File: test_padding.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (715 lines) | stat: -rw-r--r-- 25,542 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# Owner(s): ["module: inductor"]
import copy
import functools
import os
import unittest
from typing import Tuple

import torch
from torch import nn, Tensor
from torch._dynamo.convert_frame import maybe_cprofile
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import rand_strided, reduce_to_scalar_loss
from torch._inductor import config, ir, metrics
from torch._inductor.fx_passes import pad_mm as pad_mm_pass
from torch._inductor.runtime.benchmarking import benchmarker
from torch._inductor.utils import ceildiv, run_and_get_code
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    serialTest,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, requires_gpu


DO_PERF_TEST = os.environ.get("DO_PERF_TEST") == "1"
DO_ACC_TEST = os.environ.get("DO_ACC_TEST", "1") == "1"
WITH_STACK = os.environ.get("WITH_STACK") == "1"
USE_CUDA_GRAPHS = os.environ.get("USE_CUDA_GRAPHS", "1") == "1"

try:
    import transformers  # noqa: F401

    HAS_TRANSFORMER = True
except ImportError:
    HAS_TRANSFORMER = False


def get_optim(m):
    return torch.optim.Adam(m.parameters(), lr=0.01, capturable=True, foreach=True)


def gen_transformer_inputs(vocab_size, bs, seq_length):
    def geninp():
        return torch.randint(
            0, vocab_size, (bs, seq_length), dtype=torch.int64, requires_grad=False
        )

    input_dict = {"input_ids": geninp(), "labels": geninp()}
    return input_dict


class LinearAndSoftmax(nn.Module):
    """
    It's very common that a transformer model will do a matmul and then
    softmax/log_softmax in the end.

    Creating this toy model to capture the pattern and make sure we do
    proper padding.
    """

    def __init__(self, vocab_size=30523, bias=True):
        """
        The default vocab size for BertForMaskedLM is 30522.
        We run a few test cases with good or bad vocab_size around Bert's
        default value.
        """
        super().__init__()
        self.vocab_size = vocab_size
        self.linear = nn.Linear(768, vocab_size, bias=bias)
        self.ce = nn.CrossEntropyLoss()

    def forward(self, x, label):
        x = self.linear(x)
        return self.ce(x.view(-1, self.vocab_size), label.view(-1))

    def get_example_inputs(self, batch_size=16):
        return torch.randn(batch_size, 512, 768), torch.randint(
            0, self.vocab_size, (batch_size, 512)
        )


def forward_and_backward_pass(m, inputs):
    m(*inputs).sum().backward()


@config.patch(
    {
        "benchmark_kernel": True,
        "triton.unique_kernel_names": True,
        "triton.cudagraphs": USE_CUDA_GRAPHS,
    }
)
@requires_gpu()
class TestCaseBase(TestCase):
    @classmethod
    def setUpClass(cls):
        if HAS_GPU:
            cls.prior_float32_matmul_precision = torch.get_float32_matmul_precision()
            cls.prior_default_device = torch.get_default_device()
            torch.set_float32_matmul_precision("high")
            torch.set_default_device(GPU_TYPE)

    @classmethod
    def tearDownClass(cls):
        if HAS_GPU:
            torch.set_float32_matmul_precision(cls.prior_float32_matmul_precision)
            torch.set_default_device(cls.prior_default_device)

            cls.prior_float32_matmul_precision = None
            cls.prior_default_device = None

    def check_close(self, ref, act, tol=1e-3):
        if type(ref).__name__ == "LongformerMaskedLMOutput":
            ref = ref.loss
            act = act.loss
        if type(ref).__name__ == "SequenceClassifierOutput":
            ref = ref.logits
            act = act.logits
        if isinstance(ref, dict) and "loss" in ref:
            ref = ref["loss"]
            act = act["loss"]
        self.assertTrue(
            torch.allclose(ref, act, atol=tol, rtol=tol), f"ref:\n{ref}\nact:\n{act}"
        )

    def common_numeric_check(self, f, *args, tol=1e-3, **kwargs):
        ref = f(*args, **kwargs)
        opt_f = torch.compile(f)
        act = opt_f(*args, **kwargs)
        self.check_close(ref, act, tol)

