File: test_torchinductor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (13081 lines) | stat: -rw-r--r-- 430,388 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
# Owner(s): ["module: inductor"]
import contextlib
import copy
import dataclasses
import functools
import gc
import importlib
import itertools
import math
import operator
import os
import random
import re
import subprocess
import sys
import threading
import time
import typing
import unittest
import unittest.mock
import weakref
from pathlib import Path
from typing import Tuple
from unittest.mock import patch

import numpy as np

import torch
import torch._dynamo.config as dynamo_config
import torch._inductor.aoti_eager
import torch.nn as nn
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.debug_utils import aot_graph_input_parser
from torch._dynamo.testing import (
    CompileCounterWithBackend,
    expectedFailureCodegenDynamic,
    rand_strided,
    same,
    skipIfPy312,
)
from torch._dynamo.utils import ifdynstaticdefault
from torch._inductor.aoti_eager import (
    aoti_compile_with_persistent_cache,
    aoti_eager_cache_dir,
    load_aoti_eager_cache,
)
from torch._inductor.codegen.common import DataTypePropagation, OptimizationContext
from torch._inductor.fx_passes import pad_mm
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import (
    add_scheduler_init_hook,
    run_and_get_code,
    run_and_get_cpp_code,
    run_and_get_triton_code,
    run_fw_bw_and_get_code,
)
from torch._inductor.virtualized import V
from torch._prims_common import is_integer_dtype
from torch.fx.experimental.proxy_tensor import make_fx
from torch.library import _scoped_library
from torch.nn import functional as F
from torch.testing import FileCheck, make_tensor
from torch.testing._internal.common_cuda import (
    PLATFORM_SUPPORTS_FLASH_ATTENTION,
    PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
    SM80OrLater,
    TEST_CUDNN,
    tf32_on_and_off,
    with_tf32_off,
)
from torch.testing._internal.common_device_type import (
    _has_sufficient_memory,
    expectedFailureXPU,
)
from torch.testing._internal.common_dtype import all_types, get_all_dtypes
from torch.testing._internal.common_quantization import (
    _dynamically_quantize_per_channel,
)
from torch.testing._internal.common_utils import (
    DeterministicGuard,
    instantiate_parametrized_tests,
    IS_FBCODE,
    IS_MACOS,
    IS_X86,
    parametrize,
    serialTest,
    skipIfNNModuleInlined,
    skipIfRocm,
    skipIfWindows,
    skipIfXpu,
    subtest,
    TEST_WITH_ASAN,
    TEST_WITH_ROCM,
    xfailIfS390X,
)
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten, tree_unflatten
from torch.utils.weak import WeakTensorKeyDictionary


DO_PERF_TEST = os.environ.get("DO_PERF_TEST") == "1"

importlib.import_module("functorch")
importlib.import_module("filelock")

from torch._inductor import config, cpu_vec_isa, test_operators
from torch._inductor.compile_fx import (
    compile_fx,
    compile_fx_inner,
    complex_memory_overlap,
)
from torch._inductor.utils import has_torchvision_roi_align
from torch.testing._internal.common_utils import slowTest
from torch.testing._internal.inductor_utils import (
    GPU_TYPE,
    HAS_CPU,
    HAS_GPU,
    HAS_MULTIGPU,
    requires_gpu,
    skipCPUIf,
    skipCUDAIf,
)


HAS_AVX2 = "fbgemm" in torch.backends.quantized.supported_engines

aten = torch.ops.aten

requires_multigpu = functools.partial(
    unittest.skipIf, not HAS_MULTIGPU, f"requires multiple {GPU_TYPE} devices"
)
skip_if_x86_mac = functools.partial(
    unittest.skipIf, IS_MACOS and IS_X86, "Does not work on x86 Mac"
)
vec_dtypes = [torch.float, torch.bfloat16, torch.float16]

libtest = torch.library.Library("test", "FRAGMENT")  # noqa: TOR901
ids = set()

f32 = torch.float32
i64 = torch.int64
i32 = torch.int32

test_dtypes = [
    torch.float32,
    torch.float64,
    torch.float16,
    torch.uint8,
    torch.int8,
    torch.int16,
    torch.int32,
    torch.int64,
]
if SM80OrLater:
    test_dtypes.append(torch.bfloat16)


def _large_cumprod_input(shape, dim, dtype, device):
    # Construct a cumprod input which guaruntees not to overflow or underflow
    if is_integer_dtype(dtype):
        # Large products don't fit in integers, the best we can do
        # is random +/-1 values to test the sign of the result
        x = torch.randint(0, 1, shape, dtype=dtype, device=device)
        return x * 2 - 1

    comp_dtype = torch._prims_common.get_computation_dtype(dtype)
    batch_size = 256
    if comp_dtype != dtype:
        batch_size = math.floor(math.log2(torch.finfo(dtype).max) / 3)

    # Create random values with a uniform magnitude and uniform exponent
    num_batches = (shape[dim] + 2 * batch_size - 1) // (2 * batch_size)
    batch_shape = (
        shape[:dim]
        + (
            num_batches,
            batch_size,
        )
        + shape[dim + 1 :]
    )
    magnitude = 1 + torch.rand(batch_shape, dtype=comp_dtype, device=device)
    exponent = torch.randint(-1, 1, batch_shape, device=device).to(comp_dtype)
    batch = magnitude * exponent.exp2()

    # Alternate each batch of values with their reciprocals so the product
    # never gets too far away from 1
    t = torch.cat((batch, batch.reciprocal()), dim=dim + 1)
    t = t.flatten(dim, dim + 1)
    t = aten.slice(t, dim=dim, start=0, end=shape[dim])

    # Randomize sign
    sign = torch.randint(0, 1, shape, device=device) * 2 - 1
    return (t * sign).to(dtype)


def define_custom_op_for_test(id_, fn_cpu, fn_cuda, fn_xpu, fn_meta, tags=()):
    global libtest
    global ids
    if id_ not in ids:
        libtest.define(f"{id_}(Tensor self) -> Tensor", tags=tags)
        libtest.impl(id_, fn_cpu, "CPU")
        libtest.impl(id_, fn_cuda, "CUDA")
        libtest.impl(id_, fn_xpu, "XPU")
        libtest.impl(id_, fn_meta, "Meta")
        ids.add(id_)


def define_custom_op_2_for_test(id_, fn_cpu, fn_cuda, fn_xpu, fn_meta, tags=()):
    global libtest
    global ids
    if id_ not in ids:
        libtest.define(
            f"{id_}(Tensor self, float scale) -> (Tensor, Tensor)", tags=tags
        )
        libtest.impl(id_, fn_cpu, "CPU")
        libtest.impl(id_, fn_cuda, "CUDA")
        libtest.impl(id_, fn_xpu, "XPU")
        libtest.impl(id_, fn_meta, "Meta")
        ids.add(id_)


def define_custom_op_3_for_test(id_, fn_cpu, fn_cuda, fn_xpu, fn_meta, tags=()):
    global libtest
    global ids
    if id_ not in ids:
        libtest.define(f"{id_}(Tensor[] x) -> Tensor", tags=tags)
        libtest.impl(id_, fn_cpu, "CPU")
        libtest.impl(id_, fn_cuda, "CUDA")
        libtest.impl(id_, fn_xpu, "XPU")
        libtest.impl(id_, fn_meta, "Meta")
        ids.add(id_)


f32 = torch.float32


def register_ops_with_aoti_compile(ns, op_set, dispatch_key, torch_compile_op_lib_impl):
    for _op_name in op_set:
        qualified_op_name = f"{ns}::{_op_name}"
        _, overload_names = torch._C._jit_get_operation(qualified_op_name)
        for overload_name in overload_names:
            try:
                reg_op_name = qualified_op_name
                schema = torch._C._get_schema(qualified_op_name, overload_name)
                if schema.overload_name:
                    reg_op_name = f"{qualified_op_name}.{schema.overload_name}"
                torch_compile_op_lib_impl._impl_with_aoti_compile(  # noqa: F821
                    reg_op_name, dispatch_key
                )
            except Exception as e:
                continue


def get_divisible_by_16(cfg):
    # attribute was renamed between triton versions, from "divisible_by_16" to "divisibility_16"
    if hasattr(cfg, "divisibility_16"):
        return cfg.divisibility_16
    return cfg.divisible_by_16


class TestCase(InductorTestCase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls._stack = contextlib.ExitStack()
        cls._stack.enter_context(
            config.patch(
                {
                    "debug": True,
                    "debug_index_asserts": True,
                    "cpp.min_chunk_size": 1,
                    "triton.autotune_pointwise": False,  # too slow
                    "implicit_fallbacks": False,
                    "generate_intermediate_hooks": True,
                }
            )
        )

    @classmethod
    def tearDownClass(cls):
        cls._stack.close()
        super().tearDownClass()

    def setUp(self):
        torch._dynamo.reset()
        torch._inductor.metrics.reset()
        super().setUp()
        self._start = time.perf_counter()

    def tearDown(self):
        super().tearDown()
        torch._dynamo.reset()
        if os.environ.get("ERROR_ON_SLOW") == "1":
            elapsed = time.perf_counter() - self._start
            assert elapsed < 120


class ToTuple(torch.nn.Module):
    def forward(self, x):
        return (x,)


@dataclasses.dataclass
class InputGen:
    n: int
    device: str

    def dense(self):
        return torch.randn((self.n, self.n), device=self.device)

    def transposed(self):
        return self.dense().transpose(0, 1)

    def strided(self):
        return torch.randn((self.n * 2, self.n * 3), device=self.device)[
            self.n :, self.n :: 2
        ]

    def broadcast1(self):
        return torch.randn((self.n,), device=self.device)

    def broadcast2(self):
        return torch.randn((1, self.n, 1), device=self.device)

    def broadcast3(self):
        return torch.randn((1,), device=self.device)

    def double(self):
        return torch.randn((self.n, self.n), device=self.device, dtype=torch.double)

    def int(self):
        return torch.arange(self.n, device=self.device, dtype=torch.int32)


def compute_grads(args, kwrags, results, grads):
    def gather_leaf_tensors(args, kwargs):
        args = pytree.arg_tree_leaves(*args, **kwargs)
        leaf_tensors = [
            arg for arg in args if isinstance(arg, torch.Tensor) and arg.requires_grad
        ]
        return leaf_tensors

    flat_results = pytree.tree_leaves(results)
    flat_diff_results = [
        r for r in flat_results if isinstance(r, torch.Tensor) and r.requires_grad
    ]
    assert len(flat_diff_results) > 0

    leaf_tensors = gather_leaf_tensors(args, kwrags)
    assert len(leaf_tensors) > 0
    return torch.autograd.grad(
        flat_diff_results,
        leaf_tensors,
        grads,
        allow_unused=True,
        retain_graph=True,
    )


def clone_preserve_strides(x, device=None):
    if not isinstance(x, torch.Tensor):
        return x
    buffer = torch.as_strided(
        x, (x.untyped_storage().size() // x.element_size(),), (1,), 0
    )
    if not device:
        buffer = buffer.clone()
    else:
        buffer = buffer.to(device, copy=True)
    out = torch.as_strided(buffer, x.size(), x.stride(), x.storage_offset())
    return out


def check_model(
    self: TestCase,
    model,
    example_inputs,
    kwargs=None,
    *,
    atol=None,
    rtol=None,
    grad_atol=None,
    grad_rtol=None,
    check_lowp=True,
    exact_dtype=True,
    nopython=True,
    copy_to_gpu=True,
    reference_in_float=True,
    assert_equal=True,
    check_gradient=False,
    check_has_compiled=True,
    output_process_fn_grad=lambda x: x,
):
    kwargs = kwargs or {}
    torch._dynamo.reset()

    ref_inputs = [clone_preserve_strides(x) for x in example_inputs]
    ref_kwargs = kwargs
    has_lowp_args = False

    if reference_in_float and exact_dtype:
        # Store expected dtypes so we can check actual result gives the correct types
        torch.manual_seed(0)
        try:
            eager_result = model(*ref_inputs, **ref_kwargs)
        except RuntimeError:
            # Eager model may fail if the dtype is not supported
            eager_result = None

        ref_inputs = [clone_preserve_strides(x) for x in example_inputs]
        expect_dtypes = [
            x.dtype if isinstance(x, torch.Tensor) else None
            for x in pytree.tree_leaves(eager_result)
        ]
        del eager_result

    ref_model = model
    if reference_in_float:
        # check_lowp is ignored here, it's kept just to be able to call `common` with extra arg
        def upcast_fn(x):
            nonlocal has_lowp_args
            if isinstance(x, torch.Tensor) and (
                x.dtype == torch.float16 or x.dtype == torch.bfloat16
            ):
                has_lowp_args = True
                return x.float()
            else:
                return x

        ref_inputs = list(map(upcast_fn, example_inputs))
        ref_kwargs = {k: upcast_fn(v) for k, v in kwargs.items()}
        if has_lowp_args and hasattr(model, "to"):
            ref_model = copy.deepcopy(model).to(torch.float)

    torch.manual_seed(0)

    correct = ref_model(*ref_inputs, **ref_kwargs)

    torch._inductor.metrics.reset()

    called = False

    def compile_fx_wrapper(model_, example_inputs_):
        nonlocal called
        called = True
        return compile_fx(model_, example_inputs_)

    def run(*ex, **kwargs):
        return model(*ex, **kwargs)

    run = torch._dynamo.optimize(compile_fx_wrapper, nopython=nopython)(run)

    torch.manual_seed(0)
    actual = run(*example_inputs, **kwargs)
    # if not called:
    #     exp = torch._dynamo.explain(run)(*example_inputs)
    #     print("Explain:", exp[0])
    #     for graph in exp[2]:
    #         print("Graph", graph)
    if check_has_compiled:
        assert called, "Ran graph without calling compile_fx"
    assert type(actual) == type(correct)
    if isinstance(actual, (tuple, list)):
        assert len(actual) == len(correct)
        assert all(
            type(actual_item) == type(correct_item)
            for actual_item, correct_item in zip(actual, correct)
        )

    correct_flat, correct_spec = tree_flatten(correct)
    actual_flat = pytree.tree_leaves(actual)

    def reference_to_expect(actual_flat, correct_flat):
        return tuple(
            (
                y.to(x.dtype)
                if isinstance(y, torch.Tensor) and y.dtype.is_floating_point
                else y
            )
            for x, y in zip(actual_flat, correct_flat)
        )

    if reference_in_float and exact_dtype:
        for expect_dtype, actual_result in zip(expect_dtypes, actual_flat):
            if expect_dtype is not None:
                assert (
                    actual_result.dtype == expect_dtype
                ), f"dtype mismatch, expected {expect_dtype} but got {actual_result.dtype}"

    if reference_in_float:
        correct_flat = reference_to_expect(actual_flat, correct_flat)
        correct = tree_unflatten(correct_flat, correct_spec)

    if assert_equal:
        self.assertEqual(
            actual,
            correct,
            atol=atol,
            rtol=rtol,
            equal_nan=True,
            exact_dtype=exact_dtype,
        )
        # In case of input mutations, check that inputs are the same
        self.assertEqual(
            ref_inputs,
            example_inputs,
            atol=atol,
            rtol=rtol,
            equal_nan=True,
            # our testing sometimes uses higher precision inputs for the reference
            exact_dtype=False,
        )
    else:
        for correct_val, actual_val in zip(correct_flat, actual_flat):
            if isinstance(correct_val, torch.Tensor):
                assert correct_val.device == actual_val.device
                assert correct_val.size() == actual_val.size()
                strides_equal, _ = torch._prims_common.check_significant_strides(
                    correct_val, actual_val
                )
                assert strides_equal
                assert correct_val.layout == actual_val.layout
                if exact_dtype:
                    assert correct_val.dtype == actual_val.dtype

    if check_gradient:
        actual = output_process_fn_grad(actual)
        correct = output_process_fn_grad(correct)
        actual_flat = pytree.tree_leaves(actual)
        correct_flat = pytree.tree_leaves(correct)

        # generate random unit norm gradients
        grads = [
            torch.rand(r.shape, device=r.device, dtype=r.dtype)
            for r in correct_flat
            if isinstance(r, torch.Tensor) and r.requires_grad
        ]
        for g in grads:
            g /= g.norm()

        correct_grad = compute_grads(ref_inputs, ref_kwargs, correct, grads)
        all_none_grads = all(x is None for x in correct_grad)
        tensor_args = [
            x
            for x in pytree.tree_flatten(example_inputs)[0]
            if isinstance(x, torch.Tensor)
        ]
        any_non_leaves = any(x.grad_fn is not None for x in tensor_args)
        if all_none_grads and any_non_leaves:
            # See Note [Detaching inputs that never need gradients]
            # There are a handful of ops that can return None gradients, into of zero gradients.
            # If all inputs to an AOTAutograd graph are supposed to get None gradients,
            # AOTAutograd will end up forcing all of the outputs of the forward to not require grad.
            # There's no easy fix to this (see the note above), although one option is to
            # force any derivative formulas in core to return tensors of zeros instead of None.
            flat_results = pytree.tree_leaves(actual)
            results_that_require_grad = [
                x
                for x in flat_results
                if isinstance(x, torch.Tensor) and x.requires_grad
            ]
            self.assertEqual(len(results_that_require_grad), 0)
        else:
            actual_grad = compute_grads(example_inputs, kwargs, actual, grads)

            if reference_in_float:
                expect_grad = reference_to_expect(actual_grad, correct_grad)
            else:
                expect_grad = correct_grad

            self.assertEqual(
                actual_grad,
                expect_grad,
                atol=grad_atol or atol,
                rtol=grad_rtol or rtol,
                equal_nan=True,
                exact_dtype=exact_dtype,
            )

    torch._dynamo.reset()


