1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
# Owner(s): ["module: inductor"]
from typing import List
import torch
import torch._inductor.config as inductor_config
from functorch import make_fx
from torch import Tensor
from torch._dynamo.utils import ReinplaceCounters
from torch._higher_order_ops.auto_functionalize import (
auto_functionalized,
auto_functionalized_v2,
)
from torch._inductor.fx_passes.reinplace import reinplace_inplaceable_ops_core
from torch._inductor.test_case import run_tests, TestCase as InductorTestCase
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_LINUX,
parametrize,
subtest,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch.testing._internal.logging_utils import logs_to_string
aten = torch.ops.aten
const = torch.tensor(0.0)
device = GPU_TYPE
def num_reinplacing_failures():
return ReinplaceCounters.get_total_missed()
def miss_inplaced_bytes():
return ReinplaceCounters.get_total_missed_bytes()
@torch.library.custom_op("_reinplacing::sin", mutates_args={"result"})
def sin(x: torch.Tensor, result: torch.Tensor) -> None:
result.copy_(x.sin())
@torch.library.custom_op("_reinplacing::sin_cos", mutates_args={"out_sin", "out_cos"})
def sin_cos(x: torch.Tensor, out_sin: torch.Tensor, out_cos: torch.Tensor) -> None:
out_sin.copy_(x.sin())
out_cos.copy_(x.cos())
if HAS_GPU:
import triton # @manual
import triton.language as tl # @manual
@triton.jit
def sin_kernel(
in_ptr0,
out_ptr,
n_elements,
BLOCK_SIZE: "tl.constexpr",
):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(in_ptr0 + offsets, mask=mask)
output = tl.sin(x)
tl.store(out_ptr + offsets, output, mask=mask)
def sin_triton(x, out):
n_elements = x.numel()
sin_kernel[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)
else:
def sin_triton(x, out):
return
@torch.library.custom_op("test_view::boo", mutates_args={"x"})
def boo(x: torch.Tensor) -> None:
x.sin_()
class TestReinplacingPassCorrectness(InductorTestCase):
def setUp(self):
ReinplaceCounters.clear()
return super().setUp()
def _test(self, f):
nf = torch.compile(f)
inp = (
torch.randn(4, device=device),
torch.ones(2, device=device, dtype=torch.int),
)
inp2 = (inp[0].clone(), inp[1].clone())
self.assertEqual(f(*inp), nf(*inp2))
self.assertEqual(inp, inp2)
def test_dont_modify_live(self):
def f(x, y):
x = x.cos()
x2 = x.index_put((y,), const)
return x2, x
self._test(f)
def test_dont_modify_view_of_live(self):
def f(x, y):
x = x.cos()
x2 = aten.alias(x)
x2 = x2.index_put((y,), const)
y = x2 + x.cos()
return y
self._test(f)
def test_dont_modify_input(self):
def f(x, y):
return x.index_put((y,), const)
self._test(f)
def test_should_modify_inner(self):
def f(x, y):
x = x.cos()
x = x.index_put((y,), const)
return x
self._test(f)
def test_should_modify_input(self):
def f(x, y):
x = x.index_put_((y,), const)
return x
self._test(f)
def test_counters_functionalize_old(self):
ReinplaceCounters.clear()
def f(x):
out = torch.empty_like(x)
_, new_out = auto_functionalized(sin._opoverload, x=x, result=out)
y = out * new_out
return new_out, y
x = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x)
reinplace_inplaceable_ops_core(gm.graph)
# We shouldn't have been able to reinplace `out` because it was used after
# auto_functionalized. Note that this usually doesn't happen in practice;
# we're artificially creating this example to test the counter.
# IF THIS NUMBER GOES TO ZERO, PLEASE FIND ANOTHER EXAMPLE
self.assertEqual(num_reinplacing_failures(), 1)
self.assertEqual(miss_inplaced_bytes(), 12)
def test_counters_functionalize_v2(self):
ReinplaceCounters.clear()
def f(x):
out = torch.empty_like(x)
_, new_out = auto_functionalized_v2(
sin._opoverload,
x=x,
_result_base_index=0,
_result_size=(3,),
_result_stride=(1,),
_result_storage_offset=0,
_all_bases=[out],
)
y = out * new_out
return new_out, y
x = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x)
reinplace_inplaceable_ops_core(gm.graph)