    def do_profiling(
        self,
        f_lhs,
        f_rhs,
        tag_lhs="With padding",
        tag_rhs="Without padding",
        args=(),
        kwargs=None,
    ):
        if kwargs is None:
            kwargs = {}
        device_interface = get_interface_for_device(GPU_TYPE)
        device_interface.synchronize()
        with torch.profiler.profile(with_stack=WITH_STACK) as p:
            niter = 3
            for _ in range(niter):
                with torch.profiler.record_function(tag_lhs):
                    f_lhs(*args, **kwargs)

                with torch.profiler.record_function(tag_rhs):
                    f_rhs(*args, **kwargs)
            device_interface.synchronize()

        profile_path = "/tmp/chrome.json"
        p.export_chrome_trace(profile_path)
        print(f"Chrome trace is written to {profile_path}")


class PerfTestBetweenGoodAndBadShape(TestCaseBase):
    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_nobias_LinearAndSoftmax_both_shapes(self):
        self.test_LinearAndSoftmax_both_shapes(bias=False)

    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_LinearAndSoftmax_both_shapes(self, bias=True):
        """
        Compare the perf with good and bad shape.
        """
        m_bad_shape = LinearAndSoftmax(vocab_size=30523, bias=bias)
        inptus_bad_shape = m_bad_shape.get_example_inputs()
        m_good_shape = LinearAndSoftmax(vocab_size=30528, bias=bias)
        inputs_good_shape = m_good_shape.get_example_inputs()

        m_bad_shape_opt = torch.compile(m_bad_shape)
        m_good_shape_opt = torch.compile(m_good_shape)

        latency_good_shape = benchmarker.benchmark_gpu(
            lambda: forward_and_backward_pass(m_good_shape_opt, inputs_good_shape)
        )
        latency_bad_shape = benchmarker.benchmark_gpu(
            lambda: forward_and_backward_pass(m_bad_shape_opt, inptus_bad_shape)
        )
        print(
            f"Latency for good shape v.s. bad shape: {latency_good_shape:.3f}ms v.s. {latency_bad_shape:.3f}ms"
        )

    @unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
    def test_BertForMaskedLM(self, num_layers=1):
        """
        Compare the perf between doing padding and good shape.
        """
        from transformers import BertForMaskedLM

        config_cls = BertForMaskedLM.config_class
        bs = 16
        seq_length = 512

        def create_model(vocab_size):
            config = config_cls()
            config.num_hidden_layers = num_layers
            config.vocab_size = vocab_size
            inputs = gen_transformer_inputs(config.vocab_size, bs, seq_length)
            model = BertForMaskedLM(config)

            optim = get_optim(model)

            def f(**inputs):
                optim.zero_grad(True)
                with torch.autocast(GPU_TYPE):
                    pred = model(**inputs)
                    loss = pred[0]
                loss.backward()
                optim.step()

            return torch.compile(f), inputs

        f_good_shape, inputs_good_shape = create_model(30528)
        f_bad_shape, inputs_bad_shape = create_model(30522)

        print("benchmark for good shape")
        latency_good_shape = benchmarker.benchmark_gpu(
            lambda: f_good_shape(**inputs_good_shape)
        )
        print("benchmark for bad shape")
        latency_bad_shape = benchmarker.benchmark_gpu(
            lambda: f_bad_shape(**inputs_bad_shape)
        )
        print(
            f"Latency with good and bad shape: {latency_good_shape:.3f} v.s. {latency_bad_shape:.3f}"
        )

        self.do_profiling(
            lambda: f_good_shape(**inputs_good_shape),
            lambda: f_bad_shape(**inputs_bad_shape),
            tag_lhs="With good shape",
            tag_rhs="With bad shape",
        )


class PerfTestWithAndWithoutPadding(TestCaseBase):
    @maybe_cprofile
    def run_acc_and_perf_test(self, model, inputs, perf_inputs=None, tol=1e-3):
        """
        Run accuracy test.

