1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
# Owner(s): ["module: inductor"]
import functools
from unittest.mock import patch
import torch
import torch._dynamo.config as dynamo_config
import torch._inductor.config as inductor_config
import torch._inductor.select_algorithm as select_algorithm
import torch.nn.functional as F
from torch._dynamo.testing import expectedFailureDynamicWrapper
from torch._dynamo.utils import counters
from torch._inductor.autotune_process import TritonBenchmarkRequest
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import is_big_gpu
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
aten = torch.ops.aten
def patches(fn):
def skip_cache(self, choices, name, key, benchmark):
if benchmark is None:
return {}
return benchmark(choices)
for patcher in [
dynamo_config.patch(verbose=True),
inductor_config.patch(debug=True, max_autotune=True, epilogue_fusion=True),
patch.object(select_algorithm, "VERIFY", dict(atol=1e-4, rtol=1e-4)),
patch.object(select_algorithm.AlgorithmSelectorCache, "lookup", skip_cache),
torch.backends.cudnn.flags(allow_tf32=False),
]:
fn = patcher(fn)
@functools.wraps(fn)
def wrapped(*args, **kwargs):
counters.clear()
torch.manual_seed(12345)
assert (
not torch.backends.cuda.matmul.allow_tf32
), "correctness testing is allergic to tf32"
return fn(*args, **kwargs)
return wrapped
class TestSelectAlgorithm(TestCase):
def setUp(self):
super().setUp()
if not is_big_gpu():
return self.skipTest("Need a big GPU to run max_autotune=True")
@patches
def test_linear_relu_cuda(self):
@torch.compile
def foo(input, weight, bias):
return F.relu(F.linear(input, weight, bias))
foo(
torch.randn(64, 32, device="cuda"),
torch.randn(16, 32, device="cuda"),
torch.randn(1, 16, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
# It would be nice to assert this got fused into a single kernel, but that
# only happens if we select a triton template (and not aten).
@patches
def test_addmm_cuda(self):
@torch.compile
def foo(input, weight, bias):
return torch.addmm(bias, input, weight)
inps = (
torch.randn(20, 33, device="cuda"),
torch.randn(33, 16, device="cuda"),
torch.randn(20, 16, device="cuda"),
)
foo(*inps)
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patch.object(select_algorithm, "VERIFY", dict(atol=5e-2, rtol=5e-2))
@patches
def test_addmm_fp16(self):
@torch.compile
def foo(input, weight, bias):
return torch.addmm(bias, input, weight)
inps = (
torch.randn(2, 320, device="cuda", dtype=torch.half),
torch.randn(320, 320, device="cuda", dtype=torch.half).t(),
torch.empty(320, device="cuda", dtype=torch.half),
)
foo(*inps)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm(self):
@torch.compile
def foo(a, b):
return torch.mm(a, b)
foo(
torch.randn(8, 32, device="cuda"),
torch.randn(32, 8, device="cuda"),
)
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
# FIXME: Investigate why _int_mm_out_cuda is not compiled on ROCm
@skipIfRocm
@patches
def test__int_mm(self):
@torch.compile
def foo(a, b):
return torch._int_mm(a, b)
foo(
torch.randint(-10, 10, (64, 32), device="cuda", dtype=torch.int8),
torch.randint(-10, 10, (32, 64), device="cuda", dtype=torch.int8),
)
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_skip(self):
@torch.compile
def foo(a, b):
return torch.mm(a, b)
foo(
torch.randn(8, 32, device="cuda", dtype=torch.float64),
torch.randn(32, 8, device="cuda", dtype=torch.float64),
)
# float64 not supported by tl.dot()
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 0)
@patches
def test_bmm(self):
@torch.compile
def foo(a, b):
return torch.bmm(a, b)
foo(
torch.randn(2, 8, 32, device="cuda"),
torch.randn(2, 32, 8, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_not_even_k(self):
@torch.compile
def foo(a, b):
return torch.mm(a, b)
foo(
torch.randn(11, 22, device="cuda"),
torch.randn(22, 33, device="cuda"),
)
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_baddbmm(self):