@torch._inductor.config.patch("triton.cudagraphs", False)
def check_model_gpu(
    self: TestCase,
    model,
    example_inputs,
    kwargs=None,
    *,
    atol=None,
    rtol=None,
    grad_atol=None,
    grad_rtol=None,
    check_lowp=True,
    exact_dtype=True,
    nopython=True,
    copy_to_gpu=True,
    reference_in_float=True,
    assert_equal=True,
    check_gradient=False,
    check_has_compiled=True,
    output_process_fn_grad=lambda x: x,
):
    kwargs = kwargs or {}
    if hasattr(model, "to"):
        model = model.to(device=GPU_TYPE)

    if copy_to_gpu:
        example_inputs = tuple(
            clone_preserve_strides(x, device=GPU_TYPE) for x in example_inputs
        )

    check_model(
        self,
        model,
        example_inputs,
        kwargs,
        atol=atol,
        rtol=rtol,
        grad_atol=grad_atol,
        grad_rtol=grad_rtol,
        exact_dtype=exact_dtype,
        nopython=nopython,
        reference_in_float=reference_in_float,
        assert_equal=assert_equal,
        check_gradient=check_gradient,
        check_has_compiled=check_has_compiled,
        output_process_fn_grad=output_process_fn_grad,
    )

    if check_lowp:

        def downcast_fn(x):
            if not isinstance(x, torch.Tensor) or not x.dtype == torch.float:
                return x
            return torch.empty_strided(
                x.size(), x.stride(), device=GPU_TYPE, dtype=torch.half
            ).copy_(x)

        example_inputs = list(map(downcast_fn, example_inputs))
        if hasattr(model, "to"):
            model = model.to(torch.half)
        if rtol is not None:
            rtol = max(2e-3, rtol)
        check_model(
            self,
            model,
            example_inputs,
            kwargs,
            atol=atol,
            rtol=rtol,
            grad_atol=grad_atol,
            grad_rtol=grad_rtol,
            exact_dtype=exact_dtype,
            nopython=nopython,
            reference_in_float=reference_in_float,
            assert_equal=assert_equal,
            check_gradient=check_gradient,
            check_has_compiled=check_has_compiled,
            output_process_fn_grad=output_process_fn_grad,
        )


check_model_cuda = check_model_gpu


def _run_and_assert_no_indirect_indexing(
    test_case, func, *args, has_wrapping=None, has_assert=False, **kwargs
):
    result, source_codes = run_and_get_code(func, *args, **kwargs)

    for code in source_codes:
        for line in code.split("\n"):
            stmt = None
            # Find indexing expressions
            if ".load(" in line:
                stmt = line.split(".load")[-1]
            elif "tl.store" in line:
                stmt = line.split(".store")[-1]
                stmt = ",".join(stmt.split(",")[:-2])  # Remove store value and mask
            elif ".store" in line:
                stmt = line.split(".store")[-1]
            elif "[" in line:
                stmt = line.split("[")[-1].split("]")[0]
            if "tl.make_block_ptr(" in line:
                continue

            if stmt is None:
                continue

            # indirect indexing involves a `tmp` variable
            test_case.assertTrue(
                "tmp" not in stmt,
                msg=f"Found indirect indexing in statement '{stmt}' from code:\n{code}",
            )
        if has_wrapping is not None:
            test_case.assertTrue(
                ("where" in code or ") ? (" in code) is has_wrapping,
                msg=f"Wanted {has_wrapping=} but got\n{code}",
            )
    test_case.assertTrue(
        any(
            ("device_assert" in code or "TORCH_CHECK" in code) is has_assert
            for code in source_codes
        )
    )
    return result


def assertGeneratedKernelCountEqual(self: TestCase, expected: int):
    if config.triton.multi_kernel:
        # when multi_kernel is enabled, we generated both persistent reduction
        # and non-persistent reduction kernels for the same node schedule.
        # That will mess up with the kernel count. Just don't check it.
        return
    self.assertEqual(torch._inductor.metrics.generated_kernel_count, expected)


class SweepInputs2:
    input_gen_types1 = [
        "dense",
        "transposed",
        "strided",
        "broadcast1",
        "broadcast2",
        "broadcast3",
        "double",
        "int",
    ]
    input_gen_types2 = input_gen_types1
    gen = None

    @staticmethod
    def kernel(a, b):
        return (a + b,)

    @classmethod
    def gen_template(cls, name1, name2):
        def test(self):
            check_model(
                self,
                cls.kernel,
                (
                    getattr(cls.gen, name1)(),
                    getattr(cls.gen, name2)(),
                ),
            )

        test.__name__ = f"test_{cls.gen.device}_{name1}_{name2}"
        setattr(cls, test.__name__, test)

    @classmethod
    def populate(cls):
        for name1 in cls.input_gen_types1:
            for name2 in cls.input_gen_types2:
                cls.gen_template(name1, name2)


def is_cpp_backend(device):
    return getattr(device, "type", device) == "cpu" and config.cpu_backend == "cpp"


def skip_if_halide(fn):
    @functools.wraps(fn)
    def wrapper(self):
        if is_halide_backend(self.device):
            raise unittest.SkipTest("halide not supported")
        return fn(self)

    return wrapper


def skip_if_dynamic(fn):
    @functools.wraps(fn)
    def wrapper(self):
        if ifdynstaticdefault(True, False) or torch._dynamo.config.dynamic_shapes:
            raise unittest.SkipTest("associtaive_scan doesn's support lifted SymInts.")
        return fn(self)

    return wrapper


def is_halide_backend(device):
    if getattr(device, "type", device) == "cpu":
        return config.cpu_backend == "halide"
    return config.cuda_backend == "halide"


def is_triton_cpu_backend(device):
    return getattr(device, "type", device) == "cpu" and config.cpu_backend == "triton"


def skip_if_triton_cpu(fn):
    import types

    reason = "Triton CPU not supported"

    def decorator(fn):
        @functools.wraps(fn)
        def wrapper(self):
            if is_triton_cpu_backend(self.device):
                raise unittest.SkipTest(reason)
            return fn(self)

        return wrapper

    if isinstance(fn, types.FunctionType):
        return decorator(fn)
    else:
        reason = fn
        return decorator


def xfail_if_triton_cpu(fn):
    fn._expected_failure_triton_cpu = True
    return fn


def skip_if_gpu_halide(fn):
    @functools.wraps(fn)
    def wrapper(self):
        if (
            is_halide_backend(self.device)
            and getattr(self.device, "type", self.device) == "cuda"
        ):
            raise unittest.SkipTest("halide not supported")
        return fn(self)

    return wrapper


class skip_if_cpp_wrapper:
    def __init__(self, reason: str = "") -> None:
        self.reason = reason

    def __call__(self, fn):
        @functools.wraps(fn)
        def wrapper(test_self):
            if config.cpp_wrapper:
                raise unittest.SkipTest(f"cpp wrapper bug to be fixed: {self.reason}")
            return fn(test_self)

        return wrapper


@instantiate_parametrized_tests
class CommonTemplate:
    def test_bool(self):
        def fn(a, b):
            return (
                a + b,
                a * b,
                a & b,
                a | b,
                a ^ b,
                torch.logical_and(a, b),
                torch.logical_or(a, b),
                torch.logical_not(a),
                torch.sign(b),
            )

        self.common(
            fn,
            (
                torch.tensor([True, False, True, False]),
                torch.tensor([False, False, True, True]),
            ),
        )

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_dtype_device_layout(self):
        ns = "aten"
        op_name = "tril_indices"
        dispatch_key = "CPU"
        device = "cpu"
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = "cuda"

        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            row = 128
            col = 256
            offset = 1
            dtype = torch.int32
            layout = torch.strided
            pin_memory = False
            ref = torch.tril_indices(
                row=row,
                col=col,
                offset=offset,
                dtype=dtype,
                layout=layout,
                pin_memory=pin_memory,
                device=device,
            )
            register_ops_with_aoti_compile(
                ns, [op_name], dispatch_key, torch_compile_op_lib_impl
            )
            res = torch.tril_indices(
                row=row,
                col=col,
                offset=offset,
                dtype=dtype,
                layout=layout,
                pin_memory=pin_memory,
                device=device,
            )
            self.assertEqual(ref, res)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_support_out(self):
        ns = "aten"
        op_name = "clamp"
        dispatch_key = "CPU"
        device = "cpu"
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = "cuda"

        inp_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(1.0)
        min_tensor = inp_tensor - 0.05
        max_tensor = inp_tensor + 0.05
        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            ref_out_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(
                -1
            )
            ref_tensor = torch.clamp(
                max=max_tensor, min=min_tensor, input=inp_tensor, out=ref_out_tensor
            )

            ref_out_tensor1 = torch.randn(128, dtype=torch.float, device=device).fill_(
                -1
            )
            ref_tensor1 = torch.clamp(
                max=max_tensor, out=ref_out_tensor1, min=min_tensor, input=inp_tensor
            )

            register_ops_with_aoti_compile(
                ns, [op_name], dispatch_key, torch_compile_op_lib_impl
            )

            res_out_tensor = torch.randn(128, dtype=torch.float, device=device).fill_(
                -1
            )
            res_tensor = torch.clamp(
                max=max_tensor, min=min_tensor, input=inp_tensor, out=res_out_tensor
            )

            self.assertEqual(ref_tensor, res_tensor)
            self.assertEqual(ref_out_tensor, res_out_tensor)

            res_out_tensor1 = torch.randn(128, dtype=torch.float, device=device).fill_(
                -1
            )
            res_tensor1 = torch.clamp(
                max=max_tensor, out=res_out_tensor1, min=min_tensor, input=inp_tensor
            )

            self.assertEqual(ref_tensor1, res_tensor1)
            self.assertEqual(ref_out_tensor1, res_out_tensor1)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_support_str(self):
        ns = "aten"
        op_name = "div"
        dispatch_key = "CPU"
        device = "cpu"
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = "cuda"

        a = torch.randn(128, dtype=torch.float, device=device)
        b = torch.randn(128, dtype=torch.float, device=device)
        rounding_mode_list = ["trunc", "floor"]
        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            # Get ref result from eager
            ref_value_list = []
            for rounding_mode in rounding_mode_list:
                ref_value = getattr(torch.ops.aten, op_name)(
                    a, b, rounding_mode=rounding_mode
                )
                ref_value_list.append(ref_value)

            register_ops_with_aoti_compile(
                ns, [op_name], dispatch_key, torch_compile_op_lib_impl
            )

            # Invoke the pre-compiled kernel and get result.
            res_value_list = []
            for rounding_mode in rounding_mode_list:
                res_value = getattr(torch.ops.aten, op_name)(
                    a, b, rounding_mode=rounding_mode
                )
                res_value_list.append(res_value)

            for ref_value, res_value in zip(ref_value_list, res_value_list):
                self.assertEqual(ref_value, res_value)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_cache_hit(self):
        ns = "aten"
        op_name = "abs"
        dispatch_key = "CPU"
        device = "cpu"
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = "cuda"

        input_tensor = torch.randn(128, dtype=torch.float, device=device)
        kernel_lib_path = aoti_compile_with_persistent_cache(
            ns,
            op_name,
            device,
            False,
            getattr(torch.ops.aten, op_name),
            (input_tensor,),
            {},
        )
        self.assertTrue(Path(kernel_lib_path).exists())

        from unittest import mock

        # Patch the aoti_compile_with_persistent_cache as None to ensure no new kernel is generated
        with mock.patch(
            "torch._inductor.aoti_eager.aoti_compile_with_persistent_cache", None
        ):
            with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
                # Get ref result from eager
                ref_value = getattr(torch.ops.aten, op_name)(input_tensor)

                register_ops_with_aoti_compile(
                    ns, [op_name], dispatch_key, torch_compile_op_lib_impl
                )

                # Invoke the pre-compiled kernel and get result.
                res_value = getattr(torch.ops.aten, op_name)(input_tensor)

                self.assertEqual(ref_value, res_value)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_with_persistent_cache(self):
        def fn(a):
            return torch.abs(a)

        ns = "aten"
        op_name = "abs"

        device = "cpu"
        if self.device.lower() == "cuda":
            device = "cuda"

        input_tensor = torch.randn(128, dtype=torch.float, device=device)
        kernel_lib_path = aoti_compile_with_persistent_cache(
            ns,
            op_name,
            input_tensor.device.type,
            False,
            fn,
            args=(input_tensor,),
            kwargs={},
        )
        self.assertTrue(len(kernel_lib_path) > 0)

        device_kernel_cache = aoti_eager_cache_dir(ns, device)
        kernel_conf = device_kernel_cache / f"{op_name}.json"
        self.assertTrue(kernel_conf.exists())

        json_data = load_aoti_eager_cache("aten", "abs", input_tensor.device.type)
        self.assertTrue(json_data is not None)
        self.assertTrue(isinstance(json_data, list))
        self.assertTrue(len(json_data) > 0)

        op_info = json_data[0]
        self.assertTrue(isinstance(op_info, dict))
        self.assertTrue("meta_info" in op_info)
        self.assertTrue("kernel_path" in op_info)
        kernel_libs_abs_path = []
        for item in json_data:
            kernel_path = device_kernel_cache / item["kernel_path"]
            kernel_libs_abs_path.append(kernel_path.as_posix())

        self.assertTrue(kernel_lib_path in kernel_libs_abs_path)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_with_scalar(self):
        namespace_name = "aten"
        op_name = "add"
        op_overload_name = "Tensor"
        op_name_with_overload = f"{op_name}.{op_overload_name}"

        dispatch_key = "CPU"
        device = torch.device("cpu")
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = torch.device("cuda")

        # Test the difference between scalar tensor and scalar
        a = torch.scalar_tensor(1.0, device=device)
        b = torch.scalar_tensor(2.0, device=device)

        kernel_lib_path = aoti_compile_with_persistent_cache(
            namespace_name,
            op_name_with_overload,
            a.device.type,
            False,
            torch.ops.aten.add,
            args=(a, b),
            kwargs={"alpha": 3.0},
        )
        self.assertTrue(Path(kernel_lib_path).exists())
        device_kernel_cache = aoti_eager_cache_dir(namespace_name, device.type)
        kernel_conf = device_kernel_cache / f"{op_name_with_overload}.json"
        self.assertTrue(kernel_conf.exists())
        json_data = load_aoti_eager_cache(
            namespace_name, op_name_with_overload, a.device.type
        )
        op_info = json_data[0]
        self.assertTrue(isinstance(op_info, dict))
        self.assertTrue("meta_info" in op_info)
        self.assertTrue(len(op_info["meta_info"]) == 3)
        # Scalar Tensor
        self.assertTrue("scalar_value" not in op_info["meta_info"][0])
        self.assertTrue(op_info["meta_info"][0]["sizes"] == [])
        self.assertTrue(op_info["meta_info"][0]["strides"] == [])
        # Scalar Tensor
        self.assertTrue("scalar_value" not in op_info["meta_info"][1])
        self.assertTrue(op_info["meta_info"][1]["sizes"] == [])
        self.assertTrue(op_info["meta_info"][1]["strides"] == [])
        # Scalar
        self.assertTrue("scalar_value" in op_info["meta_info"][2])
        self.assertTrue("sizes" not in op_info["meta_info"][2])
        self.assertTrue("strides" not in op_info["meta_info"][2])

        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            a = torch.randn(128, device=device)
            b = torch.randn(128, device=device)

            scalar_values = [1.0, 2.0, 3.0]
            ref_values = []
            for scalar_value in scalar_values:
                ref_values.append(torch.add(a, b, alpha=scalar_value))

            register_ops_with_aoti_compile(
                namespace_name, [op_name], dispatch_key, torch_compile_op_lib_impl
            )

            res_values = []
            for scalar_value in scalar_values:
                res_values.append(torch.add(a, b, alpha=scalar_value))

            self.assertEqual(len(ref_values), len(res_values))
            self.assertEqual(ref_values, res_values)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_halide  # aoti
    @skip_if_triton_cpu  # aoti
    @skipIfWindows(msg="aoti not support on Windows")
    def test_aoti_eager_override_registration(self):
        namespace_name = "aten"
        dispatch_key = "CPU"
        device = torch.device("cpu")
        if self.device.lower() == "cuda":
            dispatch_key = "CUDA"
            device = torch.device("cuda")

        unary_op_set = ["abs", "acos"]

        def fn(x, op_name=""):
            return getattr(torch, op_name)(x)

        # Invoke torch.compile directly to get referent results
        x = torch.randn(3, 4, device=device)

        ref_array = []
        for unary_op_name in unary_op_set:
            opt_fn = torch.compile(functools.partial(fn, op_name=unary_op_name))
            ref = opt_fn(x)
            ref_array.append(ref)

        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            register_ops_with_aoti_compile(
                namespace_name, unary_op_set, dispatch_key, torch_compile_op_lib_impl
            )

            res_array = []
            for unary_op_name in unary_op_set:
                res_array.append(getattr(torch, unary_op_name)(x))

            for ref, res in zip(ref_array, res_array):
                self.assertEqual(ref, res)

        a = torch.randn(128, device=device)
        min_tensor = torch.randn(128, device=device)
        max_tensor = min_tensor + 0.5

        ref_with_min = torch.ops.aten.clamp(a, min_tensor)
        ref_with_min_max = torch.ops.aten.clamp(a, min_tensor, max_tensor)

        with _scoped_library("aten", "IMPL") as torch_compile_op_lib_impl:
            register_ops_with_aoti_compile(
                namespace_name, ["clamp"], dispatch_key, torch_compile_op_lib_impl
            )
            res_with_min = torch.ops.aten.clamp(a, min_tensor)
            res_with_min_max = torch.ops.aten.clamp(a, min_tensor, max_tensor)
            self.assertEqual(ref_with_min, res_with_min)
            self.assertEqual(ref_with_min_max, res_with_min_max)

    def test_add_const_int(self):
        def fn(a):
            return (a + 1, torch.add(a, 1, alpha=2))

        for dtype in [torch.float32, torch.int32, torch.int64]:
            self.common(fn, (torch.arange(32, dtype=dtype),))

    def test_add_const_float(self):
        def fn(a):
            return (a + 1.5,)

        self.common(fn, (torch.randn(32),))

    def test_add_inplace_permuted(self):
        def fn(x, y):
            return x.add_(y)

        x = torch.ones([2, 12, 13, 17]).transpose(1, 2)
        y = torch.randn([2, 13, 1, 17])

        self.common(fn, (x, y))

    def test_add_complex(self):
        def fn(a, b, alpha):
            return torch.add(a, b, alpha=alpha)

        x = torch.tensor([1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j, 0, 1j, 1, -1])
        y = torch.tensor([1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j, 0, 1j, 1, -1])

        self.common(fn, (x, y, 2))

    def test_add_complex3(self):
        # fix https://github.com/pytorch/pytorch/issues/115071
        @torch.compile
        def fn(*args):
            a = torch.neg(args[0])
            b = torch.add(args[0], args[0])
            return (a, b)

        x = torch.randn(41, dtype=torch.complex64)
        y = x.clone()
        # should not inplace write to the input
        fn(x)
        self.assertEqual(x, y)

    def test_add_complex4(self):
        @torch.compile
        def fn(a, b):
            c = a + b
            d = a + b
            return c + d

        for dtype in [torch.complex32, torch.complex64, torch.complex128]:
            x = torch.tensor(
                [1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j, 0, 1j, 1, -1],
                dtype=dtype,
                device=self.device,
            )
            y = torch.tensor(
                [1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j, 0, 1j, 1, -1],
                dtype=dtype,
                device=self.device,
            )
            _, code = run_and_get_code(fn, x, y)
            self.assertEqual(
                " ".join(code).count(
                    "view_dtype" if config.cpp_wrapper else "aten.view"
                ),
                3,
            )

    def test_add_complex5(self):
        def fn(a, b, alpha):
            return torch.add(a, b, alpha=alpha)

        x = torch.tensor([[1 + 1j, -1 + 1j], [-2 + 2j, 3 - 3j]])
        y = torch.tensor([[1 + 1j, -1 + 1j], [-2 + 2j, 3 - 3j]])

        self.common(fn, (x, y, 2))

    def test_add_complex6(self):
        # Fix https://github.com/pytorch/pytorch/issues/125745.
        # Add complex tensors with broadcasting.
        def fn(a, b, alpha):
            return torch.add(a, b, alpha=alpha)

        x = torch.tensor([[1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j]])
        y = torch.tensor([[1 + 1j]])

        self.common(fn, (x, y, 2))

    def test_concat_add_inplace(self):
        def fn(x, y, z):
            return torch.cat([x, y], dim=1).add_(z)

        x = torch.randn([2, 12, 14, 14])
        y = torch.randn([2, 12, 14, 14])
        z = torch.randn([2, 24, 14, 14])

        self.common(fn, (x, y, z))

    def test_abs(self):
        def fn(a):
            return (a / (torch.abs(a) + 1),)

        self.common(fn, (torch.randn(17),))

