File: test_snode_runtime.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (375 lines) | stat: -rw-r--r-- 10,676 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Owner(s): ["module: inductor"]

import contextlib
from unittest import skipIf

import torch
import torch.distributed as dist
from torch._inductor import config, metrics
from torch._inductor.comm_analysis import estimate_nccl_collective_runtime
from torch._inductor.compile_fx import compile_fx, compile_fx_inner
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import is_collective
from torch.testing._internal.common_device_type import expectedFailureXPU
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU


aten = torch.ops.aten
c10d = torch.ops.c10d_functional
_c10d = torch.ops._c10d_functional


def compile_but_use_eager(gm, example_inputs):
    def inner_compile(gm, *args, **kwargs):
        compile_fx_inner(gm, *args, **kwargs)
        return gm

    return compile_fx(gm, example_inputs, inner_compile=inner_compile)


def calculate_runtime(f, *args) -> float:
    """
    Assumes all inputs are fp32
    """
    metrics.reset()
    torch.compile(f, backend=compile_but_use_eager)(*args)
    print(metrics.node_runtimes)

    ret = 0.0
    for pair in metrics.node_runtimes:
        ret += pair[1]

    return ret


DEVICE = GPU_TYPE


def T(*size, dtype=torch.float32, device=DEVICE, grad=False) -> torch.Tensor:
    return torch.randn(size, dtype=dtype, device=device, requires_grad=grad)


class TestCase(InductorTestCase):
    device = DEVICE

    """
    Helper methods to compare runtime estimate against 0. Since this estimate is hardware dependent,
    stronger comparisons may fail dependending on the host's specs.

    atol/rtol must be provided explicitly with each call, since precision/rel_tol overrides are not always utilized
    """

    def setUp(self):
        super().setUp()
        # These tests check metrics.node_runtimes and we don't save / restore
        # those in the FX graph cache.
        self._test_snode_stack = contextlib.ExitStack()
        self._test_snode_stack.enter_context(
            config.patch({"fx_graph_remote_cache": False})
        )

    def tearDown(self):
        self._test_snode_stack.close()
        super().tearDown()

    def assertZero(self, x: float):
        assert isinstance(x, float)
        super().assertEqual(x, 0.0, atol=0, rtol=0)

    def assertNotZero(self, x):
        assert isinstance(x, float)
        super().assertNotEqual(x, 0.0, atol=0, rtol=0)


class UnsupportedTests(TestCase):
    device = DEVICE

    def test_no_op(self):
        def f(a):
            return a

        inp = (T(10, 10),)
        self.assertZero(calculate_runtime(f, *inp))

    def test_no_cuda(self):
        def f(a):
            return a

        inp = (torch.randn((10, 10), device="cpu"),)
        self.assertZero(calculate_runtime(f, *inp))


class ComputeBoundedTests(TestCase):
    device = DEVICE

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_conv1d(self):
        def f(x, y):
            return torch.nn.functional.conv1d(x, y)

        inp = (T(33, 16, 30), T(20, 16, 5))
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_conv2d(self):
        def f(x, y):
            return torch.nn.functional.conv2d(x, y, padding=1)

        inp = (T(8, 4, 3, 3), T(1, 4, 5, 5))
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_conv2d_transpose(self):
        def f(x, y):
            return torch.nn.functional.conv_transpose2d(x, y, padding=1)

        inp = (T(8, 1, 1, 1), T(1, 4, 5, 5))
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_conv3d(self):
        def f(x, y):
            return torch.nn.functional.conv3d(x, y)

        inp = (T(20, 16, 50, 10, 20), T(33, 16, 3, 3, 3))
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_mm(self):
        def f(a, b):
            return torch.mm(a, b)

        inp = (
            T(10, 10),
            T(10, 10),
        )
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_addmm(self):
        def f(a, b, c):
            return torch.addmm(a, b, c)

        inp = (
            T(10, 10),
            T(10, 10),
            T(10, 10),
        )
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_bmm(self):
        def f(a, b):
            return torch.bmm(a, b)

        inp = (
            T(10, 10, 10),
            T(10, 10, 10),
        )
        self.assertNotZero(calculate_runtime(f, *inp))


class MemoryBoundedTests(TestCase):
    device = DEVICE

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_relu(self):
        def f(a):
            return torch.nn.functional.relu(a)

        inp = (T(10, 10),)
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_horizontal_reduction_pointwise(self):
        def f(a):
            b = a.sum(dim=1)
            c = a.cos()
            return b, c

        inp = (T(10, 10),)
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_pointwise(self):
        def f(x):
            return x.cos()

        inp = (T(10),)
        self.assertNotZero(calculate_runtime(f, *inp))