# We shouldn't have been able to reinplace `out` because it was used after
# auto_functionalized. Note that this usually doesn't happen in practice;
# we're artificially creating this example to test the counter.
# IF THIS NUMBER GOES TO ZERO, PLEASE FIND ANOTHER EXAMPLE
self.assertEqual(num_reinplacing_failures(), 1)
def get_not_inplaced_count(self, graph):
counter = 0
auto_functionalized_found = False
for node in graph.nodes:
if (node.target == torch.ops.higher_order.auto_functionalized) or (
node.target == torch.ops.higher_order.auto_functionalized_v2
):
auto_functionalized_found = True
counter += len(node.meta["only_clone_these_tensors"])
assert auto_functionalized_found
return counter
def test_view_inplaced_functionalize_v2(self):
def f(arg0_1):
select = torch.ops.aten.select.int(arg0_1, 0, 0)
auto_functionalized = auto_functionalized_v2(
torch.ops.test_view.boo.default,
_x_base_index=0,
_x_size=(3,),
_x_stride=(1,),
_x_storage_offset=0,
_all_bases=[arg0_1],
)
getitem_1 = auto_functionalized[1]
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_1)
return ()
x1 = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x1)
reinplace_inplaceable_ops_core(gm.graph)
self.assertEqual(self.get_not_inplaced_count(gm.graph), 0)
# introduce a view another_view that is used `after` the copy
def test_view_inplaced2_functionalize_v2(self):
def f(arg0_1):
select = torch.ops.aten.select.int(arg0_1, 0, 0)
another_view = arg0_1[2]
auto_functionalized = auto_functionalized_v2(
torch.ops.test_view.boo.default,
_x_base_index=0,
_x_size=(3,),
_x_stride=(1,),
_x_storage_offset=0,
_all_bases=[arg0_1],
)
getitem_1 = auto_functionalized[1]
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_1)
return another_view
x1 = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x1)
reinplace_inplaceable_ops_core(gm.graph)
self.assertEqual(self.get_not_inplaced_count(gm.graph), 0)
# introduce a view another_view that is used `before` the copy
def test_views_not_inplaced_functionalize_v2(self):
def f(arg0_1):
select = torch.ops.aten.select.int(arg0_1, 0, 0)
another_view = arg0_1[2]
auto_functionalized = auto_functionalized_v2(
torch.ops.test_view.boo.default,
_x_base_index=0,
_x_size=(3,),
_x_stride=(1,),
_x_storage_offset=0,
_all_bases=[arg0_1],
)
getitem_1 = auto_functionalized[1]
use_another_view = another_view * 10
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_1)
return use_another_view
x1 = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x1)
reinplace_inplaceable_ops_core(gm.graph)
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
# a view over input without copy node, inplace not allowed
def test_views_not_inplaced2_functionalize_v2(self):
def f(arg0_1):
select = torch.ops.aten.select.int(arg0_1, 0, 0)
another_view = arg0_1[2]
auto_functionalized = auto_functionalized_v2(
torch.ops.test_view.boo.default,
_x_base_index=0,
_x_size=(3,),
_x_stride=(1,),
_x_storage_offset=0,
_all_bases=[arg0_1],
)
getitem_1 = auto_functionalized[1]
return
x1 = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x1)
reinplace_inplaceable_ops_core(gm.graph)
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
# no copy nodes, view over local, with a use for another view
def test_views_not_inplaced3_functionalize_v2(self):
def f(arg0_1):
a = torch.ones(10)
another_view = a[2]
auto_functionalized = auto_functionalized_v2(
torch.ops.test_view.boo.default,
_x_base_index=0,
_x_size=(),
_x_stride=(),
_x_storage_offset=0,
_all_bases=[a],
)
getitem_1 = auto_functionalized[1]
return another_view
x1 = torch.randn(3, device=device)
gm = make_fx(f, tracing_mode="fake")(x1)
reinplace_inplaceable_ops_core(gm.graph)
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
def test_multi_output_intermediate(self):
for requires_grad in [False, True]:
