File: test_distributed_patterns.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (502 lines) | stat: -rw-r--r-- 16,800 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Owner(s): ["oncall: pt2"]
import dataclasses
import functools

import torch
from torch import nn
from torch._dynamo import compiled_autograd
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
from torch.testing._internal.common_utils import IS_MACOS, skipIfRocm, skipIfXpu
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, requires_gpu


# Fake distributed
WORLD_SIZE = 2


def init_fake_distributed(device="cpu"):
    @torch.no_grad
    def all_gather(t):
        return torch.cat([t] * WORLD_SIZE, 0)

    @torch.no_grad
    def reduce_scatter(t):
        # clone since reduce_scatter input and output should not be aliases.
        return t.narrow(0, 0, t.size(0) // WORLD_SIZE).clone()

    def fw_pre_hook(mod, inp):
        mod.unsharded_weight.untyped_storage().resize_(
            mod.unsharded_weight.nelement() * mod.unsharded_weight.element_size()
        )
        with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(
            mod.unsharded_weight
        ):
            torch.ops.fsdp.copy_(mod.unsharded_weight, all_gather(mod.sharded_weight))
        mod._parameters["weight"] = mod.unsharded_weight

    # Forward:
    #   mod.sharded_weight = local_shard (always)
    #   Before:
    #     mod.weight = local_shard
    #     mod.unsharded_weight = zero-sized allgather
    #   After:
    #     mod.weight = local_shard
    #     mod.unsharded_weight = zero-sized allgather

    def fw_post_hook(mod, inp, out):
        mod._parameters["weight"] = mod.sharded_weight
        mod.unsharded_weight.untyped_storage().resize_(0)

    def bw_pre_hook(mod, gO):
        mod.unsharded_weight.untyped_storage().resize_(
            mod.unsharded_weight.nelement() * mod.unsharded_weight.element_size()
        )
        with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(
            mod.unsharded_weight
        ):
            torch.ops.fsdp.copy_(mod.unsharded_weight, all_gather(mod.sharded_weight))
        mod._parameters["weight"] = mod.unsharded_weight

    # Backward:
    #   mod.sharded_weight = local_shard (always)
    #   Before:
    #     mod.weight = local_shard
    #     mod.unsharded_weight = zero-sized allgather
    #   After:
    #     mod.weight = local_shard
    #     mod.unsharded_weight = zero-sized allgather

    def bw_post_hook(mod, gI, gO):
        grad = mod.weight.grad
        new_grad = reduce_scatter(grad)
        mod._parameters["weight"] = mod.sharded_weight
        mod.weight.grad = new_grad
        mod.unsharded_weight.untyped_storage().resize_(0)

    torch.manual_seed(1234)
    m = nn.Linear(20, 10, bias=False, device=device)

    # Mimics eager 1st iteration
    m.sharded_weight = nn.Parameter(reduce_scatter(m.weight))
    m.unsharded_weight = nn.Parameter(all_gather(m.sharded_weight))
    m.unsharded_weight.untyped_storage().resize_(0)

    m.register_full_backward_pre_hook(bw_pre_hook)
    m.register_full_backward_hook(bw_post_hook)
    m.register_forward_pre_hook(fw_pre_hook)
    m.register_forward_hook(fw_post_hook)
    return m, torch.rand(2, 20, requires_grad=True, device=device)


def init_module_bw_hooks(allow_eager):
    def bw_pre_hook(mod, gO):
        assert allow_eager or torch._dynamo.is_compiling()
        assert mod.weight.size() == (10, 10)
        mod.hook_count_pre.add_(1)
        return (torch.sin(gO[0] + 1.2),)

    def bw_post_hook(mod, gI, gO):
        assert allow_eager or torch._dynamo.is_compiling()
        assert mod.weight.size() == (10, 10)
        mod.hook_count_post.add_(1)
        return (torch.sin(gI[0] + 3.4),)

    torch.manual_seed(1234)
    m = nn.Linear(10, 10)
    m.hook_count_pre = torch.tensor(0)
    m.hook_count_post = torch.tensor(0)
    m.register_full_backward_pre_hook(bw_pre_hook)
    m.register_full_backward_hook(bw_post_hook)
    return m, torch.rand(2, 10, requires_grad=True)


def steps(m, inp):
    for _ in range(4):
        out = m(inp)
        out.sum().backward()
    return out


class DistributedPatternTests(TestCase):
    def test_intermediate_hook_with_closure(self):
        @dataclasses.dataclass
        class CustomObj:
            val: torch.Tensor

        def fn(x, obj):
            y = x.sin()
            closure_var = y + 1
            y.register_hook(lambda grad: grad + obj.val + closure_var)
            z = y.sin()
            return z