    @xfail_if_triton_cpu
    def test_angle(self):
        def fn(a, b, c):
            return torch.angle(a), torch.angle(b), torch.angle(c)

        complex_input = torch.tensor(
            [1 + 1j, -1 + 1j, -2 + 2j, 3 - 3j, 0, 1j, 1, -1, float("nan")]
        )
        real_input = torch.tensor([-1.0, 0.0, 1.0, float("nan")])
        interger_real_input = torch.tensor([-1, 0, 1])
        self.common(fn, (complex_input, real_input, interger_real_input))

    def test_sgn(self):
        def fn(a):
            return torch.sgn(a), torch.sgn(a + 1) - 1

        self.common(fn, [torch.linspace(-10, 10, 41)])

    @skipCUDAIf(not SM80OrLater, "uses bfloat16 which requires SM >= 80")
    def test_scatter_bf16(self):
        def fn(inp, src, index):
            return inp.scatter_add(0, index, src)

        for dtype in [torch.int64, torch.bool, torch.bfloat16]:
            self.common(
                fn,
                [
                    torch.zeros(3, 5, dtype=dtype),
                    torch.ones((2, 5), dtype=dtype),
                    torch.tensor([[0, 1, 2, 0, 0]]),
                ],
            )

    def test_randn_generator(self):
        def fn(a, generator):
            return torch.randn([20, 20], generator=generator, device=a.device)

        self.common(fn, (torch.linspace(-10, 10, 41), None), assert_equal=False)

        # generator not yet supported in dynamo
        with self.assertRaisesRegex(torch._dynamo.exc.Unsupported, "Generator"):
            self.common(fn, (torch.linspace(-10, 10, 41), torch.Generator(self.device)))

    def test_sgn_extremal(self):
        def fn(a):
            return (torch.sgn(a),)

        self.common(fn, [torch.tensor([np.nan, np.inf, -np.inf, 0])])

    def test_max_min(self):
        def fn(a, b):
            return (torch.maximum(a, b), torch.minimum(a, b))

        self.common(fn, (torch.randn(8), torch.randn(8)))
        t1 = torch.randn(8)
        t1[0] = float("nan")
        t2 = torch.randn(8)
        t2[1] = float("nan")
        self.common(fn, (t1, t2))

    def test_neg_max_uint8(self):
        # https://github.com/pytorch/pytorch/issues/93380
        def fn(a, b):
            c = torch.neg(a)
            return torch.maximum(b, c)

        a = torch.randint(256, (1,), dtype=torch.uint8)
        b = torch.randint(256, (8390,), dtype=torch.uint8)
        self.common(fn, (a, b))

    def test_compar(self):
        def fn(x):
            return x.gt(3.5), x.ge(3.5), x.eq(3.5), x.le(2.5), x.lt(3.5), x.ne(3.5)

        a = torch.tensor([3])
        self.common(fn, (a,))

    def test_horizonal_fusion1(self):
        def fn(a, b, c):
            return (a + b, a - c, b * c)

        self.common(
            fn, (torch.randn(8, 16, 16), torch.randn(8, 16, 16), torch.randn(1, 16, 1))
        )

    def test_horizonal_fusion2(self):
        def fn(a, b, c):
            return a + 1, b + 2, c + 3

        self.common(fn, (torch.randn(8, 16, 8), torch.randn(8, 16), torch.randn(16, 8)))

    def test_vertical_fusion1(self):
        def fn(sa, ct, p):
            # From torchbench.pyhpc_equation_of_state
            v17 = -3.087032500374211e-7
            v18 = -1.988366587925593e-8
            v19 = -1.061519070296458e-11
            v20 = 1.550932729220080e-10
            t15 = v19 * ct
            t19 = v17 + ct * (v18 + t15) + v20 * sa
            t20 = 1.0 / t19
            t128 = t19 * p
            return t20 + t128

        self.common(
            fn,
            (
                torch.randn(204, 204, 26),
                torch.randn(204, 204, 26),
                torch.randn(26),
            ),
        )
        assertGeneratedKernelCountEqual(self, 1)

    @config.patch({"fx_graph_cache": False})
    @skipIfWindows(msg="torch._dynamo.exc.Unsupported")
    def test_forced_buffer_realize(self):
        # Test torch._test_inductor_realize forces a buffer to be realized
        def fn(a):
            b = test_operators.realize(a * 2)
            return (b * 2,)

        self.common(fn, (torch.randn(10),))
        self.assertEqual(torch._inductor.metrics.ir_nodes_pre_fusion, 2)

    @config.patch({"fx_graph_cache": False})
    @skipIfWindows(msg="torch._dynamo.exc.Unsupported")
    def test_scheduler_vertical_fusion1(self):
        realize = test_operators.realize

        def fn(sa, ct, p):
            # From torchbench.pyhpc_equation_of_state
            v17 = -3.087032500374211e-7
            v18 = -1.988366587925593e-8
            v19 = -1.061519070296458e-11
            v20 = 1.550932729220080e-10
            t15 = realize(v19 * ct)
            t19 = realize(v17 + ct * (v18 + t15) + v20 * sa)
            t20 = realize(1.0 / t19)
            t128 = realize(t19 * p)
            return t20 + t128

        self.common(
            fn,
            (
                torch.randn(204, 204, 26),
                torch.randn(204, 204, 26),
                torch.randn(26),
            ),
        )
        self.assertEqual(torch._inductor.metrics.ir_nodes_pre_fusion, 5)
        assertGeneratedKernelCountEqual(
            self, 1 if not is_cpp_backend(self.device) else 2
        )

    def test_index_propagation(self):
        def copy(x):
            i = torch.arange(x.size(0), device=x.device)
            return x[i]

        x = torch.randn(8, device=self.device)
        copy_opt = torch._dynamo.optimize("inductor")(copy)

        expect = copy(x)
        actual = _run_and_assert_no_indirect_indexing(self, copy_opt, x)
        self.assertEqual(expect, actual)

    @dynamo_config.patch("capture_dynamic_output_shape_ops", True)
    # https://github.com/halide/Halide/issues/8308
    @config.patch("halide.scheduler_cpu", "Mullapudi2016")
    @config.patch("halide.scheduler_cuda", "Li2018")
    @config.patch(implicit_fallbacks=True)
    def test_index_propagation_nested_indirect_indexing(self):
        def nested(x, repeats):
            rank = torch.arange(repeats.numel(), device=x.device)
            index = rank.repeat_interleave(repeats, dim=0)
            return torch.index_select(x, index=index, dim=0)

        example_inputs = (
            torch.randn((32, 64), device=self.device),
            repeats := torch.tensor([5, 10, 15], device=self.device),
        )
        torch._dynamo.mark_dynamic(repeats, 0)  # create backed symint

        nested_opt = torch._dynamo.optimize("inductor")(nested)

        expect = nested(*example_inputs)
        actual = nested_opt(*example_inputs)
        self.assertEqual(expect, actual)

    def test_index_propagation_flip(self):
        def flip(x):
            i = torch.arange(x.size(0) - 1, -1, -1, device=x.device)
            return x[i]

        x = torch.randn(8, device=self.device)
        flip_opt = torch._dynamo.optimize("inductor")(flip)

        expect = flip(x)
        actual = _run_and_assert_no_indirect_indexing(self, flip_opt, x)
        self.assertEqual(expect, actual)

    def test_index_propagation_floordiv(self):
        def repeat_interleave(x, n):
            # e.g. x=[1, 2, 3], n=2 => returns [1, 1, 2, 2, 3, 3]
            i = torch.arange(x.shape[0] * n, device=x.device)
            return x[i // n]

        x = torch.randn(8, 16, device=self.device)
        repeat_interleave_opt = torch._dynamo.optimize("inductor")(repeat_interleave)
        # With static shapes we can prove the bound, our dynamic shapes reasoning is not good enough
        has_assert = ifdynstaticdefault(False, True)
        # this should be collapsed to direct indexing
        actual = _run_and_assert_no_indirect_indexing(
            self, repeat_interleave_opt, x, 3, has_assert=has_assert
        )
        expect = torch.repeat_interleave(x, 3, dim=0)
        self.assertEqual(expect, actual)
        self.assertEqual(actual, repeat_interleave(x, 3))

    def test_index_propagation_remainder(self):
        def repeat(x, n):
            # e.g. x=[1, 2, 3], n=2 => returns [1, 2, 3, 1, 2, 3]
            i = torch.arange(x.shape[0] * n, device=x.device)
            return x[i % x.shape[0]]

        x = torch.randn(8, 16, device=self.device)
        repeat_opt = torch._dynamo.optimize("inductor")(repeat)

        # With static shapes we can prove the bound, our dynamic shapes reasoning is not good enough
        has_assert = ifdynstaticdefault(False, True)
        # this should be collapsed to direct indexing
        actual = _run_and_assert_no_indirect_indexing(
            self, repeat_opt, x, 3, has_wrapping=False, has_assert=has_assert
        )
        expect = x.repeat(3, 1)
        self.assertEqual(expect, actual)
        self.assertEqual(actual, repeat(x, 3))

    def test_index_propagation_abs(self):
        def reflection_pad_left(x, n):
            # e.g. x=[1, 2, 3], n=2 => returns [3, 2, 1, 2, 3]
            i = torch.arange(x.shape[0] + n, device=x.device)
            return x[(i - n).abs()]

        x = torch.randn(8, device=self.device)
        opt_fn = torch._dynamo.optimize("inductor")(reflection_pad_left)

        # With static shapes we can prove the bound, our dynamic shapes reasoning is not good enough
        has_assert = ifdynstaticdefault(False, True)
        # this should be collapsed to direct indexing
        actual = _run_and_assert_no_indirect_indexing(
            self, opt_fn, x, 3, has_wrapping=False, has_assert=has_assert
        )
        expect = reflection_pad_left(x, 3)
        self.assertEqual(expect, actual)

    def test_index_propagation_device_assert_masked(self):
        def fn(a):
            idx = torch.arange(a.size(0), device=a.device)
            padded_idx = torch.constant_pad_nd(idx, (1050, 0))
            padded_idx = torch.where(padded_idx >= 0, padded_idx, padded_idx)
            return a[padded_idx]

        self.common(fn, (torch.randn(1024),))

    @config.patch(debug_index_asserts=False)
    @config.patch("cpp.enable_tiling_heuristics", False)
    def test_neg_index(self):
        def test(
            fn, inps, has_assert: bool, has_wrapping: bool, vectorize: bool = True
        ):
            fn_opt = torch.compile(fn)
            if is_halide_backend(self.device):
                pass  # no device asserts in halide
            elif self.device == "cpu" and not is_triton_cpu_backend(self.device):
                _, code = run_and_get_cpp_code(fn_opt, *inps)
                self.assertTrue(("TORCH_CHECK" in code) is has_assert)
                if (
                    cpu_vec_isa.valid_vec_isa_list()
                    and os.getenv("ATEN_CPU_CAPABILITY") != "default"
                ):
                    self.assertTrue(
                        (") ? (" in code or "blendv" in code) is has_wrapping
                    )
                    # Assert that we always vectorize the kernel regardless of wrapping / checks
                    self.assertTrue(("loadu" in code) is vectorize)
            else:
                code = run_and_get_triton_code(fn_opt, *inps)
                self.assertTrue(("tl.where" in code) is has_wrapping)
                self.assertTrue(("device_assert" in code) is has_assert)

        def indirect(a, b):
            return a[b - 1]

        a = torch.rand(1024, device=self.device)
        b = torch.zeros(256, dtype=torch.long, device=self.device)
        test(indirect, (a, b), has_assert=True, has_wrapping=True)

        def direct(x):
            return x[:, -1]

        a = torch.rand(1, 64, 32, device=self.device)
        # Does not even generate a kernel as it's a view
        test(direct, (a,), has_assert=False, has_wrapping=False, vectorize=False)

        def flip(a, b):
            return a[b]

        a = torch.rand(1024, device=self.device)
        b = torch.arange(start=-1, end=-a.numel() - 1, step=-1, device=self.device)
        test(flip, (a, b), has_assert=True, has_wrapping=True)

        # Constant propagate a constant that's negative
        def flip_with_index_constant(a):
            b = torch.arange(start=-1, end=-a.numel() - 1, step=-1, device=a.device)
            return a[b]

        # Wrapping is constant-folded
        test(flip_with_index_constant, (a,), has_assert=False, has_wrapping=False)

        # Operation where we can't prove that the index is always positive or negative
        def pos_and_neg(a):
            b = torch.arange(start=1, end=-a.numel() - 1, step=-1, device=a.device)
            return a[b]

        # It has wrapping but no assert
        test(pos_and_neg, (a,), has_assert=False, has_wrapping=True)

        # We currently don't do constant propagation with float constants
        # We cannot prove this kind of asserts just with bounds. We would need
        # to lift IndexPropagation.shape_env to be accessible in all of Inductor
        def flip_with_index(a):
            b = 1.0 * torch.arange(
                start=-1, end=-a.numel() - 1, step=-1, device=a.device
            )
            b = b.int()
            return a[b]

        test(
            flip_with_index,
            (a,),
            has_assert=ifdynstaticdefault(False, True),
            has_wrapping=False,
            vectorize=True,
        )

        def unsafe_index(a, b):
            return aten._unsafe_index(a, (b,))

        test(unsafe_index, (a, b), has_assert=False, has_wrapping=True)

        def constant_propagation(a):
            b = torch.tensor([2], device=a.device)
            return a[b]

        test(
            constant_propagation,
            (a,),
            has_assert=ifdynstaticdefault(False, True),
            has_wrapping=False,
            vectorize=False,  # There's no loop to vectorize!
        )

        def constant_propagation_neg(a):
            b = torch.tensor([-2], device=a.device)
            return a[b]

        # In symbolic shapes, we know that we can access -2, so no assert is necessary!
        test(
            constant_propagation_neg,
            (a,),
            has_assert=False,
            has_wrapping=False,
            vectorize=False,  # There's no loop to vectorize!
        )

    def test_computed_buffer_inlining(self):
        def flip(x):
            idx = torch.arange(x.size(0) - 1, -1, -1, device=x.device)
            return x[idx], idx

        flip_opt = torch._dynamo.optimize("inductor")(flip)
        x = torch.randn(8, device=self.device)

        expect = flip(x)
        actual = _run_and_assert_no_indirect_indexing(self, flip_opt, x)
        self.assertEqual(expect, actual)

    def test__unsafe_masked_index(self):
        def fn(a, mask, idx):
            return aten._unsafe_masked_index(a, mask, idx, 1)

        self.common(
            fn,
            (
                torch.randn(8, device=self.device),
                torch.tensor([True, False, True], device=self.device),
                [torch.tensor([3, 9, 2], device=self.device)],
            ),
        )

    def test__unsafe_masked_index_put_accumulate(self):
        def fn(a, mask, idx, values):
            return aten._unsafe_masked_index_put_accumulate(a, mask, idx, values)

        self.common(
            fn,
            (
                torch.randn(8, device=self.device),
                torch.tensor([True, False, True], device=self.device),
                [torch.tensor([3, 9, 2], device=self.device)],
                torch.randn(3, device=self.device),
            ),
        )

    def test_sum1(self):
        def fn(a, b):
            return ((a + b).sum(-1),)

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_sum2(self):
        def fn(a, b):
            return ((a + b).sum([1, 2]), (a + b).sum(-1))

        self.common(fn, (torch.randn(8, 9, 3, 21), torch.randn(8, 9, 3, 21)))

    def test_sum3(self):
        def fn(a, b):
            r1 = a + b
            r2 = r1.sum(-1)
            r3 = torch.squeeze(b) + 10
            return (r1, r2, r3)

        # Mismatched elements: 2 / 10 (20.0%)
        # Greatest absolute difference: 0.0029296875 at index (8,) (up to 1e-05 allowed)
        # Greatest relative difference: 0.0017482517482517483 at index (6,) (up to 0.001 allowed)
        self.common(fn, (torch.randn(10, 10), torch.randn(1, 10)), atol=1e-5, rtol=2e-3)

    def test_sum4(self):
        def fn(a):
            b = a + 1
            c = b.sum(-1)
            d = c + 3
            e = d.sum(-1)
            f = e + 5
            return (f, e, d, c, b)

        self.common(fn, (torch.randn(1, 16, 8, 8),))

    def test_sum5(self):
        def fn(a):
            b = a + 1
            c = b.sum(-1)
            d = c + 3
            e = d.sum(-1)
            f = e + 5
            return (f,)

        self.common(fn, (torch.randn(1, 17, 8, 9),))

    def test_reduction1(self):
        def fn(a):
            return (a.sum(), a.max(), a.min(), a.argmax(), a.argmin())

        self.common(fn, (torch.tensor([float("-inf"), 0.0, float("inf")]),))

