1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
# Owner(s): ["module: inductor"]
import os
import unittest
from typing import Callable, List, Optional
import torch
from torch import multiprocessing as mp, nn
from torch._dynamo import reset
from torch._dynamo.exc import BackendCompilerFailed
from torch._dynamo.testing import rand_strided, reset_rng_state
from torch._inductor import config
from torch._inductor.autotune_process import (
BenchmarkRequest,
CUDA_VISIBLE_DEVICES,
TuningProcessPool,
)
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import Buffer, ChoiceCaller, FixedLayout
from torch._inductor.kernel.mm_plus_mm import aten_mm_plus_mm
from torch._inductor.select_algorithm import (
AlgorithmSelectorCache,
TritonTemplateCaller,
)
aten = torch.ops.aten
from torch._inductor.mock_cache import global_stats, PatchCaches, Stats
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import fresh_inductor_cache, run_and_get_code
from torch._inductor.virtualized import V
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfRocm,
TEST_WITH_ROCM,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
torch.set_float32_matmul_precision("high")
if HAS_CUDA:
torch.cuda.memory._set_allocator_settings("expandable_segments:False")
_CUTLASS_DIR = os.path.join(os.path.dirname(__file__), "../../third_party/cutlass/")
def _get_path_without_sccache() -> str:
"""
Get the PATH environment variable without sccache.
"""
path_envs = os.environ.get("PATH", "").split(":")
path_envs = [env for env in path_envs if "/opt/cache/bin" not in env]
return ":".join(path_envs)
def benchmark_choice(choice, args, out, expected_out, timings):
result = choice.benchmark(*args, out=out)
if expected_out is not None:
torch.testing.assert_close(out, expected_out)
timings.copy_(torch.tensor(result))
class FailChoiceCaller(ChoiceCaller):
def benchmark(self, *args, out):
raise RuntimeError("This choice caller will always throw")
@instantiate_parametrized_tests
class TestMaxAutotune(TestCase):
def _create_buffer(self, name, shape):
return Buffer(
name=name,
layout=FixedLayout(torch.device("cuda:0"), dtype=torch.float32, size=shape),
)
def test_benchmark_choice_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
# expected_out = (mat1 @ mat2) + (mat3 @ mat4)
expected_out = None
choice = aten_mm_plus_mm.bind((buf1, buf2, buf3, buf4), layout)
# use a tensor since the mutation to a python list in a sub process
# is not synced back to the parent process
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertEqual(0, child.exitcode)
print(f"timings is {timings}, out {out}, expected_out {expected_out}")
def test_benchmark_choice_fail_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
expected_out = (mat1 @ mat2) + (mat3 @ mat4)
choice = FailChoiceCaller("fail_choice_caller", [], None, description="")
# use a tensor since python list is not synced back
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertNotEqual(0, child.exitcode)
@parametrize("autotune_in_subproc", (True, False))
@parametrize("autotune_multi_device", (True, False))
def test_max_autotune_mm_plus_mm(self, autotune_in_subproc, autotune_multi_device):
"""
This crash previously due to a triton issue: https://github.com/openai/triton/issues/1298 .
With autotuning in subprocess, we don't crash anymore.
"""
m, n, k = 2048, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": autotune_in_subproc,
"autotune_multi_device": autotune_multi_device,
}
):
torch.compile(mm_plus_mm)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_mm_plus_mm_zero_size_input(self, dynamic):
"""
Make sure autotuning mm_plus_mm with zero-size input works without crashes.