        opt = torch.compile(fn, fullgraph=True)

        obj1 = CustomObj(torch.tensor(88))
        obj2 = CustomObj(torch.tensor(99))
        x0 = torch.ones(4, requires_grad=True)
        x1 = torch.ones(4, requires_grad=True)
        x2 = torch.ones(4, requires_grad=True)
        x3 = torch.ones(4, requires_grad=True)
        fn(x0, obj1).sum().backward()
        fn(x1, obj2).sum().backward()

        with compiled_autograd._enable(
            functools.partial(torch.compile, fullgraph=True)
        ):
            opt(x2, obj1).sum().backward()
            opt(x3, obj2).sum().backward()

        self.assertEqual(x0.grad, x2.grad)
        self.assertEqual(x1.grad, x3.grad)

    def test_intermediate_hook_with_nested_closure(self):
        @dataclasses.dataclass
        class CustomObj:
            val: torch.Tensor

        def fn(x, obj):
            def run():
                y = x.sin()
                closure_var = y + 1
                y.register_hook(lambda grad: grad + obj.val + closure_var)
                z = y.sin()
                return z

            return run()

        opt = torch.compile(fn, fullgraph=True)

        obj1 = CustomObj(torch.tensor(88))
        obj2 = CustomObj(torch.tensor(99))
        x0 = torch.ones(4, requires_grad=True)
        x1 = torch.ones(4, requires_grad=True)
        x2 = torch.ones(4, requires_grad=True)
        x3 = torch.ones(4, requires_grad=True)
        fn(x0, obj1).sum().backward()
        fn(x1, obj2).sum().backward()

        with compiled_autograd._enable(
            functools.partial(torch.compile, fullgraph=True)
        ):
            opt(x2, obj1).sum().backward()
            opt(x3, obj2).sum().backward()

        self.assertEqual(x0.grad, x2.grad)
        self.assertEqual(x1.grad, x3.grad)

    @torch.no_grad()
    def _test_storage_resize_zero(self, device):
        @torch.compile(fullgraph=True)
        def fn(x):
            y = torch.sin(x)
            x.untyped_storage().resize_(0)
            return torch.cos(y)

        x = torch.randn(10, device=device)
        expected = torch.cos(torch.sin(x))
        y = fn(x)
        self.assertEqual(y, expected)
        self.assertEqual(x.untyped_storage().size(), 0)

    def test_storage_resize_zero_cpu(self):
        self._test_storage_resize_zero("cpu")

    @skipIfRocm
    @requires_gpu()
    def test_storage_resize_zero_gpu(self):
        self._test_storage_resize_zero(GPU_TYPE)

    @torch.no_grad()
    def _test_storage_resize_nonzero(self, device):
        @torch.compile(fullgraph=True)
        def fn(x, out):
            y = torch.sin(x)
            assert out.untyped_storage().size() == 0
            out.untyped_storage().resize_(x.untyped_storage().size())
            out.copy_(y.cos())

        x = torch.randn(10, device=device)
        out = torch.randn(10, device=device)
        expected = torch.cos(torch.sin(x))
        out.untyped_storage().resize_(0)
        fn(x, out)
        self.assertEqual(out.untyped_storage().size(), x.untyped_storage().size())
        self.assertEqual(out, expected)

    def test_storage_resize_nonzero_cpu(self):
        self._test_storage_resize_nonzero("cpu")

    @skipIfRocm
    @requires_gpu()
    def test_storage_resize_nonzero_gpu(self):
        self._test_storage_resize_nonzero(GPU_TYPE)

    @torch.no_grad()
    def test_unsafe_set_version_counter1(self):
        cnt = CompileCounter()

        @torch.compile(backend=cnt, fullgraph=True)
        def fn(w, x):
            x = x.sin()
            v = w._version
            w.copy_(x + 1)
            torch._C._autograd._unsafe_set_version_counter(w, v)
            return w, v

        for v in (3, 0, 1):
            w1 = torch.randn(16)
            for i in range(v):
                w1.fill_(i)  # bump w1._version
            self.assertEqual(w1._version, v)
            x1 = torch.randn(16)
            w2, v2 = fn(w1, x1)

            self.assertIs(w1, w2)
            self.assertEqual(w1, x1.sin() + 1)
            self.assertEqual(v2, v)
            self.assertEqual(w1._version, v)
            self.assertEqual(cnt.frame_count, 1)

    def test_unsafe_set_version_counter2(self):
        @torch.compile(backend="inductor", fullgraph=True)
        def fn(w, x):
            r = w.sin()
            with torch.no_grad():
                v = w._version
                w.copy_(x)
                torch._C._autograd._unsafe_set_version_counter(w, v)
            return r

        w1 = torch.randn(1, requires_grad=True)
        x1 = torch.randn(1)
        expected_r1 = w1.detach().sin()

        r1 = fn(w1, x1)
        r1.backward()
        self.assertEqual(r1, expected_r1)
        self.assertEqual(w1, x1)
        self.assertEqual(w1.grad, x1.cos())