        Also compare the perf with and without the comprehensive padding if
        DO_PERF_TEST is true.
        """
        if perf_inputs is None:
            perf_inputs = inputs

        def _process_inputs(x):
            """
            return args and kwargs
            """
            if isinstance(x, dict):
                return [], x

            if not isinstance(inputs, (tuple, list)):
                x = [x]

            return x, {}

        args, kwargs = _process_inputs(inputs)
        perf_args, perf_kwargs = _process_inputs(perf_inputs)

        if DO_ACC_TEST:
            model.eval()
            self.common_numeric_check(model, *args, **kwargs, tol=tol)
        else:
            print("Accuracy test skipped")

        model.train()

        if DO_PERF_TEST:
            print("Do performance test")

            def get_f(m, optim):
                def f(*args, **kwargs):
                    optim.zero_grad(True)
                    with torch.autocast(GPU_TYPE):
                        pred = m(*args, **kwargs)
                        loss = reduce_to_scalar_loss(pred)
                    loss.backward()
                    optim.step()

                return f

            latency_with_padding = None
            print("Benchmark with padding")
            with config.patch(comprehensive_padding=True):
                m_copy_with_padding = copy.deepcopy(model)
                optim_with_padding = get_optim(m_copy_with_padding)
                opt_f_with_padding = torch.compile(
                    get_f(m_copy_with_padding, optim_with_padding)
                )
                latency_with_padding = benchmarker.benchmark_gpu(
                    lambda: opt_f_with_padding(*perf_args, **perf_kwargs)
                )
            latency_without_padding = None
            print("bencmark without padding")
            with config.patch(comprehensive_padding=False):
                m_copy_without_padding = copy.deepcopy(model)
                optim_without_padding = get_optim(m_copy_without_padding)
                opt_f_without_padding = torch.compile(
                    get_f(m_copy_without_padding, optim_without_padding)
                )
                latency_without_padding = benchmarker.benchmark_gpu(
                    lambda: opt_f_without_padding(*perf_args, **perf_kwargs)
                )
            print(
                f"Latency with and without padding: {latency_with_padding:.3f} v.s. {latency_without_padding:.3f}"
            )

            # profiling
            self.do_profiling(
                opt_f_with_padding,
                opt_f_without_padding,
                args=perf_args,
                kwargs=perf_kwargs,
            )

    def test_nvidia_deeprecommender(self):
        """
        Compared the perf with and without comprehensive padding.
        """
        layer_sizes = [197951, 512, 512, 1024, 512, 512, 197951]
        x = torch.randn(4, layer_sizes[0])

        class Model(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                mod_list = []
                for i in range(len(layer_sizes) - 1):
                    mod_list.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1]))
                    mod_list.append(nn.SELU())

                    if i == 2:
                        mod_list.append(nn.Dropout(0.8))
                self.seq = nn.Sequential(*mod_list)

            def forward(self, x):
                return self.seq(x)

        m = Model()
        perf_inputs = torch.randn(256, layer_sizes[0])
        self.run_acc_and_perf_test(m, x, perf_inputs)

    @unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
    def test_longformer(self, bs=4):
        from transformers import AutoConfig, AutoModelForMaskedLM

        config = AutoConfig.from_pretrained("allenai/longformer-base-4096")
        model = AutoModelForMaskedLM.from_config(config)

        vocab_size = model.config.vocab_size
        seq_length = 1024
        input_dict = gen_transformer_inputs(vocab_size, bs, seq_length)

        self.run_acc_and_perf_test(model, input_dict)

    @unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
    def test_longformer_small_bs(self):
        """
        The model exists in both HF and TB. In TB it uses a samller batch size.
        """
        self.test_longformer(bs=2)


@instantiate_parametrized_tests
class PaddingTest(TestCaseBase):
    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_mm_padding_perf(self):
        def naive_mm(a, b):
            return a @ b

        def _compute_padding(s, align):
            return (s + align - 1) // align * align - s