    @skip_if_x86_mac()
    def test_reduction2(self):
        def fn(a):
            # FIXME: a.argmax
            return (a.sum(), a.max(), a.min(), a.argmin())

        self.common(fn, (torch.full((4,), float("inf")),))

    @skip_if_x86_mac()
    def test_reduction3(self):
        def fn(a):
            # FIXME: a.argmin
            return (a.sum(), a.max(), a.min(), a.argmax())

        self.common(fn, (torch.full((4,), float("-inf")),))

    def test_reduction4(self):
        if self.device == "cpu":
            raise unittest.SkipTest("Non-deterministic CPU results")

        def fn(a):
            return (a.argmax(-1), a.argmin(-1))

        inputs = (torch.ones(128), torch.ones(4, 4, 1))
        for i in inputs:
            self.common(fn, (i,), check_lowp=not is_halide_backend(self.device))

    @config.patch(unroll_reductions_threshold=1)
    def test_reduction5(self):
        if self.device == "cpu":
            raise unittest.SkipTest("Non-deterministic CPU results")

        def fn(a):
            return (a.sum(), a.max(), a.min(), a.argmax())

        self.common(fn, (torch.full((4,), float("-inf")),))

    @requires_gpu()
    def test_reduction_config_limit(self):
        """
        This unit-test tests whether we exceed cudaDeviceProperties.maxGridSize in
        triton reduction configs for large size hints. #128826 introduced a scaling XBLOCK
        feature to resolve the issue in reduction configs which may exceed the maxGridSize
        """
        from torch._inductor.runtime.runtime_utils import next_power_of_2
        from torch._inductor.runtime.triton_heuristics import triton_config_reduction

        size_hints = {"x": 67108864, "r": 8192}
        for i in range(4):
            size_hints["x"] = next_power_of_2(size_hints["x"])
            triton_config_reduction(size_hints, 1, 2048, 1, 8)

    def test_prod(self):
        def fn(a):
            return a.prod(0), a.prod(1), a.prod()

        self.common(fn, (torch.rand((10, 10)),))
        self.common(fn, (torch.rand((1, 2050)),))

    def test_unroll_small_reduction(self):
        def fn(x):
            val1, index1 = x.min(-1)
            val2, index2 = x.max(-1)
            return (
                val1,
                index1,
                val2,
                index2,
                x.sum(-1),
                (x > 1).any(-1),
                (x > 0).all(-1),
                x.argmin(-1),
                x.argmax(-1),
                x.amin(-1),
                x.amax(-1),
                x.aminmax(),
            )

        with config.patch(unroll_reductions_threshold=8):
            # small sized reductions will get unrolled
            self.common(fn, (torch.randn(8, 3),))
        torch._dynamo.reset()
        with config.patch(unroll_reductions_threshold=1):
            # make sure things also work if they aren't unrolled
            self.common(fn, (torch.randn(8, 3),))

    def test_multilayer_sum_low_prec(self):
        # fp16 nyi for cpu
        if self.device == "cpu":
            raise unittest.SkipTest(f"requires {GPU_TYPE}")

        def fn(a):
            return torch.mean(a)

        self.common(fn, ((torch.rand((10, 3, 352, 352), dtype=torch.float16),)))

    def test_multilayer_prime_size(self):
        def fn(a):
            return torch.max(a), torch.sum(a)

        # Requires masked loading for the intermediate reduction
        sample = torch.full((3999971,), 0, dtype=torch.int64)
        sample[-1] = 1
        self.common(fn, (sample,))

    @skip_if_gpu_halide
    @skipCPUIf(IS_MACOS, "fails on macos")
    @xfailIfS390X
    def test_multilayer_var(self):
        def fn(a):
            return torch.var(a)

        self.common(
            fn,
            ((torch.rand((10, 3, 352, 352), dtype=torch.float32),)),
            atol=1e-3,
            rtol=1e-3,
        )
        self.common(
            fn,
            ((torch.rand((14923), dtype=torch.float32),)),
            atol=1e-3,
            rtol=1e-3,
        )

    @skipCPUIf(IS_MACOS, "fails on macos")
    @skip_if_halide  # accuracy 4.7% off
    @xfailIfS390X
    def test_multilayer_var_lowp(self):
        def fn(a):
            return torch.var(a)

        atol = None
        rtol = None
        if self.device == "cpu" and os.getenv("ATEN_CPU_CAPABILITY") == "default":
            atol = 1e-3
            rtol = 1e-3
        self.common(
            fn,
            (torch.rand((16, 16, 352, 352), dtype=torch.float16),),
            atol=atol,
            rtol=rtol,
        )
        self.common(
            fn, (torch.rand((14923), dtype=torch.float16),), atol=atol, rtol=rtol
        )

    def test_split_cumsum(self):
        def fn(a):
            return torch.cumsum(a, -1)

        for dtype in get_all_dtypes(
            include_bfloat16=False,
            include_bool=True,
            include_complex=False,
            include_half=False,
        ):
            # Use low=0 since when the mean value is 0, cumsum at all points
            # tends towards zero which makes the relative error term blow up
            inp = make_tensor(10, 3, 352, 352, low=0, dtype=dtype, device=self.device)
            self.common(fn, (inp.view(-1),), rtol=1e-4, atol=1e-5, check_lowp=False)
            self.common(fn, (inp.view(10, -1),), rtol=1e-4, atol=1e-5, check_lowp=False)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skipCUDAIf(TEST_WITH_ROCM, "Computation not done in float on ROCm")
    @skip_if_gpu_halide  # accuracy issue
    def test_split_cumsum_low_prec(self):
        if is_cpp_backend(self.device):
            raise unittest.SkipTest("ir.Scan nyi on CPU")

        def fn(a):
            return torch.cumsum(a.view(-1), 0)

        self.common(
            fn,
            (torch.rand((10, 3, 352, 352), dtype=torch.float16),),
            reference_in_float=True,
            check_lowp=False,
        )

    def test_consecutive_split_cumsum(self):
        def fn(a, b):
            a = a.view(-1)
            b = b.view(-1)
            return torch.cumsum(a, 0) + torch.cumsum(b, 0)

        a = make_tensor(10, 3, 352, 352, low=0, dtype=torch.float32, device=self.device)
        b = make_tensor(10, 3, 352, 352, low=0, dtype=torch.float64, device=self.device)
        self.common(fn, (a, b), rtol=1e-4, atol=1e-5, check_lowp=False)

    @config.patch(max_autotune_pointwise=True)
    def test_split_cumsum_index(self):
        # Split scan uses a workspace that needs to be zeroed before use.
        # data[index] does indirect indexing that should catch issues if the
        # workspace is not zeroed.
        def fn(lengths, data):
            offsets = torch.cumsum(lengths, 0)
            return data[offsets]

        lengths = torch.full((2**14,), 2**2, dtype=torch.int64, device=self.device)
        lengths[-2] = 3
        lengths[-1] = 3
        data = make_tensor((2**16,), dtype=torch.float32, device=self.device)
        self.common(fn, (lengths, data))

    def test_split_cumprod(self):
        def fn(a):
            return torch.cumprod(a, -1)

        for dtype in [torch.float32, torch.float64, torch.int32, torch.int64]:
            inp = _large_cumprod_input(
                (10, 10000), dim=1, dtype=dtype, device=self.device
            )
            self.common(fn, (inp,), atol=1e-5, rtol=1e-4, check_lowp=False)

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skipCUDAIf(TEST_WITH_ROCM, "Computation not done in float on ROCm")
    @skip_if_gpu_halide  # accuracy issue
    def test_split_cumprod_low_prec(self):
        if is_cpp_backend(self.device):
            raise unittest.SkipTest("ir.Scan nyi on CPU")

        def fn(a):
            return torch.cumprod(a.view(-1), 0)

        for dtype in [torch.float16, torch.bfloat16]:
            inp = _large_cumprod_input(
                (10, 10000), dim=1, dtype=dtype, device=self.device
            )
            self.common(
                fn,
                (inp,),
                reference_in_float=True,
                check_lowp=False,
            )

    def test_consecutive_split_cumprod(self):
        def fn(a, b):
            return torch.cumprod(a, 0) + torch.cumprod(b, 0)

        a = _large_cumprod_input(
            (10000,), dim=0, dtype=torch.float32, device=self.device
        )
        b = _large_cumprod_input(
            (10000,), dim=0, dtype=torch.float64, device=self.device
        )
        self.common(fn, (a, b), atol=1e-5, rtol=1e-5, check_lowp=False)

    @skipCUDAIf(TEST_WITH_ROCM, "associative_scan is not supported on ROCm")
    @skip_if_halide  # scan ops
    @skip_if_dynamic  # TODO: support lifted symints when dynamic
    def test_custom_scan_op(self):
        if self.device != "cuda":
            raise unittest.SkipTest("associative_scan only supported on GPU")

        def sum_combine(a, b):
            return a + b

        from torch._higher_order_ops.associative_scan import associative_scan

        a = torch.randn(100, 100, device=self.device)
        expect = torch.cumsum(a, 0)
        actual = associative_scan(sum_combine, a, 0)
        self.assertEqual(expect, actual)

        def logcumsum_combine(a, b):
            min_v = torch.minimum(a, b)
            max_v = torch.maximum(a, b)
            mask = (min_v != max_v) | ~min_v.isinf()
            return torch.where(mask, max_v + (min_v - max_v).exp().log1p(), a)

        expect = torch.logcumsumexp(a, 0)
        actual = associative_scan(logcumsum_combine, a, 0)
        self.assertEqual(expect, actual)

    @skip_if_halide  # scan ops
    @skip_if_dynamic  # TODO: support lifted symints when dynamic
    def test_custom_scan_op_compiled(self):
        if self.device != "cuda":
            raise unittest.SkipTest("associative_scan only supported on GPU")

        from torch._higher_order_ops.associative_scan import associative_scan

        def sum_combine(a, b):
            return a + b

        def fn(a, b, dim):
            diff = (a - b).abs()
            sad = associative_scan(sum_combine, diff, dim)
            return sad.sum(dim)

        a = torch.randn(100, 100, device=self.device)
        b = torch.randn(100, 100, device=self.device)
        self.common(fn, (a, b, 0))
        cfn = torch.compile(fn)
        _, code = run_and_get_code(cfn, a, b, 0)

        # Check everything is fused into a single kernel
        FileCheck().check_not("run(").check_regex(
            r"triton_.*\.run\(arg[01]_1, arg[12]_1, buf1,"
        ).check_not("run(").run(code[0])

    @skipCUDAIf(TEST_WITH_ROCM, "associative_scan is not supported on ROCm")
    @skip_if_halide  # scan ops
    @skip_if_dynamic  # TODO: support lifted symints when dynamic
    def test_custom_scan_op_multi_input(self):
        if self.device != "cuda":
            raise unittest.SkipTest("associative_scan only supported on GPU")

        def argmax_combine(a, b):
            a_value, a_index = a
            b_value, b_index = b
            mask = (a_value > b_value) | ((a_value == b_value) & (a_index > b_index))
            return (
                torch.where(mask, a_value, b_value),
                torch.where(mask, a_index, b_index),
            )

        from torch._higher_order_ops.associative_scan import associative_scan

        a = torch.randn(100, 100, device=self.device)
        expect = torch.cummax(a, 0)

        idx = torch.arange(100, device=self.device).view(100, 1).expand(100, 100)
        actual = associative_scan(argmax_combine, (a, idx), 0)
        self.assertEqual(expect, actual)

    @skipCUDAIf(TEST_WITH_ROCM, "associative_scan is not supported on ROCm")
    @skip_if_halide  # scan ops
    @skip_if_dynamic  # TODO: support lifted symints when dynamic
    def test_custom_scan_would_split(self):
        if self.device != "cuda":
            raise unittest.SkipTest("associative_scan only supported on GPU")

        def combine_linear_recurrence(left, right):
            xl, fl = left
            xr, fr = right
            x = xl * fr + xr
            f = fl * fr
            return x, f

        def eager_scan(x, g):
            x, g = x.to(torch.float64), g.to(torch.float64)
            x_out = torch.empty_like(x)
            g_out = torch.empty_like(g)
            x_out[:, 0] = x[:, 0]
            g_out[:, 0] = g[:, 0]
            for i in range(1, x.shape[1]):
                x_out[:, i], g_out[:, i] = combine_linear_recurrence(
                    (x_out[:, i - 1], g_out[:, i - 1]),
                    (x[:, i], g[:, i]),
                )
            return x_out.float(), g_out.float()

        @torch.compile
        def compiled_scan(x, f):
            from torch._higher_order_ops.associative_scan import associative_scan

            x, f = associative_scan(combine_linear_recurrence, (x, f), dim=1)
            return x, f

        x = torch.randn(1, 129, 2, device=self.device)
        f = torch.randn(1, 129, 2, device=self.device)
        expect = eager_scan(x, f)
        actual = compiled_scan(x, f)
        self.assertEqual(expect, actual)

    def test_embedding_bag_byte_unpack(self):
        if self.device != "cpu":
            raise unittest.SkipTest(f"No {GPU_TYPE} implementation (it returns empty)")

        def fn(a):
            return torch.ops.quantized.embedding_bag_byte_unpack(a)

        M, N = 32, 64
        scales = torch.randn(M, 1).view(torch.uint8)
        offsets = torch.randn(M, 1).view(torch.uint8)
        data = torch.randint(0, 255, (M, N), dtype=torch.uint8)
        packed = torch.cat([data, scales, offsets], dim=-1)
        self.common(fn, [packed])

    @skipCUDAIf(True, "No _weight_int8pack_mm implementation on CUDA")
    @skipIfXpu(msg="No _weight_int8pack_mm implementation on XPU")
    def test_int8_weight_only_quant(self):
        def convert_weight_to_int8pack(b):
            b_int8pack, b_scales, _ = _dynamically_quantize_per_channel(
                b, -128, 127, torch.int8
            )
            return b_int8pack, b_scales

        def fn(a, b_int8pack, b_scales, c):
            res = torch._weight_int8pack_mm(a, b_int8pack, b_scales)
            res = res + c
            return res

        m = 32
        k = 32
        n = 48
        a = torch.rand((m, k), dtype=torch.bfloat16)
        b = torch.rand((n, k), dtype=torch.bfloat16)
        c = torch.rand((m, n), dtype=torch.bfloat16)
        b_int8pack, b_scales = convert_weight_to_int8pack(b)
        self.common(fn, (a, b_int8pack, b_scales, c))

    def test_expanded_reduction(self):
        def fn(x, y):
            z = x * y
            return z.sum((0, 1))

        atol = None
        rtol = None

        # By default, inductor generate non-persistent reduction kernels in this
        # case. But when multi-kernel is enabled, inductor will pick the faster
        # of persistent reduction and non-persistent-reduction kernel.
        # In this case, inductor picked the persistent-reduction kernel.
        # The persistent reduction kernel happens to need looser tolerance.
        if config.triton.multi_kernel:
            atol = 1e-5
            rtol = 1e-5
        self.common(
            fn, (torch.randn(2, 197, 256), torch.randn(2, 1, 256)), atol=atol, rtol=rtol
        )

    @skip_if_gpu_halide
    def test_min_max_reduction(self):
        def fn(a, b):
            return (
                (a + b).max(),
                (a + b).min(),
                torch.amax(a + 1, keepdim=True),
                torch.amin(b + 1, keepdim=True),
            )

        dtypes = [torch.float, torch.float16]
        if not (self.device == "cuda" and not SM80OrLater):
            dtypes += [torch.bfloat16]
        for dtype in dtypes:
            self.common(fn, (torch.randn(8, 8).to(dtype), torch.randn(8, 8).to(dtype)))

    @skip_if_halide  # bug in nan handling
    def test_min_max_reduction_nan(self):
        def fn(a):
            return (torch.max(a), torch.min(a))

        t1 = torch.randn(32)
        t1[16] = float("nan")
        self.common(fn, (t1,))

    @skip_if_halide  # bug in nan handling
    def test_fmin_fmax(self):
        def fn(a, b):
            return (
                torch.fmin(a, b),
                torch.fmax(a, b),
                torch.fmax(a + 1, torch.tensor(0.0)),
            )

        self.common(
            fn,
            (
                torch.tensor(
                    [-10.0, 10.0, float("nan"), float("nan"), float("nan"), 3, 4]
                ),
                torch.tensor(
                    [float("nan"), float("nan"), -10.0, 10.0, float("nan"), 4, 3]
                ),
            ),
        )

    def test_sum_int(self):
        def fn(x):
            return 2 * x.sum(-1) + x.sum()

        dtypes = torch.bool, torch.uint8, torch.int
        inps = [torch.randint(2, (64,), dtype=dtype) for dtype in dtypes]
        for i in inps:
            self.common(fn, (i,), check_lowp=False)

    def test_sum_dtype(self):
        def fn(x):
            return x * x.sum(-1, dtype=torch.double) + x.sum(dtype=torch.double)

        self.common(fn, (torch.ones(32, 32) * 70,))

    def test_cumsum(self):
        def fn(x):
            return x.cumsum(0), x.cumsum(1)

        # Persistent reductions
        self.common(
            fn, (torch.rand(16, 32),), check_lowp=not is_halide_backend(self.device)
        )
        self.common(
            fn, (torch.rand(20, 30),), check_lowp=not is_halide_backend(self.device)
        )

        # Non-persistent reduction
        self.common(
            fn,
            (torch.rand(100, 4000),),
            check_lowp=not is_halide_backend(self.device),
            atol=1e-5,
            rtol=1e-5,
        )

    def test_cumsum_zero_dim(self):
        def fn(x):
            return x.cumsum(0), x.cumsum(-1)

        a = torch.rand(())
        self.common(fn, (a,))

    def test_cumsum_no_mask(self):
        def fn(x):
            return x.cumsum(-1)

        # Persistent reduction
        a = torch.rand((1, 1024))
        self.common(
            fn, (a,), check_lowp=not (TEST_WITH_ROCM or is_halide_backend(self.device))
        )

        # Non-persistent reduction
        b = torch.rand((1, 8192))
        self.common(
            fn,
            (b,),
            check_lowp=not (TEST_WITH_ROCM or is_halide_backend(self.device)),
            atol=1e-5,
            rtol=1e-5,
        )

    def test_cumprod_zero_dim(self):
        def fn(x):
            return x.cumprod(0), x.cumprod(-1)

        a = torch.rand(())
        self.common(fn, (a,))

    def test_cumsum_inf(self):
        def fn(x):
            return x.cumsum(-1)

        def make_tensor(shape):
            return torch.full(
                shape, float("inf"), device=self.device, dtype=torch.float64
            )

        cfn = torch.compile(fn)

        for n in [100, 10, 100]:
            inp = torch.full(
                (2, n), float("inf"), device=self.device, dtype=torch.float64
            )
            self.assertEqual(cfn(inp), fn(inp))