    # lack of profiler on XPU
    @expectedFailureXPU
    @torch._dynamo.config.patch(assume_static_by_default=False)
    def test_dynamic(self):
        def f(x):
            return x.cos()

        inp = (T(10),)
        self.assertNotZero(calculate_runtime(f, *inp))


@skipIf(not dist.is_available(), "requires distributed")
class TestCommAnalysis(TestCase):
    device = DEVICE

    WORLD_SIZE: int = 8
    RANKS = list(range(8))

    def _verify_runtime_estimation(self, fn, inps):
        from torch.testing._internal.distributed.fake_pg import FakeStore

        store = FakeStore()
        dist.init_process_group(
            backend="fake", rank=0, world_size=self.WORLD_SIZE, store=store
        )
        try:
            metrics.reset()
            torch.compile(fn)(*inps)
            found_collective = False
            for snode, runtime in metrics.node_runtimes:
                if not is_collective(snode.node):
                    continue
                found_collective = True
                # Inductor swallows errors from snode runtime estimations.
                # We call estimate_nccl_collective_runtime in a white-box
                # fashion here so potential issues can be surfaced in tests.
                est = estimate_nccl_collective_runtime(snode.node)
                self.assertNotZero(est)
                # Also make sure estimate_nccl_collective_runtime works
                # correctly in inductor.
                self.assertNotZero(runtime)
            # Make sure a collective kernel is found in graph
            self.assertTrue(found_collective)
        finally:
            dist.destroy_process_group()

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_legacy_all_reduce(self):
        def fn(x):
            r = c10d.all_reduce(x, "sum", "", self.RANKS, self.WORLD_SIZE)
            return c10d.wait_tensor(r)

        inp = T(10, 10)
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_legacy_all_reduce_coalesced(self):
        def fn(x):
            rs = c10d.all_reduce_coalesced(x, "sum", "", self.RANKS, self.WORLD_SIZE)
            return [c10d.wait_tensor(r) for r in rs]

        inp = [T(10, 10), T(15, 15)]
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_legacy_all_gather_into_tensor_coalesced(self):
        def fn(x):
            rs = c10d.all_gather_into_tensor_coalesced(
                x,
                "",
                self.RANKS,
                self.WORLD_SIZE,
            )
            return [c10d.wait_tensor(r) for r in rs]

        inp = [T(10, 10), T(15, 15)]
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_all_reduce(self):
        def fn(x):
            r = _c10d.all_reduce(x, "sum", "0")
            return _c10d.wait_tensor(r)

        inp = T(10, 10)
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_all_reduce_coalesced(self):
        def fn(x):
            rs = _c10d.all_reduce_coalesced(x, "sum", "0")
            return [_c10d.wait_tensor(r) for r in rs]

        inp = [T(10, 10), T(15, 15)]
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_all_gather_into_tensor(self):
        def fn(x):
            rs = _c10d.all_gather_into_tensor(
                x,
                self.WORLD_SIZE,
                "0",
            )
            return [_c10d.wait_tensor(r) for r in rs]

        inp = T(10, 10)
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_all_gather_into_tensor_coalesced(self):
        def fn(x):
            rs = _c10d.all_gather_into_tensor_coalesced(
                x,
                self.WORLD_SIZE,
                "0",
            )
            return [_c10d.wait_tensor(r) for r in rs]

        inp = [T(10, 10), T(15, 15)]
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_reduce_scatter_tensor(self):
        def fn(x):
            rs = _c10d.reduce_scatter_tensor(
                x,
                "sum",
                self.WORLD_SIZE,
                "0",
            )
            return [_c10d.wait_tensor(r) for r in rs]

        inp = T(self.WORLD_SIZE, 10)
        self._verify_runtime_estimation(fn, (inp,))

    # lack of profiler on XPU
    @expectedFailureXPU
    def test_reduce_scatter_tensor_coalesced(self):
        def fn(x):
            rs = _c10d.reduce_scatter_tensor_coalesced(
                x,
                "sum",
                self.WORLD_SIZE,
                "0",
            )
            return [_c10d.wait_tensor(r) for r in rs]

        inp = [T(self.WORLD_SIZE, 10), T(self.WORLD_SIZE, 15)]
        self._verify_runtime_estimation(fn, (inp,))


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    if HAS_GPU:
        run_tests(needs="filelock")