"""
m, n, k = 0, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm_plus_mm, dynamic=dynamic)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm(self, dynamic: bool):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm_zero_size_input(self, dynamic: bool):
"""
Make sure autotuning mm with zero-size input works without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@skipIfRocm
def test_precompilation_threads(self):
import threading
from typing import Any, Dict
from unittest.mock import Mock, patch
class FakeChoiceCaller(ChoiceCaller):
def __init__(self) -> None:
super().__init__("none", [], Mock(), description="")
self.thread_id = None
def precompile(self):
self.thread_id = threading.get_ident()
def call_name(self) -> str:
return None
def to_callable(self):
return None
def hash_key(self) -> str:
return str(hash(self))
def output_node(self) -> "TensorBox": # noqa: F821
return None
fake_choices = [FakeChoiceCaller() for i in range(10)]
fake_lookup_result = dict.fromkeys(fake_choices, 0.123)
def no_lookup(
choices: List[ChoiceCaller],
op: str,
inputs: str,
benchmark: Callable[[Any], Dict[ChoiceCaller, float]],
) -> Optional[Dict[ChoiceCaller, float]]:
if benchmark is not None:
return benchmark(choices)
asc = AlgorithmSelectorCache()
def fake_benchmark_fn(*args, **kwargs):
return fake_lookup_result
main_thread_id = threading.get_ident()
mock_debug_handler = Mock()
old_debug_handler = V.debug
try:
V.set_debug_handler(mock_debug_handler)
with patch.object(asc, "lookup", new=no_lookup):
with patch.object(
asc, "make_benchmark_fn", return_value=fake_benchmark_fn
):
with config.patch(
{
"autotune_in_subproc": False,
"compile_threads": len(fake_choices),
}
):
asc("test_call", fake_choices, [], Mock())
for fake_choice in fake_choices:
assert (
fake_choice.thread_id is not None
), "Expected all ChoiceCaller's precompile method to have been called"
assert (
fake_choice.thread_id != main_thread_id
), "Expected all ChoiceCaller's precompile method to have been called on separate thread"
finally:
V.set_debug_handler(old_debug_handler)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm(self, dynamic=False):
"""
Make sure autotuning addmm in sub processes work without crashes.
"""
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
Y_compiled = torch.compile(addmm, dynamic=dynamic)(x, a, b)
Y = addmm(x, a, b)
torch.testing.assert_close(Y_compiled, Y, atol=1e-2, rtol=1e-2)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm_zero_size_input(self, dynamic):
"""
Make sure autotuning addmm with zero-size input works without crashes.
"""
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(addmm, dynamic=dynamic)(x, a, b)
@skipIfRocm
def test_autotune_conv1x1(self):
# Assuming input has 3 channels and we want to produce 16 channels as output
conv1x1 = (
torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
.to(memory_format=torch.channels_last)
.cuda()
)
# Example input tensor: batch size = 4, channels = 3, height = 32, width = 32
# The memory format is set to `channels_last`
input_tensor = (
torch.randn(4, 3, 32, 32)
.contiguous(memory_format=torch.channels_last)
.cuda()
)
with config.patch(
{"max_autotune": True, "max_autotune_gemm_backends": "TRITON"}
):
@torch.compile()
def foo(mod, x):
return mod(x)
with torch.no_grad():
out, code = run_and_get_code(foo, conv1x1, input_tensor)
FileCheck().check_not("extern_kernels.convolution").run(code[0])
self.assertEqual(conv1x1(input_tensor), out, atol=1e-2, rtol=0)
@skipIfRocm
def test_filled_cache_precompile(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
torch._dynamo.reset()
counters.clear()
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(search_autotune_cache=True)
def test_search_autotune_cache(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile()(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(max_autotune=True, max_fusion_size=2)
def test_jit_fusion_matches_aot_fusion(self):