for enable_v2 in [False, True]:
with inductor_config.patch(
{"enable_auto_functionalized_v2": enable_v2}
):
ReinplaceCounters.clear()
def f(x):
out1 = torch.empty_like(x)
out2 = torch.empty_like(x)
sin_cos(x, out1, out2)
return out1, out2, x**2
x = torch.randn(3, device=device, requires_grad=requires_grad)
res1, res2, _ = torch.compile(f)(x)
self.assertEqual(res1, x.sin())
self.assertEqual(res2, x.cos())
self.assertEqual(num_reinplacing_failures(), 0)
def test_multiple_mutations(self):
ReinplaceCounters.clear()
def f(x, out):
sin(x, out)
sin(out, out)
sin(out, out)
return out
x = torch.randn(3, device=device)
out = torch.randn(3, device=device)
result = torch.compile(f)(x, out)
self.assertEqual(result, x.sin().sin().sin())
self.assertEqual(result, out)
self.assertEqual(num_reinplacing_failures(), 0)
def test_multiple_intermediate(self):
ReinplaceCounters.clear()
def f(x):
out = torch.empty_like(x)
sin(x, out)
sin(out, out)
sin(out, out)
return out
x = torch.randn(3, device=device)
result = torch.compile(f)(x)
self.assertEqual(result, x.sin().sin().sin())
self.assertEqual(num_reinplacing_failures(), 0)
def test_lists_functionalize_v2(self):
with inductor_config.patch({"enable_auto_functionalized_v2": True}):
@torch.library.custom_op("mylib::mutate_op", mutates_args={"y"})
def mutate_op(y: List[Tensor]) -> None:
y[0].add_(2)
y[1].add_(3)
@torch.compile(fullgraph=True, dynamic=False, backend="inductor")
def f(b):
mutate_op([b[0], b[1]])
x1 = torch.tensor([0.3, 0.4], device=device)
log_stream, ctx = logs_to_string(
"torch._inductor.compile_fx", "post_grad_graphs"
)
with ctx():
torch.compile(f, backend="inductor", fullgraph=True)(x1)
post_grad_graphs = "\n".join(
log_stream.getvalue().strip().split("\n")[3:]
).strip()
# We can inplace the base y. no clones emitted.
self.assertEqual(num_reinplacing_failures(), 0)
self.assertEqual(miss_inplaced_bytes(), 0)
self.assertEqual(post_grad_graphs.count("aten.clone"), 0)
def test_lists_old_functionalize(self):
with inductor_config.patch({"enable_auto_functionalized_v2": False}):
@torch.library.custom_op("mylib::mutate_op", mutates_args={"y"})
def mutate_op(y: List[Tensor]) -> None:
y[0].add_(2)
y[1].add_(3)
@torch.compile(fullgraph=True, dynamic=False, backend="inductor")
def f(b):
mutate_op([b[0], b[1]])
x1 = torch.tensor([0.3, 0.4], device=device)
log_stream, ctx = logs_to_string(
"torch._inductor.compile_fx", "post_grad_graphs"
)
with ctx():
torch.compile(f, backend="inductor", fullgraph=True)(x1)
post_grad_graphs = "\n".join(
log_stream.getvalue().strip().split("\n")[3:]
).strip()
# Can't reinplace on views yet (1 for the "entire list" failing to reinplace)
self.assertEqual(num_reinplacing_failures(), 1)
self.assertEqual(miss_inplaced_bytes(), 8)
# Both list inputs failed to reinplace. So we should have emitted clones for them.
self.assertEqual(post_grad_graphs.count("aten.clone"), 2)
@parametrize(
"factory_op",
[
subtest(torch.ones_like, name="ones_like"),
subtest(torch.empty_like, name="empty_like"),
],
)
@parametrize(
"sin_op",
[
subtest(sin, name="sin_op"),
subtest(sin_triton, name="sin_triton"),
],
)
def test_partitioner_recomputes_factory(self, factory_op, sin_op):
class MySin(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
out = factory_op(x)
sin_op(x, out)
ctx.save_for_backward(out)
return out
@staticmethod
def backward(ctx, grad):
(saved,) = ctx.saved_tensors
out = factory_op(grad)
sin_op(saved, out)
return out
@torch.compile(backend="inductor")
def f(x):
return MySin.apply(x)
x = torch.randn(3, requires_grad=True, device=device)
y = f(x)
self.assertEqual(num_reinplacing_failures(), 0)
instantiate_parametrized_tests(TestReinplacingPassCorrectness)
if __name__ == "__main__":
if IS_LINUX and HAS_GPU:
run_tests(needs="filelock")
|