    @xfail_if_triton_cpu
    def test_logcumsumexp(self):
        def fn(x):
            return x.logcumsumexp(0), x.logcumsumexp(1)

        # Persistent reductions
        self.common(
            fn,
            (torch.rand(16, 32),),
            check_lowp=not (TEST_WITH_ROCM or is_halide_backend(self.device)),
        )
        self.common(
            fn,
            (torch.rand(20, 30),),
            check_lowp=not (TEST_WITH_ROCM or is_halide_backend(self.device)),
        )

        # Non-persistent reduction
        self.common(
            fn,
            (torch.rand(100, 4000),),
            check_lowp=not (TEST_WITH_ROCM or is_halide_backend(self.device)),
            atol=1e-5,
            rtol=1e-5,
        )

    def test_logcumsumexp_zero_dim(self):
        def fn(x):
            return x.logcumsumexp(0), x.logcumsumexp(-1)

        a = torch.rand(())
        self.common(fn, (a,))

    def test_clamp(self):
        def fn(a, b):
            return (a.clamp(-0.1, 0.1), b.clamp(0), torch.clamp(a + b, max=0))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_clamp_type_promotion(self):
        def fn(a):
            b = torch.tensor(1.0, dtype=torch.double, device=self.device)
            c = torch.full((4,), 2, device=self.device)
            return a.clamp(min=b, max=c)

        self.common(fn, (torch.randint(4, (4,)),))

    @skip_if_gpu_halide
    @xfail_if_triton_cpu
    def test_dist(self):
        def fn(a, b):
            return (
                torch.dist(a, b),
                torch.dist(a, b, p=1.2),
            )

        self.common(fn, (torch.randn(4, 4), torch.randn(4, 4)))

    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @skip_if_gpu_halide  # https://github.com/halide/Halide/issues/8311
    def test_dist_bf16(self):
        def fn(a, b):
            return torch.dist(a.to(torch.bfloat16), b.to(torch.bfloat16))

        self.common(fn, (torch.randn(4, 4), torch.randn(4, 4)))

    def test_arange1(self):
        def fn(x):
            rng1 = torch.arange(8 * 8, dtype=torch.float32, device=x.device).view(8, 8)
            rng2 = torch.arange(10, 18, device=x.device)
            tmp = x * rng1
            return tmp, tmp + rng2

        self.common(fn, (torch.randn(8, 8),))

    def test_arange2(self):
        def fn(x):
            rng1 = torch.arange(8, device=x.device)
            return (x + rng1,)

        self.common(fn, (torch.randint(4, (8, 8)),), check_lowp=False)

    def test_arange3(self):
        def fn(x):
            return x + torch.ops.aten.arange.start_step(
                0, 53, 4, dtype=torch.int64, device=x.device
            )

        self.common(fn, (torch.randn(14),))

    def test_arange4(self):
        def fn(x):
            return x - torch.arange(512, -512, -1.0, device=x.device)

        self.common(fn, (torch.randn(1024),))

    def test_arange5(self):
        def fn(step, device):
            return torch.arange(512, -512, step, device=device)

        compiled_fn = torch._dynamo.optimize()(fn)

        # NOTE: use assertEqual to check dtypes which self.common doesn't do
        for step in (-1, -1.0):
            expect = fn(step, self.device)
            actual = compiled_fn(step, self.device)
            self.assertEqual(expect, actual)
        self.assertEqual(expect, actual)

    def test_arange6(self):
        def fn(x):
            return torch.arange(0.1, 8.0001, 1, dtype=x.dtype, device=x.device)

        # Test that float arguments are truncated to int when dtype is set explicitly
        make_arg = functools.partial(
            make_tensor, device=self.device, requires_grad=False
        )
        self.common(fn, (make_arg(1, dtype=torch.float32),))
        self.common(fn, (make_arg(1, dtype=torch.int64),))

    def test_linspace1(self):
        def fn(x):
            return torch.linspace(0.125, 0.875, 7, device=x.device) + x

        self.common(fn, (torch.randn(1, 7),))

    def test_linspace2(self):
        def fn(x):
            return torch.linspace(0, 2, 1, device=x.device) + x

        self.common(fn, (torch.randn(1, 1),))

    def test_linspace3(self):
        def fn(x):
            return torch.linspace(0, 2, 0, device=x.device)

        self.common(fn, (torch.Tensor([]),))

    @requires_multigpu()
    def test_linspace4(self):
        def fn(x):
            return torch.linspace(0, 2, 0, device=f"{GPU_TYPE}:1")

        self.common(fn, (torch.Tensor([]),))

    def test_tensor1(self):
        def fn(x):
            return torch.tensor([1], device=x.device) + x, torch.tensor(
                5, device=x.device
            )

        self.common(fn, (torch.randn(10),))

    def test_tensor2(self):
        def fn(x):
            return torch.tensor(list(range(2, 40, 2)), device=x.device) + x

        self.common(fn, (torch.randn(1),))

    def test_tensor3(self):
        def fn(x):
            return (
                torch.tensor([], device=x.device),
                torch.tensor([1, 2], device=x.device) + 1,
                torch.tensor([1, 2, 3], device=x.device) + 2,
                torch.tensor([1, 2, 3, 4], device=x.device) + x,
            )

        self.common(fn, [torch.randn(4)])

    def test_views1(self):
        def fn1(x, y):
            return (x.view(size2) + y,)

        def fn2(x, y):
            return ((x + 1).view(size2) + y,)

        views = [
            ([5 * 7], [5, 7]),
            ([2 * 3 * 4 * 5 * 6 * 7], [2, 3, 4, 5, 6, 7]),
            ([2 * 3, 4, 5, 6 * 7], [2, 3, 4, 5, 6, 7]),
            ([10 * 5, 20], [10, 5, 20]),
            ([1, 10, 1], [10]),
            ([10, 1, 10, 1, 10], [10, 100]),
            ([2, 2, 2, 2], [4, 4]),
        ]
        for size1, size2 in views:
            self.common(fn1, (torch.randn(size1), torch.randn(size2)))
            self.common(fn2, (torch.randn(size1), torch.randn(size2)))

        for size2, size1 in views:
            self.common(fn1, (torch.randn(size1), torch.randn(size2)))
            self.common(fn2, (torch.randn(size1), torch.randn(size2)))

    def test_views2(self):
        def fn1(x):
            return (x.view(size2) + 1,)

        def fn2(x):
            return ((x * 2).view(size2) + 1,)

        for size1, size2 in [
            ([2, 2, 2, 2], [4, -1]),
            ([10, 1, 10, 1, 10], [-1, 100]),
            ([10 * 5, 20], [10, -1, 20]),
        ]:
            self.common(fn1, (torch.randn(size1),))
            self.common(fn2, (torch.randn(size1),))

    def test_views3(self):
        # example taken from hf_BigBird
        def forward(arg1, arg2):
            index = torch.ops.aten.index(arg1, [arg2])
            view_1 = torch.ops.aten.view(index, [1, 2232, 64])
            view_2 = torch.ops.aten.view(view_1, [1, 12, 62, 192])
            return view_2

        self.common(
            forward,
            (
                rand_strided((64, 64), (64, 1), torch.float32),
                rand_strided((2232,), (1,), torch.int64),
            ),
        )

    def test_views4(self):
        # example taken from hf_BigBird
        def forward(arg1, arg2):
            arg1 = arg1.index_select(0, arg2)
            arg1 = torch.ops.aten.view(arg1, [2, 3, 4, 5, 5])
            arg1 = torch.ops.aten.view(arg1, [2, 3, 2, 10, -1])
            return arg1

        self.common(
            forward,
            (
                torch.randn(12, 5, 5),
                torch.randint(0, 11, (24,)),
            ),
        )

    def test_views5(self):
        # tensor with shape 0 in any dimension
        def forward(x):
            y = x[:, 4:]
            return y.view(len(y), -1, 4)

        self.common(
            forward,
            (torch.randn(4, 4, 4, 4),),
        )

    def test_views6(self):
        def forward(x):
            x = torch.ops.aten.relu(x)
            s = torch.ops.aten.slice(x, 0, 0, 9223372036854775807)
            s = torch.ops.aten.slice(s, 1, 0, 9223372036854775807)
            s = torch.ops.aten.slice(s, 3, 0, 0)
            y = torch.ops.aten.view(s, [4, 2, -1])
            return y

        self.common(
            forward,
            (torch.randn(4, 2, 4, 4),),
        )

    def test_views7(self):
        # x.view(dtype)
        def forward(x, y):
            x = (x + 1).to(torch.float32)
            y = (y + 1).to(torch.int32)
            return x.view(torch.int32), y.view(torch.float32)

        self.common(
            forward,
            (
                torch.rand(2, 3, dtype=torch.float32),
                torch.randint(10, (2, 3), dtype=torch.int32),
            ),
        )

    def test_relu(self):
        def fn(a, b):
            return (torch.relu(a), torch.relu(a + b) / 10)

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_exp(self):
        def fn(a, b):
            return (torch.exp(a), torch.exp(a + b))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_exp2(self):
        def fn(a, b):
            return (torch.exp2(a), torch.exp2(a + b), torch.pow(2, -torch.abs(a - b)))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_sigmoid(self):
        def fn(a, b):
            return (torch.sigmoid(a), torch.sigmoid(a + b))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    @xfail_if_triton_cpu
    def test_round(self):
        def fn(a, b):
            return torch.round(a), torch.round(b + 1), torch.round(a, decimals=2)

        # without manual_seed, there is some chance this test fails due to:
        # https://github.com/openai/triton/issues/530
        torch.manual_seed(0)

        # with *100 we are always getting a number exactly at .5 which we don't do right in half
        self.common(fn, (torch.randn(8, 8) * 100, torch.randn(8, 8) * 10))

    @xfail_if_triton_cpu
    def test_round_correctness(self):
        if self.device == "cuda":
            raise unittest.SkipTest("need to debug tl.libdevice on A100/V100")

        def fn(a):
            return torch.round(a)

        self.common(
            fn,
            [torch.arange(-10, 10, 0.1, dtype=torch.float64)],
            check_lowp=False,
        )

    @xfail_if_triton_cpu
    def test_builtins_round(self):
        def fn(x, i):
            return x[: round(i / 2 + 1)] + round(i / 2)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(5, dtype=torch.int, device=self.device)
        with torch.no_grad():
            for i in range(1, 6):
                self.assertEqual(cfn(x, i), fn(x, i))

    @xfail_if_triton_cpu
    def test_builtins_round_float_ndigits_pos(self):
        def fn(x, i):
            return x + round(i / 2 * 123.4567, 1)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(2, device=self.device)
        i = 2

        with torch.no_grad():
            self.assertEqual(cfn(x, i), fn(x, i))

    @xfail_if_triton_cpu
    def test_builtins_round_float_ndigits_zero(self):
        def fn(x, i):
            return x + round(i / 2 * 123.4567, 0)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(2, device=self.device)
        i = 2

        with torch.no_grad():
            self.assertEqual(cfn(x, i), fn(x, i))

    @xfail_if_triton_cpu
    def test_builtins_round_float_ndigits_neg(self):
        def fn(x, i):
            return x + round(i / 2 * 123.4567, -1)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(2, device=self.device)
        i = 2

        with torch.no_grad():
            self.assertEqual(cfn(x, i), fn(x, i))

    def test_builtins_round_int_ndigits_pos(self):
        def fn(x, i):
            return x + round(i, 1)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(2, device=self.device)
        i = 123

        with torch.no_grad():
            self.assertEqual(cfn(x, i), fn(x, i))

    def test_builtins_round_int_ndigits_zero(self):
        def fn(x, i):
            return x + round(i, 0)

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)

        x = torch.zeros(2, device=self.device)
        i = 123

        with torch.no_grad():
            self.assertEqual(cfn(x, i), fn(x, i))

    def test_silu(self):
        def fn(a):
            return (torch.nn.functional.silu(a),)

        self.common(fn, (torch.randn(8, 8),))

    @skip_if_halide  # halide has buggy nan handling
    def test_nan_to_num(self):
        def fn(a):
            return (
                torch.nan_to_num(a),
                torch.nan_to_num(a, nan=3.0),
                torch.nan_to_num(a, nan=None),
                torch.nan_to_num(a, posinf=4.0),
                torch.nan_to_num(a, neginf=5.0),
                torch.nan_to_num(a, nan=3.0, posinf=4.0, neginf=5.0),
            )

        self.common(
            fn,
            (torch.tensor((float("nan"), float("inf"), float("-inf"), 1.0)),),
            check_lowp=False,  # a much more elaborate test is required to match finfo max's for float and half
        )

    def test_one_hot(self):
        def fn(a):
            return torch.nn.functional.one_hot(a, 8) + 1

        self.common(
            fn,
            (torch.arange(100).view(4, 5, 5) % 8,),
            check_lowp=False,
        )

    def test_div1(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        self.common(fn, (torch.randn(8, 8) * 100, torch.randn(8, 8) * 100))

    def test_div2(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        self.common(fn, (torch.randint(-100, 100, [8, 8]), 100 * torch.randn(8, 8)))

    def test_div3(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        a = torch.randint(1, 100, [8, 8])
        self.common(fn, (a * 2, a))

    def test_div4(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        self.common(
            fn,
            (torch.randint(-100, 0, [8, 8]), torch.randint(1, 10, [8, 8])),
        )

    def test_div5(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        # divide a scalar
        self.common(fn, (torch.randint(-100, 0, [8, 8]), 16))

    def test_div6(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        # treat boolean as integer
        self.common(
            fn,
            (torch.ones([8, 8], dtype=torch.bool), torch.randint(-100, -1, [8, 8])),
        )

    @skip_if_triton_cpu  # divide by zero; cannot xfail because it crashes process
    def test_div7(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        self.common(
            fn,
            (
                torch.randint(2**32, 2**40, [100, 100]),
                torch.randint(-10, -1, [100, 100]),
            ),
        )

    def test_div8(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a * 0.5, b, rounding_mode=None),
                aten.div(a, b * 1.0, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        self.common(fn, (1024, 100))

    def test_div9(self):
        def fn(x):
            return (torch.div(42, x), aten.true_divide(42, x), aten.div.Tensor(42, x))

        self.common(fn, (torch.randn(8),))

    @skip_if_triton_cpu  # divide by zero; cannot xfail because it crashes process
    def test_div_zero_dim(self):
        def fn(a, b):
            return (
                aten.div(a, b, rounding_mode=None),
                aten.div(a, b, rounding_mode="floor"),
                aten.div(a, b, rounding_mode="trunc"),
                a / b,
                a // b,
            )

        for dtype in (torch.float32, torch.int64):
            self.common(
                fn,
                (
                    make_tensor(10, device=self.device, dtype=dtype),
                    make_tensor((), device=self.device, dtype=dtype, exclude_zero=True),
                ),
            )
            self.common(
                fn,
                (
                    make_tensor((), device=self.device, dtype=dtype),
                    make_tensor(10, device=self.device, dtype=dtype, exclude_zero=True),
                ),
            )

    @skip_if_triton_cpu  # divide by zero; cannot xfail because it crashes process
    def test_div_prim(self):
        def fn(a, b):
            return (torch.ops.prims.div(a, b),)

        for dtype in (torch.float32, torch.int64):
            self.common(
                fn,
                (
                    make_tensor(100, device=self.device, dtype=dtype),
                    make_tensor(
                        100, device=self.device, dtype=dtype, exclude_zero=True
                    ),
                ),
            )

    def test_floordiv(self):
        def fn_floor_input(a, i):
            n = (i * 1.234) // 8.234
            return a + n

        self.common(
            fn_floor_input,
            (make_tensor(10, device=self.device, dtype=torch.float32), 33),
        )

        def fn_int_input(a, i):
            n = i // 8
            return a + n

        self.common(
            fn_int_input, (make_tensor(10, device=self.device, dtype=torch.float32), 33)
        )

    def test_div_precision(self):
        # Reproducer for https://github.com/pytorch/pytorch/issues/101039

        def forward(x, y):
            z = x.div(y)
            return F.softmax(z, dim=-1)

        query = torch.randn(1, 10, 40)
        key = torch.randn(1, 2, 40)
        x = torch.matmul(query, key.transpose(-2, -1))
        self.common(forward, (x, 1e-6))

        x = torch.tensor(
            [
                [
                    [
                        [-16.1649, 5.6846, -5.1022, -9.1134],
                        [-11.5552, -2.2615, -12.8913, 10.6538],
                        [-7.1666, -5.3333, 2.0776, -9.7984],
                        [7.4469, -2.3948, 2.7371, 0.9201],
                    ],
                    [
                        [-8.0361, -16.3771, 22.7741, 4.4685],
                        [20.8047, -0.7771, -2.4355, -2.2299],
                        [3.8343, -2.0914, -2.4077, 2.2740],
                        [-15.8663, -2.7015, -12.5241, -3.0040],
                    ],
                    [
                        [-2.5139, 14.4393, -3.7186, 1.2255],
                        [5.6742, 14.1842, -8.5976, 16.8366],
                        [-9.7358, -3.0279, 11.8164, -4.0787],
                        [-9.0621, 8.2580, 29.9486, -2.4107],
                    ],
                    [
                        [7.3622, 12.5640, -20.5592, 13.6237],
                        [-11.5640, 0.8832, 16.7275, -2.5009],
                        [-2.0953, -12.2276, -26.2633, 4.5268],
                        [15.3329, -11.7492, 6.5650, -9.2483],
                    ],
                ],
                [
                    [
                        [7.9980, -4.9369, 3.1508, 5.2994],
                        [3.8052, 3.9514, 8.4987, -10.5045],
                        [-2.6827, -4.0010, -4.0611, 6.4091],
                        [-19.0318, 6.4073, 2.8923, 8.0250],
                    ],
                    [
                        [7.1650, -3.4585, 5.7720, -5.0305],
                        [-0.9765, -3.0086, 11.7114, 8.0555],
                        [-3.1027, -3.5514, 9.6182, -8.8526],
                        [-9.2348, -6.0239, 6.2528, -6.7221],
                    ],
                    [
                        [11.5936, 22.4139, -0.4089, -4.9889],
                        [14.8217, -2.3426, -17.6189, 3.7427],
                        [1.9546, -13.0902, 8.6293, -7.2457],
                        [-7.6900, -4.5796, 9.6332, -10.2631],
                    ],
                    [
                        [0.8027, -1.0955, 14.8404, -0.2673],
                        [3.2143, -1.8640, -2.9678, 6.5165],
                        [-3.9865, 6.5230, 6.3019, -0.4247],
                        [8.3185, -13.5076, 27.0986, -1.6792],
                    ],
                ],
            ]
        )
        x = torch.matmul(x, x)
        y = torch.tensor([[[0.6331]], [[1.6358]], [[-0.3459]], [[1.0196]]])
        self.common(forward, (x, y))

    def test_div_softmax_symfloat(self):
        def forward(x, y):
            z = x.div(y * x.shape[-1])
            return F.softmax(z, dim=-1)

        query = torch.randn(1, 10, 40)
        key = torch.randn(1, 2, 40)
        x = torch.matmul(query, key.transpose(-2, -1))

        cf = torch.compile(forward, dynamic=True)
        cf(x, 1e-5)
        cf(x, 1e-6)

    def test_mul_softmax_symfloat(self):
        def forward(x, y):
            z = x.mul(y * x.shape[-1])
            return F.softmax(z, dim=-1)

        query = torch.randn(1, 10, 40)
        key = torch.randn(1, 2, 40)
        x = torch.matmul(query, key.transpose(-2, -1))

        cf = torch.compile(forward, dynamic=True)
        cf(x, 1e-5)
        cf(x, 1e-6)

    def test_div_by_zero(self):
        def fn(x, runtime_zero, runtime_neg_zero):
            zero = torch.zeros_like(x)
            return (
                x / 0.0,
                x / -0.0,
                zero / 0.0,
                x / zero,
                x / -zero,
                zero / zero,
                x / runtime_zero,
                # NOTE: -runtime_zero doesn't work as -(0.0) is broken in triton
                x / runtime_neg_zero,
                runtime_zero / runtime_neg_zero,
            )

        a = torch.randn(10)
        zero = torch.zeros(10)
        neg_zero = -zero
        self.common(fn, (a, zero, neg_zero))

    def test_both_scalars(self):
        def fn(a, b):
            return (
                aten.add(a, b),
                aten.add(b, a),
                aten.sub(a, b),
                aten.sub(b, a),
                aten.mul(a, b),
                aten.mul(b, a),
            )

        self.common(fn, (4, 3.3), reference_in_float=False)

    def test_sum_keepdims(self):
        def fn(a, b):
            return (torch.sum(a + b, -1, keepdim=True),)

