == normalized_loop_order2)

    def test_normalize_with_stride_order_unequal(self):
        x = sympy_index_symbol("x")
        y = sympy_index_symbol("y")
        var_ranges = {
            x: 1024,
            y: 2048,
        }

        loop_order1 = MemoryDep(
            "access_the_same_buffer",
            x * 2048 + y,
            [x, y],
            [1024, 2048],
        )
        loop_order2 = MemoryDep(
            "access_the_same_buffer",
            x * 2048 + y + 5,
            [y, x],
            [2048, 1024],
        )
        self.assertTrue(loop_order1 != loop_order2)
        normalized_loop_order1 = loop_order1.normalize_with_stride_order()
        normalized_loop_order2 = loop_order2.normalize_with_stride_order()
        # unequal due to different offset
        self.assertTrue(normalized_loop_order1 != normalized_loop_order2)


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    if HAS_CPU and HAS_GPU:
        run_tests("sympy")