    @torch.no_grad()
    def test_unsafe_preserve_version_counter1(self):
        @torch.compile(backend="eager", fullgraph=True)
        def fn(w, x):
            x = x.sin()
            with torch.autograd._unsafe_preserve_version_counter(w):
                w.copy_(x + 1)
            return w

        w1 = torch.randn(16).fill_(0).fill_(1)
        x1 = torch.randn(16)
        v1 = w1._version
        w2 = fn(w1, x1)
        v2 = w1._version

        self.assertIs(w1, w2)
        self.assertEqual(w1, x1.sin() + 1)
        self.assertEqual(v1, v2)

    def test_unsafe_preserve_version_counter2(self):
        @torch.compile(backend="inductor", fullgraph=True)
        def fn(w, x):
            r = w.sin()
            with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(w):
                w.copy_(x)
            return r

        w1 = torch.randn(1, requires_grad=True)
        x1 = torch.randn(1)
        expected_r1 = w1.detach().sin()

        r1 = fn(w1, x1)
        r1.backward()
        self.assertEqual(r1, expected_r1)
        self.assertEqual(w1, x1)
        self.assertEqual(w1.grad, x1.cos())

    def test_module_backward_hooks_eager(self):
        m1, inp1 = init_module_bw_hooks(True)
        out1 = steps(m1, inp1)

        m2, inp2 = init_module_bw_hooks(False)
        fw_cnt = CompileCounter()
        bw_cnt = CompileCounter()
        with compiled_autograd._enable(torch.compile(backend=bw_cnt, fullgraph=True)):
            m2 = torch.compile(m2, backend=fw_cnt, fullgraph=True)
            out2 = steps(m2, inp2)

        self.assertEqual(m1.hook_count_pre, m2.hook_count_pre)
        self.assertEqual(m1.hook_count_post, m2.hook_count_post)
        self.assertEqual(out1, out2)
        self.assertEqual(inp1.grad, inp2.grad)
        self.assertEqual(m1.weight.grad, m2.weight.grad)
        self.assertEqual(m1.bias.grad, m2.bias.grad)

        self.assertEqual(fw_cnt.frame_count, 1)
        self.assertEqual(fw_cnt.op_count, 5)
        self.assertEqual(bw_cnt.frame_count, 2)  # grad=None and grad!=None
        self.assertEqual(bw_cnt.op_count, 48)

    def test_module_backward_hooks_aot(self):
        m1, inp1 = init_module_bw_hooks(True)
        out1 = steps(m1, inp1)

        m2, inp2 = init_module_bw_hooks(True)
        m2 = torch.compile(m2, backend="aot_eager", fullgraph=True)
        with compiled_autograd._enable(lambda gm: gm):
            out2 = steps(m2, inp2)

        self.assertEqual(m1.hook_count_pre, m2.hook_count_pre)
        self.assertEqual(m1.hook_count_post, m2.hook_count_post)
        self.assertEqual(out1, out2)
        self.assertEqual(inp1.grad, inp2.grad)
        self.assertEqual(m1.weight.grad, m2.weight.grad)
        self.assertEqual(m1.bias.grad, m2.bias.grad)

    def test_module_backward_hooks_inductor(self):
        m1, inp1 = init_module_bw_hooks(True)
        out1 = steps(m1, inp1)

        m2, inp2 = init_module_bw_hooks(False)
        m2 = torch.compile(m2, fullgraph=True)
        with compiled_autograd._enable(torch.compile(fullgraph=True)):
            out2 = steps(m2, inp2)

        self.assertEqual(m1.hook_count_pre, m2.hook_count_pre)
        self.assertEqual(m1.hook_count_post, m2.hook_count_post)
        self.assertEqual(out1, out2)
        self.assertEqual(inp1.grad, inp2.grad)
        self.assertEqual(m1.weight.grad, m2.weight.grad)
        self.assertEqual(m1.bias.grad, m2.bias.grad)

    def test_module_backward_hooks_multi_layers(self):
        a1, inp1 = init_module_bw_hooks(True)
        b1, _ = init_module_bw_hooks(True)
        out1 = steps(torch.nn.Sequential(a1, b1), inp1)