# In this example, AOTInductor's JIT-compile will fuse(buf1, buf2) due
# to proximity, we want to make sure AOT-compile pass does the same.
# AOT could do fuse(buf2, buf4) instead if buf3 was pushed to the end
# of the V.graph.buffers list because fuse(buf2, buf4) would have a
# better proximity score than fuse(buf1, buf2). This scenario is possible
# since finalizing MultiTemplateBuffers needs to replace buffers.
def fn(x, number):
buf0 = x + x
buf1 = number.item()
buf2 = x * x
buf3 = x @ x # MultiTemplateBuffer
buf4 = x**2
return buf0, buf1, buf2, buf3, buf4
inputs = (torch.rand([256, 256], device="cuda"), torch.tensor(3, device="cuda"))
torch._export.aot_compile(fn, args=inputs)
@config.patch(autotune_local_cache=False, autotune_remote_cache=False)
@skipIfRocm
def test_precompilations(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
torch.testing.assert_close(fn_c(*inputs), fn(*inputs), atol=1e-2, rtol=1e-2)
from torch._dynamo.utils import counters
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 2)
def test_cat_addmm(self):
def fn(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor):
return torch.cat(
[
torch.addmm(a, b, c),
torch.addmm(b, c, a),
],
1,
)
args = [
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
]
with config.patch(
{
"max_autotune": True,
"max_autotune_gemm_backends": "Triton",
}
):
expected = fn(*args)
actual = torch.compile(fn)(*args)
torch.testing.assert_close(actual, expected, atol=1e-2, rtol=1e-2)
def test_triton_template_with_epilogues_and_dynamic_shape(self):
def fn(
x: torch.Tensor, w: torch.Tensor, bias: torch.Tensor, mul: torch.Tensor
) -> torch.Tensor:
return (
torch.nn.functional.relu(
torch.matmul(torch.transpose(x, 0, 1), torch.transpose(w, 0, 1))
+ bias
)
* mul
)
M0 = 5
M1 = 8
K = 4
N = 3
w = torch.rand(N, K).cuda().half()
b = torch.rand(N).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": "Triton",
}
):
compiled_fn = torch.compile(
fn, fullgraph=True, dynamic=True, mode="max-autotune-no-cudagraphs"
)
x0 = torch.rand(K, M0).cuda().half()
mul0 = torch.rand(M0, N).cuda().half()
y0 = compiled_fn(x0, w, b, mul0)
y0_expected = fn(x0, w, b, mul0)
torch.testing.assert_close(y0, y0_expected)
x1 = torch.rand(K, M1).cuda().half()
mul1 = torch.rand(M1, N).cuda().half()
y1 = compiled_fn(x1, w, b, mul1)
y1_expected = fn(x1, w, b, mul1)
torch.testing.assert_close(y1, y1_expected)
@config.patch(
benchmark_kernel=True,
fallback_random=True,
max_autotune_gemm=True,
)
@parametrize("device", ("cpu", "cuda"))
def test_matmul_dropout(self, device):
def fwd(a, b):
x = a @ b
x = torch.nn.functional.dropout(x, 0.1)
return x
def fn(a, b):
x = fwd(a, b).sum()
x.backward()
return a.grad
N = 128
a = torch.randn(N, N, device=device, requires_grad=True)
b = torch.randn(N, N, device=device)
opt_fn = torch.compile(fn)
reset_rng_state()
ref = fn(a, b)
reset_rng_state()
act = opt_fn(a, b)
if N <= 8:
print(f"ref\n{ref}\nact\n{act}")
torch.testing.assert_close(ref, act, atol=1e-1, rtol=1e-1)
@config.patch(
max_autotune_gemm=True,
)
@unittest.skipIf(
torch.cuda.device_count() < 2, "Need at least 2 devices for this test"
)
def test_autotune_device_guard(self):
x = torch.randn(1024, 1024, device="cuda:1")
y = torch.randn(1024, 1024, device="cuda:1")
def f(x, y):
return x @ y
with fresh_inductor_cache():
act = torch.compile(f)(x, y)
ref = f(x, y)
self.assertTrue(torch.allclose(act, ref, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input(self, kernel_size=3):
x = torch.randn(0, 256, 14, 14, device="cuda")
weight = torch.randn(256, 256, kernel_size, kernel_size, device="cuda")
def f(x, weight):
return torch.convolution(
x,
weight,
bias=None,
stride=[1, 1],
padding=[0, 0],
dilation=[1, 1],
transposed=False,
output_padding=[0, 0],
groups=1,
)
opt_f = torch.compile(f)
ref = f(x, weight)
act = opt_f(x, weight)
self.assertTrue(torch.allclose(ref, act, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input_with_1x1_kernel(self):
self.test_empty_conv_input(kernel_size=1)
@config.patch(max_autotune_gemm_backends="TRITON")
def test_baddmm(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(
torch.randn(64, 64, 192, dtype=torch.float16)
)
self.bias = torch.nn.Parameter(
torch.randn(64, 1, 192, dtype=torch.float16)
)
def forward(self, x):
return torch.ops.aten.baddbmm.default(self.bias, x, self.weight)
x = torch.randn(
64, 2048, 64, dtype=torch.float16, requires_grad=False, device="cuda"
)
mod = M().cuda()
m_c = torch.compile(mode="max-autotune")(mod)
out, code = run_and_get_code(m_c, x)
self.assertEqual(out, mod(x))
FileCheck().check("triton_tem_fused_baddbmm").run(code[0])
@config.patch(max_autotune=True)
def test_conv1x1_with_free_symbols(self):
"""
Make sure there is no exception due to free symbols.