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    @skip_if_halide  # only 32-bit indexing
    def test_large_tensor_reduction(self):
        if self.device == "cpu":
            raise unittest.SkipTest("Fails on CPU")

        # If this is running with cpp_wrapper, the auto-tuning step will generate an
        # additional array of the same size as the input.  Numbers derived
        # experimentally.
        required_memory = 2**33 if config.cpp_wrapper else 2**32 + 2**16
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        # Test 64-bit indexing works correctly
        def fn(a):
            return torch.max(a)

        t = torch.ones(2**32, dtype=torch.int8, device=self.device)
        t[-1] = 2

        # self.common OOMs here because it copies inputs to check for mutations
        compiled_fn = torch.compile(fn)
        actual = compiled_fn(t)
        expect = torch.tensor(2, dtype=torch.int8, device=self.device)
        self.assertEqual(actual, expect)

    @skip_if_gpu_halide  # only 32-bit indexing
    def test_large_broadcast_reduction(self):
        if self.device == "cpu":
            raise unittest.SkipTest("Fails on CPU")

        # Test 64-bit indexing works correctly when inputs are less than 32-bit
        # but intermediate tensors require 64-bit indexing
        def fn(a, b):
            return torch.max(a + b)

        t1 = torch.ones(1, 2**16, dtype=torch.int8, device=self.device)
        t2 = torch.ones(2**16, 1, dtype=torch.int8, device=self.device)

        t1[-1, -1] = 2
        t2[-1, -1] = 2

        # self.common OOMs here because it copies inputs to check for mutations
        compiled_fn = torch.compile(fn)
        actual = compiled_fn(t1, t2)
        expect = torch.tensor(4, dtype=torch.int8, device=self.device)
        self.assertEqual(actual, expect)

    @skip_if_halide  # only 32-bit indexing
    def test_large_pointwise(self):
        # If this is running with cpp_wrapper, the auto-tuning step will generate an
        # additional array of the same size as the input.  Numbers derived
        # experimentally.
        required_memory = (
            2**32 + 2**31 + 2**15 if config.cpp_wrapper else 2**31 + 2**15
        )
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        def fn(a):
            return a + 1

        t = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device)
        compiled_fn = torch.compile(fn)
        actual = compiled_fn(t)

        # Can't use assertEqual as it expands broadcasted inputs
        del t
        if torch.device(self.device).type == GPU_TYPE:
            getattr(torch, GPU_TYPE).empty_cache()

        self.assertTrue((actual == 2).all())

    @skip_if_halide  # only 32-bit indexing
    def test_large_offset_pointwise(self):
        # Test 64-bit indexing is used when input views a tensor that can be
        # indexed with 32-bit strides but the storage offset pushes it over
        # INT_MAX

        # Memory requirements derived experimentally.
        required_memory = 2**32 + 2**16
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        def fn(a):
            return a + 4

        t = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device)
        t[2**30 :] = 0
        compiled_fn = torch.compile(fn)
        actual = compiled_fn(t[2**30 :])
        self.assertTrue((actual == 4).all())

    @skip_if_halide  # only 32-bit indexing
    def test_large_strided_reduction(self):
        # Test 64-bit indexing is used when input numel is less than INT_MAX
        # but stride calculations go above INT_MAX

        # If this is running with cpp_wrapper, the auto-tuning step will generate an
        # additional array of the same size as the input.  Numbers derived
        # experimentally.
        required_memory = 2**32 + 2**16 if config.cpp_wrapper else 2**31 + 2**16
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        def fn(a):
            return torch.max(a)

        storage = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device)
        view = storage[::32]
        view[-1] = 2

        compiled_fn = torch._dynamo.optimize()(fn)
        actual = compiled_fn(view)
        expect = torch.tensor(2, dtype=torch.int8, device=self.device)
        self.assertEqual(actual, expect)

    def test_softmax(self):
        def fn(a, b):
            return (torch.softmax(a + b, -1), torch.softmax(a, 0), torch.softmax(b, 1))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_log_softmax(self):
        def fn(a, b):
            return (F.log_softmax(a + b, -1), F.log_softmax(a, 0), F.log_softmax(b, 1))

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_transpose(self):
        def fn(a, b):
            return (
                torch.t(a) + b,
                torch.transpose(b * 2, 0, 1) + 10,
            )

        self.common(fn, (torch.randn(8, 8), torch.randn(8, 8)))

    def test_permute1(self):
        def fn(a):
            return (
                torch.permute(a + 1, [2, 1, 4, 0, 3]) + 2,
                torch.permute(a, [2, 1, 4, 0, 3]) + 2,
            )

        self.common(fn, (torch.randn(2, 2, 2, 2, 2),))

    def test_permute2(self):
        def fn(a):
            a = a.unfold(0, 2, 1)
            a = torch.unsqueeze(a, 1)
            a = torch.permute(a, [0, 2, 3, -3])
            return (a,)

        self.common(fn, (torch.randn(4, 4),))

    def test_expand(self):
        def fn(a):
            return (
                (a + 1).expand(3, 4, 2, 3, 2) + 2,
                a.expand(2, 1, 2, 3, 2) + 2,
            ), a.expand(2, -1, 5, -1)

        self.common(fn, (torch.randn(2, 1, 2),))

    def test_squeeze1(self):
        def fn(a):
            return ((a + 1).squeeze() + 2, a.squeeze() + 2)

        self.common(fn, (torch.randn(1, 2, 1, 2, 2, 1, 1),))

    def test_squeeze2(self):
        def fn(a):
            return ((a + 1).squeeze(-1).squeeze(2) + 2, a.squeeze(0) + 2)

        self.common(fn, (torch.randn(1, 2, 1, 2, 2, 2, 1),))

    def test_squeeze_varargs(self):
        def fn(x):
            return x.squeeze(1, 2).clone()

        a = torch.randn(1024, 1, 1)
        self.common(fn, (a,))

    def test_simplify_loops(self):
        def fn(a, b):
            return a + b

        self.common(
            fn,
            (
                torch.randn(2, 3, 4, 5, 6),
                torch.randn(4, 2, 3, 5, 6).permute(1, 2, 0, 3, 4),
            ),
        )

    def test_unsqueeze(self):
        def fn(a):
            return (
                torch.unsqueeze(a + 1, -1) + 2,
                torch.unsqueeze(a, 2) + 2,
                torch.unsqueeze(a + 1, 0) + 2,
                torch.unsqueeze(a, -2) + 2,
            )

        self.common(
            fn,
            (
                torch.randn(
                    2,
                    2,
                    2,
                    2,
                ),
            ),
        )

    def test_unsqueeze_inplace(self):
        def fn(a):
            tmp1 = a + 1
            aten.unsqueeze_(tmp1, 2)
            tmp2 = aten.unsqueeze_(a + 1, 0) + 2
            return (tmp1, tmp2)

        self.common(
            fn,
            (
                torch.randn(
                    2,
                    2,
                    2,
                    2,
                ),
            ),
        )

    def test_addmm(self):
        def fn(a, b, c):
            return (torch.addmm(a + 1, b + 2, c + 3) + 4,)

        self.common(
            fn,
            (
                torch.randn(8, 8),
                torch.randn(8, 8),
                torch.randn(8, 8),
            ),
        )

    # https://github.com/pytorch/pytorch/issues/98979
    @skipCUDAIf(True, "cuda failed for float64 linear")
    @skipIfXpu(msg="Double and complex datatype matmul is not supported in oneDNN")
    def test_linear_float64(self):
        mod = torch.nn.Sequential(torch.nn.Linear(8, 16).to(torch.float64)).eval()
        with torch.no_grad():
            self.common(mod, (torch.randn(2, 8).to(torch.float64),))

    def test_linear1(self):
        mod = torch.nn.Sequential(
            torch.nn.Linear(8, 16),
            torch.nn.Sigmoid(),
            ToTuple(),
        )
        self.common(mod, (torch.randn(2, 8),))

    def test_linear2(self):
        mod = torch.nn.Sequential(
            torch.nn.Linear(8, 8),
            torch.nn.ReLU(),
            torch.nn.Linear(8, 8),
            torch.nn.ReLU(),
            torch.nn.Linear(8, 8),
            torch.nn.ReLU(),
            torch.nn.Linear(8, 8),
            torch.nn.ReLU(),
        )
        self.common(
            mod,
            (torch.randn(2, 8),),
            atol=1e-3,
            rtol=0.01,
        )

    def test_bmm1(self):
        def fn(a, b):
            return (
                torch.bmm(a, b),
                torch.bmm(a + 1, b + 2) + 3,
            )

        self.common(
            fn,
            (
                torch.randn(2, 8, 8),
                torch.randn(2, 8, 8),
            ),
            check_lowp=False,
        )
        self.common(
            fn,
            (
                torch.randn(1, 16, 8),
                torch.randn(1, 8, 10),
            ),
            check_lowp=False,
        )

    def test_bmm2(self):
        def fn(a, b):
            return torch.bmm(a.permute(0, 2, 1), b)

        self.common(
            fn,
            (
                torch.randn(1, 8, 8),
                torch.randn(1, 8, 8),
            ),
            check_lowp=False,
        )

    @skipIfPy312  # segfaults
    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @config.patch(mixed_mm_choice="triton")
    def test_mixed_mm(self):
        def fn(a, b):
            return torch.mm(a, b.to(a.dtype))

        self.common(
            fn,
            (
                torch.randn(8, 8),
                torch.randint(-128, 127, (8, 8), dtype=torch.int8),
            ),
            check_lowp=True,
        )

    @skipIfPy312  # segfaults
    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @config.patch(mixed_mm_choice="triton")
    def test_mixed_mm2(self):
        def fn(a, b, scale, bias):
            return torch.mm(a, b.to(a.dtype)) * scale + bias

        self.common(
            fn,
            (
                torch.randn(8, 8),
                torch.randint(-128, 127, (8, 8), dtype=torch.int8),
                torch.randn(8),
                torch.randn(8),
            ),
            check_lowp=True,
        )

    @skipIfPy312  # segfaults
    @skipCUDAIf(not SM80OrLater, "Requires sm80")
    @config.patch(mixed_mm_choice="triton")
    def test_mixed_mm3(self):
        def fn(a, b):
            return torch.mm(a, b.to(a.dtype))

        # (256, 256) @ (256, 256) so different block sizes are tried out during autotuning
        self.common(
            fn,
            (
                torch.randn(256, 256),
                torch.randint(-128, 127, (256, 256), dtype=torch.int8),
            ),
            check_lowp=True,
            rtol=0.01,
            atol=0.1,
        )

    @with_tf32_off
    @config.patch(use_mixed_mm=True)
    def test_uint4x2_mixed_mm(self):
        def fn(a, b):
            return torch.mm(
                a,
                torch.cat((b & 0xF, b >> 4), 1)
                .reshape(-1, b.shape[1])
                .to(a.dtype)
                .sub(8),
            )

        self.common(
            fn,
            (
                torch.randn(8, 8),
                torch.randint(0, 255, (4, 8), dtype=torch.uint8),
            ),
            check_lowp=True,
        )

    @skipIfXpu
    def test_mm_mixed_dtype(self):
        def fn(a, b):
            return torch.mm(a, b)

        t1 = torch.arange(6, dtype=torch.float, device=self.device).view(2, 3)
        t2 = torch.arange(9, dtype=torch.int64, device=self.device).view(3, 3)

        msg = "expected .* and .* to have the same dtype, but got: .* != .*"
        with self.assertRaisesRegex(RuntimeError, msg):
            fn(t1, t2)
        if config.cpp_wrapper:
            msg = "aoti_torch_.* API call failed at .*"
        with self.assertRaisesRegex(RuntimeError, msg):
            torch.compile(fn)(t1, t2)

    @skipIfXpu
    def test_linear_mixed_dtype(self):
        class Net(nn.Module):
            def __init__(self) -> None:
                super(Net, self).__init__()  # noqa: UP008
                self.fc1 = nn.Linear(3, 3)

            def forward(self, x):
                x = self.fc1(x.permute(1, 2, 0))
                return x

        fn = Net().to(self.device)
        t = torch.arange(27, device=self.device).view(3, 3, 3)

        msg = "expected .* and .* to have the same dtype, but got: .* != .*"
        with self.assertRaisesRegex(RuntimeError, msg):
            fn(t)
        if config.cpp_wrapper:
            msg = "aoti_torch_.* API call failed at .*"
        with self.assertRaisesRegex(RuntimeError, msg):
            with torch.no_grad():
                torch.compile(fn)(t)
        # TODO: Autograd internal assertion
        msg = r".*isDifferentiableType\(variable.scalar_type\(\)\) INTERNAL ASSERT FAILED.*"
        with self.assertRaisesRegex(RuntimeError, msg):
            torch.compile(fn)(t)

    def test_scalar_input(self):
        def fn(x, y):
            a = torch.div(x, y, rounding_mode="floor")
            return a

        self.common(fn, [torch.randint(5, (1, 8)), 5400])

    @torch._dynamo.config.patch(dynamic_shapes=True)
    @torch._dynamo.config.patch(assume_static_by_default=False)
    def test_scalar_output(self):
        def fn(arg0_1, arg2_1):
            arg1_1 = arg2_1.size(1)
            view = torch.ops.aten.view.default(arg2_1, [-1, arg1_1])
            embedding = torch.ops.aten.embedding.default(arg0_1, view)
            full = torch.ops.aten.full.default([1, arg1_1], 1, dtype=torch.float32)
            return (full, arg1_1, embedding)

        arg0_1 = rand_strided((32128, 768), (768, 1), device="cpu", dtype=torch.float32)
        arg2_1 = rand_strided((1, 22), (22, 1), device="cpu", dtype=torch.int64)
        self.common(fn, [arg0_1, arg2_1])

    def test_shape_prop_torch_ones(self):
        class Model(torch.nn.Module):
            def forward(self, attention_scores):
                extended_attention_mask = torch.ones(
                    8, 1, 1, 512, device=attention_scores.device
                )
                attention_scores = attention_scores + extended_attention_mask

                return attention_scores

        mod = Model().eval()
        with torch.no_grad():
            self.common(
                mod,
                (torch.randn(8, 12, 512, 512),),
            )

    @slowTest
    @expectedFailureCodegenDynamic
    @config.patch({"freezing": True})
    def test_conv_bn_fuse(self):
        # For gpu path, there is an accuracy issue
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu conv bn test")

        # fails dynamic check which bn is fused, and there will not have loops vars.
        input_shapes = {1: (112,), 2: (112, 112), 3: (55, 55, 55)}
        conv_modules = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d}
        bn_modules = {
            1: torch.nn.BatchNorm1d,
            2: torch.nn.BatchNorm2d,
            3: torch.nn.BatchNorm3d,
        }
        options = itertools.product(
            [1, 2, 3],
            [True, False],
            [1, 3],
            [1, 2],
            [1, 4],
        )

        for (
            dim,
            bias,
            kernel_size,
            dilation,
            groups,
        ) in options:
            oC = 32 * groups
            iC = 3 * groups
            x_shape = (1, iC) + input_shapes[dim]
            mod = torch.nn.Sequential(
                conv_modules[dim](
                    iC,
                    oC,
                    kernel_size=kernel_size,
                    dilation=dilation,
                    groups=groups,
                    bias=bias,
                ),
                bn_modules[dim](oC),
            ).eval()
            test_memory_format = [torch.contiguous_format]
            # TODO: GPU path doesn't support channels_last now.
            if not HAS_GPU and dim > 1:
                channels_last = (
                    torch.channels_last if dim == 2 else torch.channels_last_3d
                )
                test_memory_format.append(channels_last)
            for memory_format in test_memory_format:
                v = torch.randn(x_shape, dtype=torch.float32).to(
                    memory_format=memory_format
                )
                with torch.no_grad():
                    self.common(
                        mod,
                        (v,),
                    )

    def test_conv_functional_bn_fuse(self):
        # For gpu path, there is an accuracy issue
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu conv bn test")

