1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
# Owner(s): ["module: inductor"]
import itertools
import sys
import unittest
from typing import NamedTuple
import torch
from torch._inductor import config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import is_gpu
from torch.testing._internal.common_device_type import (
get_desired_device_type_test_bases,
)
from torch.testing._internal.common_utils import slowTest, TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
try:
try:
from . import (
test_combo_kernels,
test_foreach,
test_pattern_matcher,
test_select_algorithm,
test_torchinductor,
test_torchinductor_dynamic_shapes,
)
except ImportError:
import test_combo_kernels # @manual=fbcode//caffe2/test/inductor:combo_kernels-library
import test_foreach # @manual=fbcode//caffe2/test/inductor:foreach-library
import test_pattern_matcher # @manual=fbcode//caffe2/test/inductor:pattern_matcher-library
import test_select_algorithm # @manual=fbcode//caffe2/test/inductor:select_algorithm-library
import test_torchinductor # @manual=fbcode//caffe2/test/inductor:test_inductor-library
import test_torchinductor_dynamic_shapes # @manual=fbcode//caffe2/test/inductor:test_inductor-library_dynamic_shapes
except unittest.SkipTest:
if __name__ == "__main__":
sys.exit(0)
raise
_desired_test_bases = get_desired_device_type_test_bases(allow_xpu=True)
RUN_GPU = (
HAS_GPU
and any(is_gpu(getattr(x, "device_type", "")) for x in _desired_test_bases)
and not TEST_WITH_ASAN
)
class GpuWrapperTemplate:
pass
class TestGpuWrapper(InductorTestCase):
device = GPU_TYPE
class DynamicShapesGpuWrapperGpuTests(InductorTestCase):
device = GPU_TYPE
test_failures_gpu_wrapper = {
"test_mm_plus_mm2_cuda_dynamic_shapes": test_torchinductor.TestFailure(
("gpu_wrapper",), is_skip=True
),
"test_randint_xpu": test_torchinductor.TestFailure(("gpu_wrapper",), is_skip=False),
"test_randint_xpu_dynamic_shapes": test_torchinductor.TestFailure(
("gpu_wrapper",), is_skip=False
),
# ATen ops: scaled_dot_product_efficient_attention not implemented on XPU.
"test_scaled_dot_product_efficient_attention_xpu": test_torchinductor.TestFailure(
("gpu_wrapper",), is_skip=False
),
"test_scaled_dot_product_efficient_attention_xpu_dynamic_shapes": test_torchinductor.TestFailure(
("gpu_wrapper",), is_skip=False
),
}
def make_test_case(
name,
device,
tests,
condition=True,
slow=False,
func_inputs=None,
code_string_count=None,
check_code=True,
):
test_name = f"{name}_{device}" if device else name
if code_string_count is None:
code_string_count = {}
func = getattr(tests, test_name)
assert callable(func), "not a callable"
func = slowTest(func) if slow else func
@config.patch(cpp_wrapper=True, search_autotune_cache=False)
def fn(self):
tests.setUpClass()
tests.setUp()
try:
with torch._C._PreserveDispatchKeyGuard():
torch._C._dispatch_tls_set_dispatch_key_included(
torch._C.DispatchKey.Dense, True
)
_, code = test_torchinductor.run_and_get_cpp_code(
func, *func_inputs if func_inputs else []
)
if check_code:
self.assertEqual("CppWrapperCodeCache" in code, True)
self.assertTrue(
all(
code.count(string) == code_string_count[string]
for string in code_string_count
)
)
finally:
tests.tearDown()
tests.tearDownClass()
fn.__name__ = test_name
import copy
fn.__dict__ = copy.deepcopy(func.__dict__)
if condition:
setattr(
GpuWrapperTemplate,
test_name,
fn,
)
if RUN_GPU:
class BaseTest(NamedTuple):
name: str
device: str = GPU_TYPE
tests: InductorTestCase = test_torchinductor.GPUTests()
check_code: bool = True
# XPU Not implemented yet
XPU_BASE_TEST_SKIP = [
"test_foreach_cpp_wrapper",
"test_enable_dynamic_shapes_cpp_wrapper",
"test_dynamic_shapes_persistent_reduction_mixed_x_dim",
"test_cat_slice_cat",
"test_mm_plus_mm2",
"test_mm_plus_mm3",
"test_addmm",
"test_linear_relu",
"test_fft_real_input",
"test_fft_real_input_real_output",
]
# Maintain two separate test lists for cuda and cpp for now
for item in [
BaseTest("test_add_complex"),
BaseTest("test_add_complex4"),
BaseTest("test_as_strided"), # buffer reuse
BaseTest("test_batch_norm_2d_2"),
BaseTest("test_bernoulli1"),
BaseTest("test_bitwise"), # int32
BaseTest("test_bmm1"),
BaseTest("test_bmm2"),
BaseTest("test_buffer_use_after_remove"),
BaseTest("test_cat"), # alias