        @torch.compile
        def pad_mm(a, b, align=16):
            """
            NOTE: this function only pad a single dimension which is good
            enough for testing.
            """
            m_padding = _compute_padding(a.size(0), align)
            k_padding = _compute_padding(a.size(1), align)
            n_padding = _compute_padding(b.size(1), align)
            return pad_mm_pass.pad_mm(a, b, m_padding, k_padding, n_padding)

        for M, K, N, f in (
            (8192, 768, 30523, naive_mm),
            (8192, 768, 30523, pad_mm),
            (8192, 768, 30528, naive_mm),
            (30523, 8192, 768, naive_mm),
            (30528, 8192, 768, naive_mm),
        ):
            a = torch.randn(M, K)
            b = torch.randn(K, N)
            ms = benchmarker.benchmark_gpu(lambda: f(a, b))
            print(f"MxKxN {M}x{K}x{N} {f.__name__}: {ms:.3f}ms")

    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_padmm(self):
        """
        Latency between origional matmul and padded matmul: 2.717 v.s. 2.356
        """
        mat1_pad = torch.randn(8192, 30522, dtype=torch.float16)
        mat2_pad = torch.randn(30522, 768, dtype=torch.float16)

        def f():
            return mat1_pad @ mat2_pad

        def pad_dim(x: Tensor, padded_length: int, dim: int) -> Tensor:
            pad = x.new_zeros(*x.shape[:dim], padded_length, *x.shape[dim + 1 :])
            return torch.cat([x, pad], dim=dim)

        @torch.compile(fullgraph=True, options={"triton.cudagraphs": False})
        def g():
            mat1 = mat1_pad
            mat2 = mat2_pad
            mat1 = pad_dim(mat1, 6, 1)
            mat2 = pad_dim(mat2, 6, 0)
            return torch.ops.aten.mm(mat1, mat2)

        ori_time = benchmarker.benchmark_gpu(f)
        pad_time = benchmarker.benchmark_gpu(g)

        print(
            f"Latency between origional matmul and padded matmul: {ori_time:.3f} v.s. {pad_time:.3f}"
        )
        self.do_profiling(f, g, "No MM Padding", "With mm padding")

    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_matmul(self):
        """
        Latency with good and bad shapes: 1.705 v.s. 2.625
        """
        x_good_shape = torch.randn(8192, 30528, dtype=torch.float16)
        weight_good_shape = torch.randn(30528, 768, dtype=torch.float16)
        out_good_shape = torch.randn(8192, 768, dtype=torch.float16)

        # Using stride (30522, 1) does not make a difference here.
        x_bad_shape = rand_strided(
            (8192, 30522), (30528, 1), device=GPU_TYPE, dtype=torch.float16
        )
        weight_bad_shape = torch.randn(30522, 768, dtype=torch.float16)
        out_bad_shape = torch.randn(8192, 768, dtype=torch.float16)

        def f(x, weight, out):
            torch.mm(x, weight, out=out)
            return out

        f1 = torch.compile(
            functools.partial(f, x_good_shape, weight_good_shape, out_good_shape)
        )
        f2 = torch.compile(
            functools.partial(f, x_bad_shape, weight_bad_shape, out_bad_shape)
        )
        latency_good_shape = benchmarker.benchmark_gpu(f1)
        latency_bad_shape = benchmarker.benchmark_gpu(f2)
        print(
            f"Latency with good and bad shapes: {latency_good_shape:.3f} v.s. {latency_bad_shape:.3f}"
        )
        self.do_profiling(f1, f2)

    @serialTest()
    def test_nobias_LinearAndSoftmax_codegen(self):
        self.test_LinearAndSoftmax_codegen(bias=False)

    def test_LinearAndSoftmax_codegen(self, bias=True):
        m_bad_shape = LinearAndSoftmax(vocab_size=30523, bias=bias)
        inputs_bad_shape = m_bad_shape.get_example_inputs()
        m_bad_shape_opt = torch.compile(copy.deepcopy(m_bad_shape))

        _, wrapper_codes = run_and_get_code(
            forward_and_backward_pass, m_bad_shape_opt, inputs_bad_shape
        )
        forward_and_backward_pass(m_bad_shape, inputs_bad_shape)
        self.assertEqual(
            m_bad_shape.linear.weight.grad, m_bad_shape_opt.linear.weight.grad
        )
        self.assertTrue(len(wrapper_codes) == 2)  # one for forward and oen for backward
        forward_wrapper = wrapper_codes[0]