        # Define a BatchNorm using functional BN.
        class BatchNorm(torch.nn.BatchNorm2d):
            def __init__(
                self,
                num_features,
                eps=1e-5,
                momentum=0.1,
                affine=True,
                track_running_stats=True,
                device=None,
                dtype=None,
            ):
                factory_kwargs = {"device": device, "dtype": dtype}
                super().__init__(
                    num_features,
                    eps=eps,
                    momentum=momentum,
                    affine=affine,
                    track_running_stats=track_running_stats,
                    **factory_kwargs,
                )

            def forward(self, x):
                if self.momentum is None:
                    exponential_average_factor = 0.0
                else:
                    exponential_average_factor = self.momentum

                if self.training and self.track_running_stats:
                    # TODO: if statement only here to tell the jit to skip emitting this when it is None
                    if self.num_batches_tracked is not None:  # type: ignore[has-type]
                        self.num_batches_tracked = self.num_batches_tracked + 1  # type: ignore[has-type]
                        if self.momentum is None:  # use cumulative moving average
                            exponential_average_factor = 1.0 / float(
                                self.num_batches_tracked
                            )
                        else:  # use exponential moving average
                            exponential_average_factor = self.momentum
                if self.training:
                    bn_training = True
                else:
                    bn_training = (self.running_mean is None) and (
                        self.running_var is None
                    )
                x = F.batch_norm(
                    x,
                    # If buffers are not to be tracked, ensure that they won't be updated
                    (
                        self.running_mean
                        if not self.training or self.track_running_stats
                        else None
                    ),
                    (
                        self.running_var
                        if not self.training or self.track_running_stats
                        else None
                    ),
                    self.weight,
                    self.bias,
                    bn_training,
                    exponential_average_factor,
                    self.eps,
                )
                return x

        v = torch.randn(1, 3, 556, 56, dtype=torch.float32)
        mod = torch.nn.Sequential(
            torch.nn.Conv2d(
                3,
                64,
                kernel_size=3,
                dilation=1,
                groups=1,
                bias=True,
            ),
            BatchNorm(64),
        ).eval()
        with torch.no_grad():
            self.common(
                mod,
                (v,),
            )

    @skipIfRocm
    def test_conv_inference_heuristics(self):
        if self.device != GPU_TYPE:
            raise unittest.SkipTest(f"{GPU_TYPE} only test")

        in_channels = 6
        out_channels = 6
        kernel_size = 3
        groups = 3

        grouped_conv = nn.Conv2d(
            in_channels, out_channels, kernel_size, groups=groups
        ).to(self.device)

        input_tensor = torch.randn(1, in_channels, 10, 10).to(self.device)

        # Perform the forward pass
        @torch.compile()
        def foo(m, inp):
            return m(inp)

        with torch.no_grad():
            _, code = run_and_get_code(foo, grouped_conv, input_tensor)
            # no to channels last permuting before kernel
            if config.cpp_wrapper:
                FileCheck().check_not("launchKernel(triton").check("_convolution(").run(
                    code[0]
                )
            else:
                FileCheck().check_not(".run(").check(".convolution(").run(code[0])

        # in out should do channels last in inference
        in_channels = 8
        out_channels = 4
        kernel_size = 3

        # Create the convolution layer
        conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size).to(self.device)

        input_tensor = torch.randn(1, in_channels, 10, 10).to(self.device)

        with torch.no_grad():
            _, code = run_and_get_code(foo, conv_layer, input_tensor)
            # should be channels last permuting before kernel
            if is_halide_backend(self.device):
                FileCheck().check("halide_kernel_0(").check(".convolution(").run(
                    code[0]
                )
            else:
                FileCheck().check(".run(").check("convolution(").run(code[0])

    def test_upsample_cat_conv(self):
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu upsample_cat_conv test")

        class M(torch.nn.Module):
            def __init__(
                self,
                **kwargs,
            ):
                super().__init__()
                self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
                self.conv = torch.nn.Conv2d(
                    8,
                    5,
                    kernel_size=1,
                    padding=0,
                    stride=1,
                    dilation=1,
                    **kwargs,
                )

            def forward(self, x, y):
                x = self.upsample(x)
                z = torch.cat([x, y], dim=1)
                z = self.conv(z)
                return z

        v1 = torch.randn([8, 2, 12, 26])
        v2 = torch.randn([8, 6, 24, 52])

        with torch.no_grad():
            self.common(
                M().eval(),
                (v1, v2),
            )

    def test_aliased_buffer_reuse(self):
        def fn(x, y):
            x = 2 * x
            y = 2 * y
            c = torch.cat([x, y], dim=-1)
            d = 1 + c
            m = torch.mm(d, d)
            return m[:, :2] + x

        self.common(fn, (torch.randn(4, 2), torch.randn(4, 2)), check_lowp=False)

    def test_slice_view_with_graph_break(self):
        def fn():
            a = torch.tensor([1], device=self.device)
            a = a[0:1]
            b = a.squeeze()
            a[0] = 0
            if a[0] < 1e5:
                pass
            a[0] = 2
            return b

        expect = fn()
        opt_fn = torch.compile(fn)
        actual = opt_fn()
        self.assertEqual(expect, actual)

    def test_view_detach(self):
        def fn(a):
            return a[0].detach()

        self.common(
            fn,
            (torch.randn([4, 4], requires_grad=True),),
        )

    def test_gather1(self):
        def fn(a, b):
            return (
                torch.gather(a.expand([4, 5, 10, 6]), 3, b + 1),
                torch.gather(a.expand([4, 5, 10, 6]), -1, b + 1),
            )

        self.common(
            fn,
            (
                torch.randn([1, 1, 10, 6]),
                torch.randint(5, [4, 5, 10, 1], dtype=torch.int64),
            ),
        )

    def test_gather2(self):
        # 0d tensor
        def fn(a, b):
            return torch.gather(a, 0, b) + torch.gather(a, -1, b)

        x = torch.tensor(123)
        y = torch.tensor(0)
        self.assertEqual(fn(x, y), x + x)

    def test_gather3(self):
        def fn(a, b):
            return torch.gather(a, 1, b, sparse_grad=True)

        self.common(
            fn,
            (
                torch.randn([4, 5, 10, 6], requires_grad=True),
                torch.randint(5, [4, 5, 10, 1], dtype=torch.int64),
            ),
        )

    def test_device_assert(self):
        def fn(x, y):
            x = torch.sum(x.view(int(x.shape[0] / 6), 6), dim=1)
            return torch.gather(x, 0, torch.trunc(y).to(torch.int64))

        x1 = torch.randn(30)
        x2 = torch.randn(36)
        y = torch.ones(1, dtype=torch.float64)

        self.assertEqual(torch.compile(fn)(x1, y), fn(x1, y))
        self.assertEqual(torch.compile(fn)(x2, y), fn(x2, y))

    def test_slice1(self):
        def fn(a):
            return (
                a[:, :10, 0] + a[:, 10:, 0],
                (a + 1)[:, :10, 0] + (a + 1)[:, 10:, 0],
                a[:, -30:, 0],  # negative index out of range
                a[:, :-30, 0],  # negative index out of range
            )

        self.common(
            fn,
            (torch.randn([2, 20, 2]),),
        )

    def test_slice2(self):
        def fn(a):
            return (
                a[:-1, ::2, -1] + a[-1:, 1::2, -2],
                (a + 1)[:-1, ::2, -1] + (a + 2)[-1:, 1::2, -2],
            )

        self.common(
            fn,
            (torch.randn([2, 20, 2]),),
        )

    # It's a view so it doens't generate a kernel
    @expectedFailureCodegenDynamic
    def test_slice3(self):
        def fn(a, b):
            return torch.ops.aten.slice.Tensor(a, 0, 0, -b)

        x = torch.rand(48, 3, 512, 512)
        self.common(fn, (x, 2))

    @expectedFailureCodegenDynamic
    def test_slice4(self):
        # empty slices that require clamping the start or end
        def fn(a):
            return (
                aten.slice.Tensor(a, 0, 2, 0, 1),
                aten.slice.Tensor(a, 0, a.shape[0], a.shape[0] + 10, 1),
                aten.slice.Tensor(a, 0, -20, 0, 1),
                aten.slice.Tensor(a, 0, -20, -16, 1),
            )

        x = torch.rand(10)
        self.common(fn, (x,))

    def test_split_with_list(self):
        def fn(a, sizes):
            return [t + 1.0 for t in torch.split(a * 2.0, sizes, -1)]

        self.common(fn, (torch.randn(2, 2, 10), [3, 3, 4]))
        self.common(fn, (torch.randn(2, 2, 10), [4, 3, 3]))
        self.common(fn, (torch.randn(2, 2, 10), [1, 2, 3, 4]))

    def test_split_with_integer(self):
        # argument `split_size_or_sections` is integer
        @torch.compile(dynamic=True)
        def f(x, sizes):
            return torch.split(x, sizes, -1)

        # split into equally sized chunks, 10 = 5 + 5
        r1, r2 = f(torch.randn(2, 10), 5)
        self.assertTrue(r1.size() == (2, 5))
        self.assertTrue(r2.size() == (2, 5))

        # split into equally sized chunks, 12 = 4 + 4 + 4
        r1, r2, r3 = f(torch.randn(2, 12), 4)
        self.assertTrue(r1.size() == (2, 4))
        self.assertTrue(r2.size() == (2, 4))
        self.assertTrue(r3.size() == (2, 4))

        # split unevenly, 10 = 3 + 3 + 3 + 1
        r1, r2, r3, r4 = f(torch.randn(2, 10), 3)
        self.assertTrue(r1.size() == (2, 3))
        self.assertTrue(r2.size() == (2, 3))
        self.assertTrue(r3.size() == (2, 3))
        self.assertTrue(r4.size() == (2, 1))

    def test_split_failed(self):
        @torch._dynamo.optimize("inductor")
        def fn(a):
            return torch.split(a, [2, 1, 1], dim=1)

        with self.assertRaisesRegex(RuntimeError, ""):
            fn(torch.randn(1, 5))

    def test_inductor_assert(self):
        @torch._dynamo.optimize("inductor", dynamic=True)
        def fn(a):
            assert a.shape[0] >= 2 and a.shape[1] >= 4
            return a.cos()

        inp = torch.randn(2, 4, 6)
        torch._dynamo.mark_dynamic(inp, 0)
        torch._dynamo.mark_dynamic(inp, 1)
        self.assertEqual(fn(inp), inp.cos())

    def test_split(self):
        def fn(a):
            t = torch.split(a, 3, -1)
            return (t[0], t[1], t[2], t[3])

        def fn2(a):
            return fn(a + 1)

        self.common(
            fn,
            (torch.randn([2, 2, 10]),),
        )

        self.common(
            fn2,
            (torch.randn([2, 2, 10]),),
        )

    def test_low_memory_max_pool(self):
        prims = torch.ops.prims

        def fn(x):
            kernel_size = [3, 3]
            stride = [2, 2]
            padding = [1, 1]
            dilation = [1, 1]
            ceil_mode = False

            vals, offsets = prims._low_memory_max_pool2d_with_offsets(
                x,
                kernel_size,
                stride,
                padding,
                dilation,
                ceil_mode,
            )
            indices = prims._low_memory_max_pool2d_offsets_to_indices(
                offsets,
                kernel_size[1],
                x.size(-1),
                stride,
                padding,
            )
            return vals, indices, offsets

        self.common(fn, (torch.randn(1, 3, 10, 10),))

    def test_to_dtype(self):
        def fn(a, b):
            return (
                aten._to_copy(a, dtype=6),
                aten._to_copy(b + 1, dtype=6),
                aten.to(b, torch.float64),
                aten.to(b, torch.bool),
            )

        self.common(
            fn,
            (
                torch.randn([2, 2, 10]),
                torch.randn([2, 2, 10], dtype=torch.float64),
            ),
        )

    @requires_gpu()
    def test_to_device(self):
        def fn(a):
            if a.device.type == "cpu":
                return aten._to_copy(
                    a, device=torch.device(GPU_TYPE), dtype=6, layout=0
                )
            else:
                return aten._to_copy(a, device=torch.device("cpu"), dtype=6, layout=0)

        self.common(
            fn,
            (torch.randn([2, 2, 10]),),
        )

    def test_to_memory_format(self):
        def fn(a, memory_format):
            return a.to(memory_format=memory_format)

        self.common(
            fn,
            (torch.randn([2, 2, 10, 10]), torch.channels_last),
        )
        self.common(
            fn,
            (
                torch.randn([2, 2, 10, 10]).to(memory_format=torch.channels_last),
                torch.contiguous_format,
            ),
        )

    @requires_gpu()
    def test_to_device_constant(self):
        def fn(a):
            d1 = a.device.type
            if d1 == "cpu":
                d2 = GPU_TYPE
            else:
                d2 = "cpu"

            const1 = torch.as_tensor(list(range(64)), device=d2)
            return (
                torch.arange(10, device=d2).to(d1) + a,
                const1.to(d1),
                (const1 + 1).to(d1),
            )

        self.common(
            fn,
            (torch.randn([10]),),
        )

    @requires_gpu()
    @xfail_if_triton_cpu
    def test_multi_device(self):
        def fn(x):
            x = x + 1
            x = x + 2
            x = x.to(device=GPU_TYPE)
            x = x + 3
            x = x + 4
            x = x.cpu()
            x = x + 5
            x = x + 6
            x = x.to(device=GPU_TYPE)
            x = x + 7
            x = x + 8
            x = x.cpu()
            x = x + 9
            x = x + 10
            return x

        self.common(
            fn,
            (torch.randn([2, 2, 10]),),
            check_lowp=False,  # cpu doesn't understand fp16, and there are explicit .cpu() calls
        )

    @skipIfRocm
    @requires_multigpu()
    def test_multi_gpu_device(self):
        # TODO: https://github.com/pytorch/pytorch/issues/92627
        x = torch.rand([4], device=GPU_TYPE)

        def fn(x, y):
            r = torch.ops.aten.div(x, y)
            r = r.to(f"{GPU_TYPE}:1")
            return 2 * r

        self.common(fn, (torch.randn(4), torch.randn(4)), check_lowp=False)

    @requires_multigpu()
    def test_multi_gpu_recompile_on_index(self):
        torch.set_float32_matmul_precision("high")

        def gemm(x, y):
            return x @ y

        failed_guard = None

        def fail(guard):
            nonlocal failed_guard
            failed_guard = guard

        gemm_opt = torch._dynamo.optimize("inductor", guard_fail_fn=fail)(gemm)

        x0 = torch.randn(1024, 1024, device=f"{GPU_TYPE}:0")
        y0 = torch.randn(1024, 1024, device=f"{GPU_TYPE}:0")

        gemm_opt(x0, y0)

        x1 = torch.randn(1024, 1024, device=f"{GPU_TYPE}:1")
        y1 = torch.randn(1024, 1024, device=f"{GPU_TYPE}:1")

        gemm_opt(x1, y1)
        self.assertTrue(failed_guard is not None)
        self.assertTrue(
            "tensor 'L['x']' Tensor device index mismatch. Expected device index to be"
            in failed_guard.reason
        )

    def test_unbind(self):
        def fn(a):
            return torch.unbind(a), torch.unbind(a, -1)

        self.common(
            fn,
            (torch.randn([4, 4, 4]),),
        )

    def test_convolution1(self):
        m = torch.nn.Sequential(
            torch.nn.Conv2d(5, 6, [3, 3]),
            torch.nn.ReLU(),
            ToTuple(),
        )

        self.common(
            m,
            (torch.randn([2, 5, 16, 16]),),
            # Mismatched elements: 10 / 2352 (0.4%)
            # Greatest absolute difference: 5.7220458984375e-05 at index (0, 3, 12, 12) (up to 1e-05 allowed)
            # Greatest relative difference: 0.06512477175897748 at index (0, 4, 11, 9) (up to 0.001 allowed)
            atol=6e-5,
            rtol=0.001,
            # Make sure we compute also with fp16 in the reference. Otherwise,
            # the reference will compute with fp32 and cast back to fp16, which
            # causes numeric differences beyond tolerance.
            reference_in_float=False if torch.version.hip else True,
        )

    def test_convolution2(self):
        def fn(x, w, b):
            # transposed conv
            return (aten.convolution(x, w, b, [4], [0], [1], True, [0], 1),)

        self.common(
            fn,
            (
                torch.randn([2, 32, 90]),
                torch.randn([32, 16, 8]),
                torch.randn([16]),
            ),
            check_lowp=False,
        )

    def test_convolution3(self):
        # Test stride or padding or dilation is 1 element list.
        m = torch.nn.Sequential(
            torch.nn.Conv2d(5, 6, [3, 3], stride=[1], padding=[0], dilation=[1]),
            torch.nn.ReLU(),
            ToTuple(),
        )

        self.common(
            m,
            (torch.randn([2, 5, 16, 16]),),
            atol=6e-5,
            rtol=0.001,
            # Make sure we compute also with fp16 in the reference. Otherwise,
            # the reference will compute with fp32 and cast back to fp16, which
            # causes numeric differences beyond tolerance.
            reference_in_float=False if torch.version.hip else True,
        )

    @skip_if_gpu_halide
    def test_convolution4(self):
        def fn(x, w):
            x = F.conv2d(x, w, groups=w.shape[0])
            return x.sum()

        self.common(
            fn,
            (
                torch.randn([2, 3, 16, 20]),
                torch.randn([3, 1, 5, 5]),
            ),
        )

    def test_convolution5(self):
        def fn(x, w):
            x = F.conv2d(x, w, dilation=[x.size(0)])
            return x.sum()

        x = torch.randn([2, 1, 16, 20])
        w = torch.randn([1, 1, 5, 5])

        torch._dynamo.mark_dynamic(x, 0)

        atol = None
        rtol = None
        if self.device == "xpu":
            # set to float32 default tolerance,
            # check_model_gpu with update rotl to 2e-3 for fp16.
            # fix issue #129974
            atol = 1e-05
            rtol = 1.3e-06
        self.common(fn, (x, w), atol=atol, rtol=rtol)

    def test_conv3d(self):
        m = torch.nn.Sequential(
            torch.nn.Conv3d(3, 3, kernel_size=7),
            ToTuple(),
        )

        self.common(
            m,
            (torch.randn([1, 3, 8, 16, 32]),),
            atol=6e-5,
            rtol=0.001,
            # Make sure we compute also with fp16 in the reference. Otherwise,
            # the reference will compute with fp32 and cast back to fp16, which
            # causes numeric differences beyond tolerance.
            reference_in_float=False if torch.version.hip else True,
        )

    def test_conv2d_channels_last(self):
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu conv2d channels_last")

        m = torch.nn.Sequential(
            torch.nn.Conv2d(3, 3, 1, 1),
            ToTuple(),
        )
        # only weight is channels_last
        self.common(
            m.to(memory_format=torch.channels_last),
            (torch.randn([2, 3, 16, 16]),),
            check_lowp=False,
        )
        # only activation is channels_last
        self.common(
            m,
            (torch.randn([2, 3, 16, 16]).to(memory_format=torch.channels_last),),
            check_lowp=False,
        )
        # activation and weight are all channels_last
        self.common(
            m.to(memory_format=torch.channels_last),
            (torch.randn([2, 3, 16, 16]).to(memory_format=torch.channels_last),),
            check_lowp=False,
        )

    def test_conv2d_backward_channels_last(self):
        def fn(grad_output, inp, weight):
            convolution_backward_8 = torch.ops.aten.convolution_backward.default(
                grad_output,
                inp,
                weight,
                [320],
                [1, 1],
                [0, 0],
                [1, 1],
                False,
                [0, 0],
                1,
                [True, True, True],
            )
            return convolution_backward_8