BaseTest("test_convolution1"),
BaseTest("test_conv_backward"),
BaseTest("test_custom_op_1"),
BaseTest("test_custom_op_2"),
BaseTest("test_custom_op_3"),
BaseTest("test_embedding_bag"), # test default FallbackKernel
BaseTest("test_index_put_deterministic_fallback"),
BaseTest("test_adding_tensor_offsets"),
BaseTest("test_index_tensor"),
BaseTest("test_inductor_layout_optimization_input_mutations"),
BaseTest("test_insignificant_strides"),
BaseTest("test_layer_norm"),
BaseTest("test_linear1"),
BaseTest("test_linear2"),
BaseTest("test_mm_views"),
BaseTest("test_multi_device"),
BaseTest("test_multi_threading"),
BaseTest("test_pow3"),
BaseTest("test_profiler_mark_wrapper_call"),
BaseTest("test_randint"),
BaseTest("test_reduction1"), # Reduction
BaseTest("test_relu"), # multiple inputs
BaseTest("test_repeat_interleave_2"),
BaseTest("test_roi_align"),
BaseTest("test_scalar_input"),
BaseTest("test_scaled_dot_product_attention"),
BaseTest("test_scaled_dot_product_efficient_attention"),
BaseTest("test_sort"),
BaseTest("test_silu"), # single input, single output
BaseTest("test_sum_dtype"), # float64
BaseTest("test_sum_int"), # bool, int64, int8, uint8
BaseTest("test_transpose"), # multiple outputs, buffer clear
*[
BaseTest(f"test_unspec_inputs_{str(dtype)[6:]}")
for dtype in test_torchinductor.test_dtypes
],
BaseTest("test_consecutive_split_cumprod"),
BaseTest("test_pointwise_hermite_polynomial_he"),
BaseTest("test_pointwise_hermite_polynomial_h"),
BaseTest(
"test_foreach_cpp_wrapper",
tests=test_foreach.ForeachTests(),
), # test foreach
BaseTest(
"test_enable_dynamic_shapes_cpp_wrapper",
tests=test_foreach.ForeachTests(),
),
BaseTest(
"test_dynamic_shapes_persistent_reduction_mixed_x_dim",
tests=test_combo_kernels.ComboKernelDynamicShapesTests(),
),
BaseTest(
"test_cat_slice_cat",
tests=test_pattern_matcher.TestPatternMatcher(),
),
# TODO: Re-enable this test after fixing cuda wrapper for conv Triton templates with dynamic shapes.
# This test is unstable: it succeeds when an ATEN kernel is used, and fails when a Triton kernel is used.
# Currently it passes on CI (an ATEN kernel is chosen) and fails locally (a Triton kernel is chosen).
# Ideally, it should succeed for whatever kernels.
# BaseTest(
# "test_convolution1",
# device=None,
# tests=test_select_algorithm.TestSelectAlgorithm(),
# ),
BaseTest(
"test_mm_plus_mm2",
tests=test_select_algorithm.TestSelectAlgorithm(),
),
BaseTest(
"test_mm_plus_mm3",
tests=test_select_algorithm.TestSelectAlgorithm(),
),
BaseTest("test_fft_real_input"),
BaseTest("test_fft_real_input_real_output"),
*[
# some dtypes may raise exception and be skipped in test_dtypeview, so set check_code to False here
BaseTest(
f"test_dtypeview_{str(dtype_x)[6:]}_{str(dtype_y)[6:]}",
check_code=False,
)
for dtype_x, dtype_y in itertools.product(
test_torchinductor.test_dtypes, test_torchinductor.test_dtypes
)
],
BaseTest("test_dtypeview_fusion"),
# skip if not enough SMs
BaseTest(
"test_addmm",
tests=test_select_algorithm.TestSelectAlgorithm(),
),
# skip if not enough SMs
BaseTest(
"test_linear_relu",
tests=test_select_algorithm.TestSelectAlgorithm(),
),
]:
if item.device == "xpu" and item.name in XPU_BASE_TEST_SKIP:
continue
make_test_case(item.name, item.device, item.tests, check_code=item.check_code)
from torch._inductor.utils import is_big_gpu
if GPU_TYPE == "cuda" and is_big_gpu():
skip_list = ["test_addmm", "test_linear_relu"]
# need to skip instead of omit, otherwise fbcode ci can be flaky
for test_name in skip_list:
test_failures_gpu_wrapper[
f"{test_name}_cuda"
] = test_torchinductor.TestFailure(("gpu_wrapper",), is_skip=True)
test_failures_gpu_wrapper[
f"{test_name}_gpu_dynamic_shapes"
] = test_torchinductor.TestFailure(("gpu_wrapper",), is_skip=True)
test_torchinductor.copy_tests(
GpuWrapperTemplate, TestGpuWrapper, "gpu_wrapper", test_failures_gpu_wrapper
)
DynamicShapesGpuWrapperTemplate = (
test_torchinductor_dynamic_shapes.make_dynamic_cls(GpuWrapperTemplate)
)
test_torchinductor.copy_tests(
DynamicShapesGpuWrapperTemplate,
DynamicShapesGpuWrapperGpuTests,
"gpu_wrapper",
test_failures_gpu_wrapper,
xfail_prop="_expected_failure_dynamic_wrapper",
)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if RUN_GPU:
run_tests(needs="filelock")
|