"""
conv = nn.Conv2d(
3, 64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False
).to(device="cuda")
@torch.compile
def f(x, y, z):
h = y.nonzero().size(0)
w = z.nonzero().size(0)
x = x[:, :, :h, :w]
x = conv(x)
return x
x = torch.randn(4, 3, 224, 224).to(
memory_format=torch.channels_last, device="cuda"
)
for _ in range(2):
y = torch.randint(0, 10, (224,)).to(device="cuda")
z = torch.randint(0, 10, (224,)).to(device="cuda")
f(x, y, z)
def _test_cat_max_autotune_impl(self, using_triton_mm):
def f(x, y):
y = torch.cos(y)
x = torch.mm(x, x)
return torch.cat([x, y])
f_c = torch.compile(mode="max-autotune-no-cudagraphs")(f)
inps = [torch.randn(32, 32, device="cuda"), torch.randn(32, 32, device="cuda")]
out, code = run_and_get_code(f_c, inps[0], inps[1])
self.assertEqual(f_c(*inps), f(*inps), atol=0.03, rtol=0.25)
# mm kernel, and cos kernel
count = 2 if using_triton_mm else 1
FileCheck().check("call(").check_count(".run", count, exactly=True).run(code[0])
def f(x, y):
y = torch.cos(y)
x = torch.mm(x, x)
out = torch.cat([x, y])
return out, x + 1
f_c = torch.compile(mode="max-autotune-no-cudagraphs")(f)
out, code = run_and_get_code(f_c, inps[0], inps[1])
self.assertEqual(f_c(*inps), f(*inps), atol=0.03, rtol=0.25)
FileCheck().check("call(").check_count(".run", 2, exactly=True).run(code[0])
def f(x, y):
y = torch.cos(y)
x = torch.mm(x, x)
return torch.cat([x, y]), torch.cat([y, x])
f_c = torch.compile(mode="max-autotune-no-cudagraphs")(f)
self.assertEqual(f_c(*inps), f(*inps), atol=0.03, rtol=0.25)
@config.patch({"test_configs.force_extern_kernel_in_multi_template": True})
def test_cat_max_autotune_extern(self):
self._test_cat_max_autotune_impl(using_triton_mm=False)
@config.patch(max_autotune_gemm_backends="TRITON")
def test_cat_max_autotune_triton(self):
self._test_cat_max_autotune_impl(using_triton_mm=True)
def test_conv_cat(self):
class ToyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
3, 64, kernel_size=3, stride=1, padding=1, bias=False
)
def forward(self, x):
x = self.conv(x)
return torch.cat((x, x + 1))
with torch.no_grad():
m = ToyModel().to(device="cuda")
input_tensor = torch.randn(32, 3, 64, 64).to(device="cuda")
# convolution is not currently plannable
m = torch.compile(m, mode="max-autotune-no-cudagraphs")
out, code = run_and_get_code(m, input_tensor)
self.assertEqual(out, m(input_tensor))
if not TEST_WITH_ROCM:
FileCheck().check("triton_poi_fused_cat_2.run").run(code[0])
def test_conv3d(self):
fn = torch.nn.functional.conv3d
image = torch.randn([1, 3, 8, 16, 32])
filt = torch.randn([3, 3, 7, 7, 7])
with config.patch({"max_autotune": True}):
expected = fn(image, filt)
actual = torch.compile(fn)(image, filt)
torch.testing.assert_close(actual, expected, atol=6e-5, rtol=0.001)
@config.patch(
max_autotune=True, max_autotune_conv_backends="", layout_optimization=False
)
def test_conv_backend(self):
m = torch.nn.Sequential(
torch.nn.Conv2d(3, 3, 1, 1),
).cuda()
inp = torch.randn([2, 3, 16, 16]).cuda()
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(m)(inp)
self.assertIn("NoValidChoicesError", str(context.exception))
def test_non_contiguous_input_mm(self):
"""
Make sure the triton template can work with non-contiguous inputs without crash.
