1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
# Owner(s): ["module: inductor"]
import unittest
from unittest.mock import patch
import torch._dynamo.config as dynamo_config
import torch._inductor.config as inductor_config
from torch._dynamo.test_minifier_common import MinifierTestBase
from torch._inductor import config
from torch.export import load as export_load
from torch.testing._internal.common_utils import (
IS_JETSON,
IS_MACOS,
skipIfXpu,
TEST_WITH_ASAN,
)
from torch.testing._internal.inductor_utils import GPU_TYPE
from torch.testing._internal.triton_utils import requires_gpu
class MinifierTests(MinifierTestBase):
# Test that compile and accuracy errors after aot can be repro'd (both CPU and CUDA)
def _test_after_aot(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
run_code = f"""\
@torch.compile()
def inner(x):
x = torch.relu(x)
x = torch.cos(x)
return x
inner(torch.randn(20, 20).to("{device}"))
"""
self._run_full_test(run_code, "aot", expected_error, isolate=False)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "compile_error")
def test_after_aot_cpu_compile_error(self):
self._test_after_aot("cpu", "CppCompileError")
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_after_aot_cpu_accuracy_error(self):
self._test_after_aot("cpu", "AccuracyError")
@requires_gpu
@inductor_config.patch("triton.inject_relu_bug_TESTING_ONLY", "compile_error")
def test_after_aot_gpu_compile_error(self):
self._test_after_aot(GPU_TYPE, "SyntaxError")
@requires_gpu
@inductor_config.patch("triton.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_after_aot_gpu_accuracy_error(self):
self._test_after_aot(GPU_TYPE, "AccuracyError")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_constant_in_graph(self):
run_code = """\
@torch.compile()
def inner(x):
return torch.tensor(2) + torch.relu(x)
inner(torch.randn(2))
"""
self._run_full_test(run_code, "aot", "AccuracyError", isolate=False)
@requires_gpu
@patch.object(config, "joint_graph_constant_folding", False)
def test_rmse_improves_over_atol(self):
# From https://twitter.com/itsclivetime/status/1651135821045719041?s=20
run_code = """
@torch.compile()
def inner(x):
return x - torch.tensor(655, dtype=torch.half, device='GPU_TYPE') * 100
inner(torch.tensor(655 * 100, dtype=torch.half, device='GPU_TYPE'))
""".replace(
"GPU_TYPE", GPU_TYPE
)
# If we disable RMSE against fp64, this triggers accuracy error,
# as the increased precision from torch.compile changes the result
# of 655 * 100
with dynamo_config.patch("same_two_models_use_fp64", False):
self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
# NB: need this to avoid refusing to minify when fp64 doesn't work
# (which it doesn't, due to the config patch above)
minifier_args=["--strict-accuracy"],
)
# But using fp64, we see that the intended semantics is the increased
# 655 * 100 precision, and so we report no problem
self._run_full_test(run_code, "aot", None, isolate=False)
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
@inductor_config.patch("cpp.inject_log1p_bug_TESTING_ONLY", "accuracy")
def test_accuracy_vs_strict_accuracy(self):
run_code = """
@torch.compile()
def inner(x):
y = torch.log1p(x)
b = y > 0
# Need to ensure suffix removal hits a boolean output
b = torch.logical_not(b)
b = torch.logical_not(b)
x = torch.relu(x)
return torch.where(b, x, x)
inner(torch.randn(20))
"""
# Strict accuracy gets hung up on the boolean mask difference, which
# will localize the error to sigmoid, even though it doesn't actually
# matter to the end result
res = self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
minifier_args=["--strict-accuracy"],
)
self.assertExpectedInline(
res.repro_module(),
"""\
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg0_1):
log1p = torch.ops.aten.log1p.default(arg0_1); arg0_1 = None
return (log1p,)""",
)
# FP accuracy will refuse to promote the logical_not on the outputs,
# and so you'll get to the relu (unless the minifier somehow tries
# removing entire suffix except the log1p first!)
res = self._run_full_test(run_code, "aot", "AccuracyError", isolate=False)
self.assertExpectedInline(
res.repro_module(),
"""\
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg0_1):
relu = torch.ops.aten.relu.default(arg0_1); arg0_1 = None
return (relu,)""",
)
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_offload_to_disk(self):
# Just a smoketest, this doesn't actually test that memory
# usage went down. Test case is carefully constructed to hit
# delta debugging.
run_code = """\
@torch.compile()
def inner(x):
x = torch.sin(x)
x = torch.sin(x)
x = torch.cos(x)
x = torch.relu(x)
return x
inner(torch.randn(20, 20))
"""
self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
minifier_args=["--offload-to-disk"],
)
# Test that compile errors in AOTInductor can be repro'd (both CPU and CUDA)
def _test_aoti(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
run_code = f"""\
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.sigmoid(x)
return x
with torch.no_grad():
model = Model().to("{device}")
example_inputs = (torch.randn(8, 10).to("{device}"),)
ep = torch.export.export(
model, example_inputs
)
torch._inductor.aoti_compile_and_package(
ep
)
"""
return self._run_full_test(run_code, None, expected_error, isolate=True)
# Test that compile errors in AOTInductor can be repro'd (both CPU and CUDA)
def _test_aoti_unflattened_inputs(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
# It tests that the minifier can handle unflattened inputs and kwargs
run_code = f"""\
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, inp, *, k):
x = inp["x"]
y = inp["y"]
x = self.fc1(x)
y = self.fc1(y)
k = self.fc1(k)
x = self.relu(x)
x = self.sigmoid(x)
return x + y + k
with torch.no_grad():
model = Model().to("{device}")
val = torch.randn(8, 10).to("{device}")
example_inputs = ({{"x": val.clone(), "y": val.clone()}},)
kwargs = {{"k": val.clone()}}
ep = torch.export.export(
model, example_inputs, kwargs
)
torch._inductor.aoti_compile_and_package(
ep, example_inputs, kwargs
)
"""
return self._run_full_test(run_code, None, expected_error, isolate=True)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch(
{
"cpp.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_cpu_compile_error(self):
res = self._test_aoti("cpu", "CppCompileError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch(
{
"cpp.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_cpu_compile_error_unflatten(self):
res = self._test_aoti_unflattened_inputs("cpu", "CppCompileError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@requires_gpu
@skipIfXpu(msg="AOTI for XPU not enabled yet")
@inductor_config.patch(
{
"triton.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_gpu_compile_error(self):
res = self._test_aoti(GPU_TYPE, "SyntaxError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@requires_gpu
@skipIfXpu(msg="AOTI for XPU not enabled yet")
@inductor_config.patch(
{
"triton.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_gpu_compile_error_unflatten(self):
res = self._test_aoti_unflattened_inputs(GPU_TYPE, "SyntaxError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
# Skip CI tests on mac since CPU inductor does not seem to work due to C++ compile errors,
# also skip on ASAN due to https://github.com/pytorch/pytorch/issues/98262
if not IS_MACOS and not TEST_WITH_ASAN:
run_tests()
|