1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
# Owner(s): ["module: inductor"]
import torch
from torch._inductor import config, metrics
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import collect_defined_kernels
from torch._inductor.wrapper_benchmark import get_kernel_category_by_source_code
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
example_kernel = """
@triton_heuristics.reduction(
size_hints=[1024, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={
'signature': {'in_out_ptr0': '*fp32', 'in_ptr0': '*fp32', 'xnumel': 'i32', 'rnumel': 'i32'},
'device': 0,
'device_type': 'GPU_TYPE',
'constants': {},
'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={
'autotune_hints': set(),
'kernel_name': 'triton_red_fused_add_sum_2',
'mutated_arg_names': ['in_out_ptr0'],
'no_x_dim': False,
'kernel_num_gb': 0.0083968
}
)
@triton.jit
def triton_red_fused_add_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = _tmp2 + tmp1
_tmp2 = tl.where(rmask & xmask, tmp3, _tmp2)
tmp2 = tl.sum(_tmp2, 1)[:, None]
tmp4 = tl.load(in_out_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tmp4 + tmp2
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
""".replace(
"GPU_TYPE", GPU_TYPE
)
class TestMetrics(TestCase):
def test_parse_proper_kernel_fn_code(self):
proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel)
assert proper_kernel_fn_code.startswith("def ")
def test_count_args(self):
proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel)
self.assertEqual(6, metrics._count_args(proper_kernel_fn_code))
def test_count_pattern(self):
proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel)
self.assertEqual(2, metrics._count_pattern(proper_kernel_fn_code, "tl.load"))
self.assertEqual(1, metrics._count_pattern(proper_kernel_fn_code, "tl.store"))
self.assertEqual(1, metrics._count_pattern(proper_kernel_fn_code, "for "))
def test_parse_reduction_hint(self):
kernel_category = get_kernel_category_by_source_code(example_kernel)
self.assertEqual("reduction", kernel_category)
self.assertEqual(
"INNER", metrics._parse_reduction_hint(kernel_category, example_kernel)
)
@config.patch("fx_graph_remote_cache", False)
def test_atomic_add(self):
@torch.compile
def f(lhs, index, rhs):
return lhs.index_put_([index], rhs, accumulate=True)
lhs = torch.randn(1024, device=GPU_TYPE)
index = torch.randint(0, 1024, [32], device=GPU_TYPE, dtype=torch.int32)
rhs = torch.randn(32, device=GPU_TYPE)
kernel_list = []
with collect_defined_kernels(kernel_list):
f(lhs, index, rhs)
self.assertEqual(len(kernel_list), 1)
kernel_code = kernel_list[0]
self.assertEqual(metrics._count_pattern(kernel_code, "tl.atomic_add"), 1)
@largeTensorTest(25e7 * 2 * 4, device=GPU_TYPE)
@config.patch("fx_graph_remote_cache", False)
@config.patch("benchmark_kernel", True)
def test_kernel_args_num_gb(self):
@torch.compile
def f(x):
return x + 1
x = torch.randn(int(25e7), device=GPU_TYPE)
kernel_list = []
with collect_defined_kernels(kernel_list):
f(x)
self.assertEqual(len(kernel_list), 1)
kernel_code = kernel_list[0]
self.assertEqual(
metrics._parse_kernel_args_num_gb(kernel_code, "pointwise"), 2.0
)
if __name__ == "__main__":
if HAS_GPU:
run_tests()
|