Check https://github.com/pytorch/pytorch/issues/125437 for more details.
"""
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return x @ y
ref = x @ y
act = f(x, y)
torch.testing.assert_close(act, ref, atol=2e-2, rtol=1e-2)
def test_non_contiguous_input_addmm(self):
b = torch.randn((768), dtype=torch.bfloat16, device="cuda")
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.addmm(b, x, y)
ref = torch.addmm(b, x, y)
act = f(x, y)
torch.testing.assert_close(act, ref, atol=2e-2, rtol=1e-2)
def test_non_contiguous_input_bmm(self):
x = rand_strided(
(1, 50257, 32768), (0, 1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided(
(1, 32768, 768), (0, 768, 1), dtype=torch.bfloat16, device="cuda"
)
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.bmm(x, y)
ref = torch.bmm(x, y)
act = f(x, y)
torch.testing.assert_close(act, ref, atol=2e-2, rtol=1e-2)
def test_non_contiguous_input_mm_plus_mm(self):
x1 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y1 = rand_strided((32768, 768), (768, 1), device="cuda")
x2 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y2 = rand_strided((32768, 768), (768, 1), device="cuda")
@torch.compile(mode="max-autotune")
def f(x1, y1, x2, y2):
return x1 @ y1 + x2 @ y2
ref = x1 @ y1 + x2 @ y2
act = f(x1, y1, x2, y2)
torch.testing.assert_close(act, ref, atol=1e-2, rtol=1e-2)
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="",
autotune_fallback_to_aten=False,
)
def test_no_valid_choices(self):
a = torch.zeros([2, 2], device="cuda")
b = torch.zeros([2, 2], device="cuda")
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
@parametrize("multi_template", (True, False))
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="TRITON",
autotune_fallback_to_aten=False,
)
def test_inf_timing(self, multi_template):
from unittest.mock import patch
lookup = AlgorithmSelectorCache.lookup
def mock_lookup(self, *args, **kwargs):
timings = lookup(self, *args, **kwargs)
return {choice: float("inf") for choice in timings.keys()}
a = torch.zeros([16, 16], device="cuda")
b = torch.zeros([16, 16], device="cuda")
with patch.object(AlgorithmSelectorCache, "lookup", mock_lookup), config.patch(
benchmark_epilogue_fusion=multi_template
):
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
@instantiate_parametrized_tests
class TestMaxAutotuneRemoteCache(TestCase):
def setUp(self):
super().setUp()
PatchCaches.setUp()
def tearDown(self):
super().tearDown()
PatchCaches.tearDown()
@skipIfRocm
@parametrize("dynamic", (False, True))
def test_max_autotune_remote_caching(self, dynamic: bool):
from unittest.mock import patch
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
def f(x, y):
return Model()(x, y)
x = torch.randn(100, 100).cuda()
y = torch.randn(100, 100).cuda()
with config.patch(
{
"autotune_local_cache": False,
"autotune_remote_cache": True,
}
), patch.dict(os.environ), PatchCaches():
os.environ.pop("TRITON_CACHE_MANAGER", None)
with config.patch({"max_autotune": True}):
for _ in range(4):
with fresh_inductor_cache():
torch.compile(mm, dynamic=dynamic)(a, b)
reset()
with torch.compiler.config.patch(
{"cache_key_tag": "test"}
), fresh_inductor_cache():
torch.compile(mm, dynamic=dynamic)(a, b)
reset()
global_stats.report()
self.assertEqual(global_stats.autotune_remote, Stats(2, 3, 2))
global_stats.reset()
for _ in range(4):
with fresh_inductor_cache():
torch.compile(f, dynamic=dynamic)(x, y)
reset()
with torch.compiler.config.patch(
{"cache_key_tag": "test"}
), fresh_inductor_cache():