        # make sure the load for softmax is aligned
        self.assertTrue(
            "tl.load(in_ptr0 + (r1 + 30528*x0)" in forward_wrapper,
            f"forward_wrapper: {forward_wrapper}",
        )

        if DO_PERF_TEST:
            latency = benchmarker.benchmark_gpu(
                lambda: forward_and_backward_pass(m_bad_shape_opt, inputs_bad_shape)
            )
            print(f"latency: {latency:.3f}ms")

    @config.patch(pattern_matcher=False)
    def test_attention(self):
        batch_size, seq_len, num_heads, hidden_size = 1, 4, 1, 16
        inv_scale = (num_heads / hidden_size) ** 0.5

        class Attention(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.query = nn.Linear(hidden_size, hidden_size)
                self.key = nn.Linear(hidden_size, hidden_size)
                self.value = nn.Linear(hidden_size, hidden_size)

            @staticmethod
            def reshape(x):
                return x.view(batch_size, seq_len, num_heads, -1).permute(0, 2, 1, 3)

            @staticmethod
            def cancel_reshape(x):
                return x.permute(0, 2, 1, 3).view(batch_size, seq_len, hidden_size)

            def forward(self, x):
                query, key, value = self.query(x), self.key(x), self.value(x)
                weights = (
                    torch.matmul(
                        self.reshape(query), self.reshape(key).permute(0, 1, 3, 2)
                    )
                    * inv_scale
                ).softmax(dim=-1)
                return self.cancel_reshape(torch.matmul(weights, self.reshape(value)))

        attn = Attention()
        x = torch.randn(batch_size, seq_len, hidden_size)

        self.common_numeric_check(attn, x)

    def test_view(self):
        def f(x):
            return x.view(3, 3, 3)

        x = torch.randn(3, 9)
        self.common_numeric_check(f, x)

    def test_pad_strides(self):
        """
        Note that dim0's stride is also padded even though its previous value
        is already multiple of 16. The reason is we padded dim1's stride.
        We have to correspondingly increase the stride for dim0.
        """
        sizes = [2, 16, 2047]
        in_strides = [2047 * 16, 2047, 1]
        out_strides = list(ir.Layout._pad_strides(in_strides, sizes, torch.float32))
        expected_strides = [2048 * 16, 2048, 1]
        self.assertEqual(
            expected_strides, out_strides, f"{expected_strides} v.s. {out_strides}"
        )

    def test_pad_strides_skip(self):
        """
        The padding is skipped to avoid too much memory overhead.
        """
        sizes = [2, 32, 127]
        in_strides = [4064, 127, 1]
        out_strides = list(ir.Layout._pad_strides(in_strides, sizes, torch.float32))
        expected_strides = [4064, 127, 1]
        self.assertEqual(
            expected_strides, out_strides, f"{expected_strides} v.s. {out_strides}"
        )

    def test_pad_3d_tensor(self):
        """
        Constructing this test case guided by the fact that we don't pad
        placeholder or user visible output's strides.

        Add a matmul in the beginning and end so we can pad strides for
        intermediate tensors.
        """

        def f(x, y):
            x = torch.matmul(x, y)
            x = x + 1
            return torch.matmul(x, y)

        x = torch.randn(2, 16, 2047)
        y = torch.randn(2047, 2047)
        self.common_numeric_check(f, x, y, tol=1e-2)
        self.assertTrue(metrics.num_comprehensive_padding > 0)

    def test_conv(self):
        """
        Padding the input for convolution may cause extra copy kernel being called.
        Check this example trace: https://gist.github.com/shunting314/ce45398f7d51a63ce05fc8d411faddb3
        """
        x_shape = (1, 128, 640, 959)
        x1 = torch.randn(*x_shape)

        padded_stride = ir.Layout._pad_strides(x1.stride(), x1.shape, torch.float32)
        x2 = rand_strided(x_shape, padded_stride, device=GPU_TYPE)
        x2.copy_(x1)

        weight = torch.randn(64, 128, 3, 3)