@torch.compile
def foo(a, b, c):
return torch.baddbmm(c, a, b)
foo(
torch.randn(2, 8, 32, device="cuda"),
torch.randn(2, 32, 8, device="cuda"),
torch.randn(2, 1, 8, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_plus_mm(self):
@torch.compile
def foo(a, b, c, d):
return (a @ b) + (c @ d)
foo(
torch.randn(32, 32, device="cuda"),
torch.randn(32, 32, device="cuda"),
torch.randn(32, 32, device="cuda"),
torch.randn(32, 32, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_plus_mm2_cuda(self):
@torch.compile
def foo(a, b, c, d):
return (a @ b) + (c @ d)
foo(
torch.randn(512, 512, device="cuda"),
torch.randn(512, 512, device="cuda"),
torch.randn(512, 512, device="cuda"),
torch.randn(512, 512, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@expectedFailureDynamicWrapper
@patches
def test_mm_plus_mm3_cuda(self):
@torch.compile
def foo(a, b, c, d):
return (a @ b) + (c @ d)
foo(
torch.randn(512, 32, device="cuda"),
torch.randn(32, 8, device="cuda"),
torch.randn(512, 32, device="cuda"),
torch.randn(32, 8, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_dup_args(self):
@torch.compile
def foo(a):
return torch.mm(a, a)
foo(torch.randn(32, 32, device="cuda"))
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
def test_mm_dup_args_view(self):
@torch.compile
def foo(a):
q = a[:32, :]
k = a[32:, :]
return torch.mm(q, k.transpose(0, 1))
foo(torch.randn(64, 64, device="cuda"))
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@expectedFailureDynamicWrapper
@patches
def test_convolution1(self):
@torch.compile
def foo(x, w, b):
return aten.convolution(
x + 1,
w,
b,
stride=(2, 3),
padding=(4, 5),
dilation=(1, 1),
transposed=False,
output_padding=(0, 0),
groups=1,
)
foo(
torch.randn(2, 33, 34, 41, device="cuda"),
torch.randn(34, 33, 3, 3, device="cuda"),
torch.randn(34, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@skipIfRocm
@patches
def test_mm_dropout(self):
@torch.compile
def fn(x1, x2, seed):
mm_4 = torch.ops.aten.mm.default(x2, x1)
rnd = torch.ops.prims.inductor_random.default(mm_4.shape, seed, "rand")
return mm_4 * rnd
# sizes picked so triton autotuning wins
fn(
torch.randn(512, 1024, dtype=torch.float16, device="cuda"),
torch.randn(384, 512, dtype=torch.float16, device="cuda"),
torch.tensor(12345, device="cuda"),
)
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@skipIfRocm
@patches
@torch._inductor.config.patch(conv_1x1_as_mm=False)
def test_convolution2(self):
@torch.compile
def foo(x, w, b):
return aten.convolution(
x,
w,
b,
stride=(1, 1),
padding=(0, 0),
dilation=(1, 1),
transposed=False,
output_padding=(0, 0),
groups=1,
)
foo(
torch.randn(1, 33, 16, 16, device="cuda"),
torch.randn(34, 33, 1, 1, device="cuda"),
torch.randn(34, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
@patches
@torch._inductor.config.patch(conv_1x1_as_mm=True)
def test_convolution_as_mm(self):
@torch.compile
def foo(x, w, b):
return aten.convolution(
x + 1,
w,
b,
stride=(1, 1),
padding=(0, 0),
dilation=(1, 1),
transposed=False,
output_padding=(0, 0),
groups=1,
)
foo(
torch.randn(2, 33, 16, 16, device="cuda"),
torch.randn(34, 33, 1, 1, device="cuda"),
torch.randn(34, device="cuda"),
)
# Autotuning checks correctness of each version
self.assertEqual(counters["inductor"]["select_algorithm_autotune"], 1)
def test_TritonTemplateCaller_str(self):
"""
Make sure str(TritonTemplateCaller) does not raise exceptions.
"""
module_path = "abc.py"
bmreq = TritonBenchmarkRequest(
module_path=module_path,
module_cache_key=None,
kernel_name=None,
grid=None,
extra_args=None,
num_stages=None,
num_warps=None,
input_tensor_meta=None,
output_tensor_meta=None,
)
caller = select_algorithm.TritonTemplateCaller(
None, None, None, None, "extra", bmreq
)
caller_str = str(caller)
self.assertEqual(caller_str, f"TritonTemplateCaller({module_path}, extra)")
if __name__ == "__main__":
if IS_LINUX and HAS_CUDA and is_big_gpu():
run_tests()
|