torch.compile(mm, dynamic=dynamic)(a, b)
reset()
global_stats.report()
self.assertEqual(global_stats.autotune_remote, Stats(2, 3, 2))
class TestBenchmarkRequest(BenchmarkRequest):
def __init__(
self, value: float, multi_device: bool, parent_visible_devices: Optional[str]
) -> None:
self.value = value
self.multi_device = multi_device
self.parent_visible_devices = parent_visible_devices
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
# Verify that the visible devices env var is set correctly. If multi-device
# auto-tuning is disabled, the visible devices should be unmanipulated from
# the parent process. If multi-device auto-tuning is enabled, the visible
# devices should be a _single_ valid device number. Note that we can't perform
# this validation directly from the test body because benchmarks execute in a
# separate process. If the check fails, however, the test will detect the
# failure by virtue of not receiving the expected result back.
visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
if not self.multi_device:
assert visible_devices == self.parent_visible_devices
else:
assert self.parent_visible_devices is not None
valid_devices = self.parent_visible_devices.split(",")
assert visible_devices in valid_devices
return self.value
class TestTritonTemplateCaller(TritonTemplateCaller):
def __init__(self, bmreq: TestBenchmarkRequest):
self.bmreq = bmreq
def __str__(self) -> str:
return "test"
class TestTuningProcess(TestCase):
def test_tuning_pool_crash(self):
# Use only one device/subprocess so we test the process restarts
# and is usable after a "crash".
with config.patch({"autotune_multi_device": False}):
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
# First force the tuning process to "crash" by setting a bogus
# string for the expected visible devices.
bmreq = TestBenchmarkRequest(3.14, False, "invalid")
choice = TestTritonTemplateCaller(bmreq)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], float("inf"))
# Then send another request and make sure the sub-process
# has restarted and is operational. 'valid_devices' expected
# to be None because autotune_multi_device is off.
choice.bmreq.parent_visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], bmreq.value)
tuning_pool.terminate()
def test_tuning_pool_multiple_devices(self):
with config.patch({"autotune_multi_device": True}):
# Adapt the test to the available devices (and whether CUDA_VISIBLE_DEVICES
# is already set in the environment); use a subset of the available devices
# to ensure only the subset are visible to the sub-processes.
if CUDA_VISIBLE_DEVICES in os.environ:
visible_devices = os.environ[CUDA_VISIBLE_DEVICES].split(",")
else:
visible_devices = [str(d) for d in range(torch.cuda.device_count())]
parent_visible_devices = ",".join(visible_devices[-2:])
os.environ[CUDA_VISIBLE_DEVICES] = parent_visible_devices
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
choice1 = TestTritonTemplateCaller(
TestBenchmarkRequest(3.14, True, parent_visible_devices),
)
choice2 = TestTritonTemplateCaller(
TestBenchmarkRequest(2.718, True, parent_visible_devices),
)
timings = tuning_pool.benchmark([choice1, choice2])
self.assertEqual(timings[choice1], choice1.bmreq.value)
self.assertEqual(timings[choice2], choice2.bmreq.value)
tuning_pool.terminate()
if __name__ == "__main__":
from torch._inductor.utils import is_big_gpu
# Set env to make it work in CI.
if HAS_CUDA and HAS_CPU and is_big_gpu():
run_tests()
|