        def fun(x, weight):
            return torch.convolution(
                x,
                weight,
                stride=(1, 1),
                padding=(1, 1),
                dilation=(1, 1),
                transposed=False,
                output_padding=(0, 0),
                groups=1,
                bias=None,
            )

        ref = fun(x1, weight)
        act = fun(x2, weight)
        self.check_close(ref, act)
        if DO_PERF_TEST:
            latency_with_padding = benchmarker.benchmark_gpu(lambda: fun(x2, weight))
            latency_without_padding = benchmarker.benchmark_gpu(lambda: fun(x1, weight))
            print(
                f"Latency with and without padding: {latency_with_padding:.3f} v.s. {latency_without_padding:.3f}"
            )

            self.do_profiling(lambda: fun(x2, weight), lambda: fun(x1, weight))

    @unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
    def test_cat(self):
        """
        Compare the perf between aten cat and compiled cat.

        Latency between eager and compiled: 1.596 v.s. 0.601

        Eager cat can be 2.66x slower than inductor kernel.
        """
        x = torch.randn(8192, 30522, dtype=torch.float16)

        def f(x):
            pad = x.new_zeros(x.size(0), 6)
            return torch.cat([x, pad], dim=1)

        # disable cudagraphs since cudagraphs need copy the input which
        # distort the latency a lot! (double the latency here for compiled
        # version)
        with config.patch("triton.cudagraphs", False):
            opt_f = torch.compile(f)
            opt_f(x)
        eager_time = benchmarker.benchmark_gpu(lambda: f(x))
        opt_time = benchmarker.benchmark_gpu(lambda: opt_f(x))
        print(
            f"Latency between eager and compiled: {eager_time:.3f} v.s. {opt_time:.3f}"
        )
        self.do_profiling(lambda: f(x), lambda: opt_f(x), "Eager Cat", "Compiled Cat")

    def test_pad_channels_last(self):
        t = torch.randn(2, 3, 5, 1025)
        in_strides = t.stride()
        out_strides = ir.Layout._pad_strides(in_strides, t.shape, torch.float32)
        self.assertTrue(in_strides != out_strides)

        t = t.to(memory_format=torch.channels_last)
        in_strides = t.stride()
        out_strides = ir.Layout._pad_strides(in_strides, t.shape, torch.float32)
        self.assertTrue(in_strides == out_strides)

    @parametrize("alignment_bytes", (32, 128))
    @parametrize("shape", [(21, 19), (3, 5, 71)])
    @parametrize("dtype", (torch.float16, torch.float32))
    def test_pad_outputs(
        self, dtype: torch.dtype, shape: Tuple[int], alignment_bytes: int
    ):
        """
        Tests padding output tensors to a specific alignment.
        This is enabled by a config flag.
        """
        func = torch.add
        inputs = tuple(torch.randn(*shape, dtype=dtype) for input_idx in range(2))

        # Compile and run
        with config.patch(
            {
                "comprehensive_padding": True,
                "padding_alignment_bytes": alignment_bytes,
                "padding_stride_threshold": 0,
                "pad_outputs": True,
            }
        ):
            compiled_func = torch.compile(func)
            compiled_out = compiled_func(*inputs)

        # Check numerics
        eager_out = func(*inputs)
        self.check_close(eager_out, compiled_out)

        # Compute the expected padding
        element_size = torch.tensor([], dtype=dtype).element_size()
        self.assertGreater(alignment_bytes, element_size)
        self.assertEqual(alignment_bytes % element_size, 0)
        alignment_elements = alignment_bytes // element_size
        contiguous_stride = inputs[0].stride()
        expected_stride = [1]
        for dim in reversed(shape[1:]):
            slice_size = dim * expected_stride[0]
            new_stride = alignment_elements * ceildiv(slice_size, alignment_elements)
            expected_stride.insert(0, new_stride)
        expected_stride = tuple(expected_stride)
        self.assertNotEqual(expected_stride, contiguous_stride)

        # Check strides
        self.assertFalse(compiled_out.is_contiguous())
        self.assertEqual(compiled_out.stride(), expected_stride)


if __name__ == "__main__":
    if HAS_GPU:
        run_tests()