        a2, inp2 = init_module_bw_hooks(False)
        b2, _ = init_module_bw_hooks(False)
        with compiled_autograd._enable(torch.compile(fullgraph=True)):
            out2 = steps(
                torch.compile(torch.nn.Sequential(a2, b2), fullgraph=True), inp2
            )

        self.assertEqual(a1.hook_count_pre, a2.hook_count_pre)
        self.assertEqual(a1.hook_count_post, a2.hook_count_post)
        self.assertEqual(b1.hook_count_pre, b2.hook_count_pre)
        self.assertEqual(b1.hook_count_post, b2.hook_count_post)
        self.assertEqual(out1, out2)
        self.assertEqual(inp1.grad, inp2.grad)
        self.assertEqual(a1.weight.grad, a2.weight.grad)
        self.assertEqual(a1.bias.grad, a2.bias.grad)
        self.assertEqual(b1.weight.grad, b2.weight.grad)
        self.assertEqual(b1.bias.grad, b2.bias.grad)

    # TODO(jansel): support bw hooks with graph break

    def _assert_same_grad(self, a, b):
        self.assertEqual(type(a), type(b))
        self.assertEqual(a, b)
        self.assertEqual(a.grad, b.grad)
        self.assertEqual(a.requires_grad, b.requires_grad)

    def test_nn_param_return1(self):
        def fn(x):
            p = torch.nn.Parameter(x)
            return p, p.sin()

        opt = torch.compile(fn, fullgraph=True)
        x1 = torch.randn(16)
        x2 = x1.clone()

        p1, r1 = fn(x1)
        r1.sum().backward()
        p2, r2 = opt(x2)
        r2.sum().backward()
        self._assert_same_grad(r1, r2)
        self._assert_same_grad(p1, p2)

    def test_nn_param_return2(self):
        def fn(x):
            p = torch.nn.Parameter(x, requires_grad=False)
            return p, x + 1

        opt = torch.compile(fn, fullgraph=True)
        x1 = torch.randn(16)
        x2 = x1.clone()

        p1, r1 = fn(x1)
        p2, r2 = opt(x2)
        self._assert_same_grad(r1, r2)
        self._assert_same_grad(p1, p2)

    def test_nn_param_return3(self):
        def fn(x):
            p = torch.nn.Parameter(x + 123)
            return p, p.sin()

        opt = torch.compile(fn, fullgraph=True)
        x1 = torch.randn(16)
        x2 = x1.clone()

        p1, r1 = fn(x1)
        r1.sum().backward()
        p2, r2 = opt(x2)
        r2.sum().backward()
        self._assert_same_grad(r1, r2)
        self._assert_same_grad(p1, p2)

    def test_nn_param_return4(self):
        def fn(x):
            p = torch.nn.Parameter(x + 123, requires_grad=False)
            return p, x + 1

        opt = torch.compile(fn, fullgraph=True)
        x1 = torch.randn(16)
        x2 = x1.clone()

        p1, r1 = fn(x1)
        p2, r2 = opt(x2)
        self._assert_same_grad(r1, r2)
        self._assert_same_grad(p1, p2)

    @torch._functorch.config.patch(recompute_views=True)
    def test_fake_distributed_aot_eager(self):
        m1, inp1 = init_fake_distributed()
        out1 = steps(m1, inp1)

        m2, inp2 = init_fake_distributed()
        m2 = torch.compile(m2, backend="aot_eager", fullgraph=True)
        bw_cnt = CompileCounter()
        with compiled_autograd._enable(torch.compile(backend=bw_cnt, fullgraph=True)):
            out2 = steps(m2, inp2)

        self._assert_same_grad(m1.weight, m2.weight)
        self._assert_same_grad(inp1, inp2)
        self._assert_same_grad(out1, out2)
        # Recompile on grad==None/grad!=None
        self.assertEqual(bw_cnt.frame_count, 2)

    @skipIfRocm
    @skipIfXpu
    @requires_gpu()
    @torch._functorch.config.patch(recompute_views=True)
    def test_fake_distributed_inductor(self):
        m1, inp1 = init_fake_distributed(GPU_TYPE)
        out1 = steps(m1, inp1)

        m2, inp2 = init_fake_distributed(GPU_TYPE)
        m2 = torch.compile(m2, fullgraph=True)
        with compiled_autograd._enable(torch.compile(fullgraph=True)):
            out2 = steps(m2, inp2)

        self._assert_same_grad(m1.weight, m2.weight)
        self._assert_same_grad(inp1, inp2)
        self._assert_same_grad(out1, out2)


if __name__ == "__main__":
    if HAS_CPU and not IS_MACOS:
        run_tests(needs="filelock")