        # only weight is channels_last
        self.common(
            fn,
            (
                torch.randn([2, 320, 8, 8]),
                torch.randn([2, 2048, 8, 8]),
                torch.randn([320, 2048, 1, 1]).to(memory_format=torch.channels_last),
            ),
            check_lowp=False,
        )

    def test_conv3d_channels_last(self):
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu conv3d channels_last")

        m = torch.nn.Sequential(
            torch.nn.Conv3d(3, 3, 1, 1),
            ToTuple(),
        )
        # only weight is channels_last
        self.common(
            m.to(memory_format=torch.channels_last_3d),
            (torch.randn([2, 3, 16, 16, 16]),),
        )
        # only activation is channels_last
        self.common(
            m,
            (torch.randn([2, 3, 16, 16, 16]).to(memory_format=torch.channels_last_3d),),
        )
        # activation and weight are all channels_last
        self.common(
            m.to(memory_format=torch.channels_last_3d),
            (torch.randn([2, 3, 16, 16, 16]).to(memory_format=torch.channels_last_3d),),
        )

    @skip_if_gpu_halide  # slow
    def test_adaptive_avg_pool2d1(self):
        def fn(x):
            return aten._adaptive_avg_pool2d(x, (6, 6)), aten._adaptive_avg_pool2d(
                x + 1, (2, 5)
            )

        self.common(
            fn,
            (torch.randn(2, 4, 16, 16),),
            check_lowp=False,
        )

        # lowering to avg_pool2d case
        self.common(
            fn,
            (torch.randn(2, 4, 3, 3),),
        )

        # no-op case
        self.common(
            fn,
            (torch.randn(2, 4, 6, 6),),
        )

    def test_adaptive_avg_pool2d2(self):
        # Big kernel size, use fallback
        def fn(x):
            return aten._adaptive_avg_pool2d(x, (4, 4))

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (torch.randn(2, 4, 21, 21),),
            check_lowp=False,
        )
        assertGeneratedKernelCountEqual(self, 0)

    @skip_if_gpu_halide  # slow
    def test_adaptive_max_pool2d1(self):
        def fn(x):
            return aten.adaptive_max_pool2d(x, (6, 6))

        self.common(
            fn,
            (torch.randn(2, 4, 16, 16),),
            check_lowp=False,
        )

        self.common(
            fn,
            (torch.randn(2, 4, 3, 3),),
        )

        # no-op case
        self.common(
            fn,
            (torch.randn(2, 4, 6, 6),),
        )

    @skip_if_gpu_halide  # slow
    def test_adaptive_max_pool2d2(self):
        # Big kernel size, use fallback
        def fn(x):
            return aten.adaptive_max_pool2d(x, (4, 4))

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (torch.randn(2, 4, 21, 21),),
            check_lowp=False,
        )
        assertGeneratedKernelCountEqual(self, 0)

    @skip_if_gpu_halide  # slow
    def test_adaptive_max_pool2d3(self):
        # test when adaptive_max_pool2d fallbacks to max_pool2d
        def fn(x):
            return aten.adaptive_max_pool2d(x, (2, 2))

        # Big kernel (12 / 2 * 12 / 2 > 25)
        self.common(
            fn,
            (torch.randn(2, 4, 12, 12),),
        )

        # Small kernel
        self.common(
            fn,
            (torch.randn(2, 4, 4, 4),),
        )

    def test_fractional_max_pool2d1(self):
        def fn(x, samples):
            return aten.fractional_max_pool2d(x, (3, 3), (2, 2), samples)

        self.common(
            fn, (torch.randn(1, 4, 16, 16), torch.rand(1, 4, 2)), check_lowp=False
        )

    def test_fractional_max_pool2d2(self):
        # fallback for larger kernel size

        def fn(x, samples):
            return aten.fractional_max_pool2d(x, (6, 5), (3, 3), samples)

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (torch.randn(2, 4, 36, 36), torch.rand(2, 4, 2)),
            check_lowp=False,
        )
        assertGeneratedKernelCountEqual(self, 0)

    def test_fractional_max_pool2d3(self):
        def fn(x, samples):
            return aten.fractional_max_pool2d(x, (1, 1), (16, 16), samples)

        self.common(
            fn, (torch.randn(2, 4, 16, 16), torch.rand(2, 4, 2)), check_lowp=False
        )

    @config.patch(fallback_random=True)
    @skip_if_halide  # Can only unroll for loops over a constant extent
    def test_fractional_max_pool2d4(self):
        random.seed(1234)
        torch.manual_seed(1234)

        # check rectangular kernel/output size

        def fn(x):
            return torch.nn.functional.fractional_max_pool2d_with_indices(
                x, (4, 3), (3, 2)
            )

        self.common(fn, (torch.randn(1, 4, 16, 16),), check_lowp=False)

    def test_multi_threading(self):
        model = torch.nn.Linear(2, 3).eval()
        inp = torch.randn(4, 2)

        num_run = 3

        def run_weights_sharing_model(m, inp):
            with torch.no_grad():
                for i in range(num_run):
                    y = m(inp)

        numb_instance = 2
        threads = []
        compiled_m = torch.compile(model)
        for i in range(1, numb_instance + 1):
            thread = threading.Thread(
                target=run_weights_sharing_model, args=(compiled_m, inp)
            )
            threads.append(thread)
            thread.start()
        for thread in threads:
            thread.join()

    @unittest.skipIf(config.is_fbcode(), "fbcode triton error, needs debugging")
    @skip_if_triton_cpu("Flaky on Triton CPU")
    @skip_if_gpu_halide  # https://github.com/halide/Halide/issues/8311
    def test_adaptive_avg_pool2d_low_prec(self):
        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))

            def forward(self, x):
                x = self.avgpool(x)
                return x

        mod = Model().to(self.device)
        for dtype in [torch.half, torch.bfloat16]:
            x = torch.randn(4, 3, 7, 7, device=self.device).to(dtype=dtype)
            opt_mod = torch.compile(mod)
            res = opt_mod(x)
            expected = mod(x)
            self.assertTrue(torch.allclose(res, expected))

    def test_buffer_copied_in_graph(self):
        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.buf = torch.nn.Buffer(torch.zeros(1))
                self.w1 = torch.nn.Parameter(torch.zeros(1))
                self.w2 = torch.nn.Parameter(torch.zeros(1))

            def forward(self, x):
                self.buf.add_(1)
                return (self.w1 * x * self.w2).sum() + self.buf.sum()

        model_for_eager = MyModel().to(self.device)
        model_for_compile = copy.deepcopy(model_for_eager)

        eager_version_counters = [
            buffer._version for _, buffer in model_for_eager.named_buffers()
        ]
        compile_version_counters = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        compiled_f = torch.compile(model_for_compile, backend="inductor")

        inp_ref = torch.ones(1, requires_grad=True, device=self.device)
        inp_test = torch.ones(1, requires_grad=True, device=self.device)

        out_ref = model_for_eager(inp_ref.clone())
        out_test = compiled_f(inp_test.clone())

        eager_version_counters_after = [
            buffer._version for _, buffer in model_for_eager.named_buffers()
        ]
        compile_version_counters_after = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        eager_delta = list(
            map(operator.sub, eager_version_counters_after, eager_version_counters)
        )
        compile_delta = list(
            map(operator.sub, compile_version_counters_after, compile_version_counters)
        )

        self.assertEqual(eager_delta, compile_delta)

    @skip_if_gpu_halide
    def test_buffer_copied_in_graph_with_different_shapes(self):
        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.buf = torch.nn.Buffer(torch.ones(4, 4))
                self.w = torch.nn.Parameter(
                    torch.Tensor([[4, 5], [1, 2], [6, 7], [8, 9]])
                )

            def forward(self, x):
                self.buf.add_(1)
                return (self.w @ x).sum() + self.buf.sum()

        model_for_eager = MyModel().to(self.device)
        model_for_compile = copy.deepcopy(model_for_eager)

        eager_version_counters = [
            buffer._version for _, buffer in model_for_eager.named_buffers()
        ]
        compile_version_counters = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        compiled_f = torch.compile(model_for_compile, backend="inductor")

        inp_ref = torch.ones(2, 4, requires_grad=True, device=self.device)
        inp_test = torch.ones(2, 4, requires_grad=True, device=self.device)

        out_ref = model_for_eager(inp_ref.clone())
        out_test = compiled_f(inp_test.clone())

        eager_version_counters_after = [
            buffer._version for _, buffer in model_for_eager.named_buffers()
        ]
        compile_version_counters_after = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        eager_delta = list(
            map(operator.sub, eager_version_counters_after, eager_version_counters)
        )
        compile_delta = list(
            map(operator.sub, compile_version_counters_after, compile_version_counters)
        )

        self.assertEqual(eager_delta, compile_delta)

    @skipIfNNModuleInlined("https://github.com/pytorch/pytorch/issues/128198")
    def test_buffer_batch_norm(self):
        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.m = torch.nn.BatchNorm1d(100)

            def forward(self, x):
                return self.m(x)

        model_for_eager = MyModel().to(self.device)
        model_for_compile = copy.deepcopy(model_for_eager)

        eager_version_counters = [
            buffer._version for _, buffer in model_for_eager.named_buffers()
        ]
        compile_version_counters = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        compiled_f = torch.compile(model_for_compile, backend="inductor")

        inp_ref = torch.ones(20, 100, requires_grad=True, device=self.device)
        inp_test = torch.ones(20, 100, requires_grad=True, device=self.device)

        out_ref = model_for_eager(inp_ref.clone())
        out_test = compiled_f(inp_test.clone())

        eager_version_counters_after = [
            # TODO: remove the + 1 after https://github.com/pytorch/pytorch/issues/120622 is fixed
            buffer._version + 1
            if k in ["m.running_mean", "m.running_var"]
            else buffer._version
            for k, buffer in model_for_eager.named_buffers()
        ]

        compile_version_counters_after = [
            buffer._version for _, buffer in model_for_compile.named_buffers()
        ]

        eager_delta = list(
            map(operator.sub, eager_version_counters_after, eager_version_counters)
        )
        compile_delta = list(
            map(operator.sub, compile_version_counters_after, compile_version_counters)
        )

        self.assertEqual(eager_delta, compile_delta)

    def test_adaptive_avg_pool_with_output_size_0(self):
        m1 = nn.AdaptiveAvgPool1d(0)
        self.common(m1, (torch.randn(1, 2),))
        m2 = nn.AdaptiveAvgPool2d(0)
        self.common(m2, (torch.randn(1, 2, 3),))

    def test_max_pool2d1(self):
        def fn(x):
            return aten.max_pool2d_with_indices(x, [3, 3], [2, 2])

        self.common(
            fn,
            (torch.randn(2, 4, 16, 16),),
        )

    @skip_if_gpu_halide  # slow
    def test_max_pool2d2(self):
        def fn(x):
            return aten.max_pool2d_with_indices(x, [3, 3], [2, 2])

        self.common(
            fn,
            (torch.randn([16, 64, 55, 55]),),
        )

    @skip_if_gpu_halide  # slow
    def test_max_pool2d3(self):
        def fn(x):
            # with padding
            return (
                aten.max_pool2d_with_indices(x, [3, 3], [2, 2], [1, 1]),
                aten.max_pool2d_with_indices(
                    x,
                    [
                        3,
                    ],
                    [
                        2,
                    ],
                    [
                        1,
                    ],
                ),
            )

        self.common(
            fn,
            (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),),
        )

    @skip_if_halide  # Can only unroll for loops over a constant extent
    def test_max_pool2d4(self):
        def fn(x):
            # with padding
            return aten.max_pool2d_with_indices(x, [3, 3], [2, 2], [0, 0], [1, 1], True)

        self.common(
            fn,
            (torch.randn([2, 8, 111, 111]),),
        )

    @skip_if_gpu_halide  # slow
    def test_max_pool2d5(self):
        def fn(x):
            return aten.max_pool2d_with_indices(x, [3, 3], [])

        self.common(
            fn,
            (torch.randn([16, 64, 55, 55]),),
        )

    @skip_if_gpu_halide  # slow
    def test_max_pool2d6(self):
        # Too big kernel size, use fallback
        def fn(x):
            return aten.max_pool2d_with_indices(x, [13, 13], [])

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (torch.randn([16, 64, 55, 55]),),
        )
        assertGeneratedKernelCountEqual(self, 0)

    # From https://github.com/pytorch/pytorch/issues/94775
    def test_max_pool2d7(self):
        # ceil mode turns on
        def fn(x):
            return torch.nn.functional.max_pool2d(
                x, 1, stride=(2, 2), padding=0, ceil_mode=True
            )

        self.common(
            fn,
            (torch.randn([1, 1, 6, 7]),),
        )

    # From https://github.com/pytorch/pytorch/issues/93384
    def test_max_pool2d8(self):
        # dialtion is not 1, use fallback
        def fn(x):
            return aten.max_pool2d_with_indices(x, [3, 2], [2, 1], [1, 1], [1, 2])

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (torch.randn([2, 2, 3, 6]),),
        )
        assertGeneratedKernelCountEqual(self, 0)

    def test_avg_pool2d1(self):
        def fn(x):
            return aten.avg_pool2d(x, [3, 3], [2, 2])

        self.common(
            fn,
            (torch.randn(2, 4, 16, 16),),
        )

    def test_avg_pool2d2(self):
        def fn(x):
            return aten.avg_pool2d(x, [3, 3], [2, 2])

        self.common(
            fn,
            (torch.randn([16, 64, 55, 55]),),
        )

    def test_avg_pool2d3(self):
        def fn(x):
            return (
                aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1]),
                aten.avg_pool2d(
                    x,
                    [
                        3,
                    ],
                    [
                        2,
                    ],
                    [
                        1,
                    ],
                ),
            )

        self.common(
            fn,
            (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),),
            check_lowp=not is_halide_backend(self.device),  # misaligned addr fp16
        )

    def test_avg_pool2d4(self):
        def fn(x):
            return aten.avg_pool2d(x, [3, 3], [2, 2], [0, 0], True)

        self.common(
            fn,
            (torch.randn([2, 8, 111, 111]),),
        )

    def test_avg_pool2d5(self):
        def fn(x):
            return aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1], count_include_pad=False)

        self.common(
            fn,
            (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),),
            check_lowp=not is_halide_backend(self.device),  # misaligned addr fp16
        )

    def test_avg_pool2d6(self):
        def fn(x):
            return aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1], divisor_override=3)

        self.common(
            fn,
            (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),),
            check_lowp=not is_halide_backend(self.device),  # misaligned addr fp16
        )

    def test_avg_pool2d7(self):
        # Large kernel size, use fallback
        def fn(x):
            return aten.avg_pool2d(x, [13, 13], [1, 1], [0, 0])

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            (-torch.arange(1 * 24 * 24, dtype=torch.float32).view(1, 1, 24, 24),),
        )
        assertGeneratedKernelCountEqual(self, 0)

    def test_avg_pool2d8(self):
        # https://github.com/pytorch/pytorch/issues/100987
        def fn(x):
            return aten.avg_pool2d(
                x, kernel_size=3, stride=2, padding=1, ceil_mode=True
            )

        self.common(
            fn,
            (torch.randn(1, 3, 6, 6),),
            check_lowp=not is_halide_backend(self.device),  # misaligned addr fp16
        )

    @skip_if_gpu_halide  # slow
    def test_alexnet_prefix(self):
        def forward(arg6, arg7, arg16):
            convolution = torch.ops.aten.convolution(
                arg16, arg7, arg6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1
            )
            relu = torch.ops.aten.relu(convolution)
            max_pool2d_with_indices = torch.ops.aten.max_pool2d_with_indices(
                relu, [3, 3], [2, 2]
            )
            getitem = max_pool2d_with_indices[0]
            return (getitem,)

        self.common(
            forward,
            (
                rand_strided((64,), (1,), torch.float32, "cpu"),
                rand_strided((64, 3, 11, 11), (363, 121, 11, 1), torch.float32, "cpu"),
                rand_strided(
                    (16, 3, 224, 224), (150528, 50176, 224, 1), torch.float32, "cpu"
                ),
            ),
            # Mismatched elements: 127 / 746496 (0.0%)
            # Greatest absolute difference: 0.0009765625 at index (1, 62, 7, 16) (up to 1e-05 allowed)
            # Greatest relative difference: 0.05187467899332306 at index (14, 18, 11, 0) (up to 0.001 allowed)
            atol=3e-3,
            rtol=2,
        )

    def test_elu(self):
        def fn(x):
            return aten.elu(x, 1.6732632423543772, 1.0507009873554805) + 2, aten.elu(
                x + 1, 2, 3, 4
            )

        self.common(
            fn,
            (torch.randn([16, 16]),),
            rtol=1e-4,
            atol=1e-4,
        )

    def test_tan(self):
        def fn(x):
            return aten.tan(x) + 2, aten.tan(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_tanh(self):
        def fn(x):
            return aten.tanh(x) + 2, aten.tanh(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    @skip_if_halide  # lgamma not implemented
    @xfail_if_triton_cpu
    def test_lgamma(self):
        def fn(x):
            return aten.lgamma(x) + 2, aten.cos(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_cos(self):
        def fn(x):
            return aten.cos(x) + 2, aten.cos(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_sin(self):
        def fn(x):
            return aten.sin(x) + 2, aten.sin(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_repeat(self):
        def fn(x):
            return (
                x.repeat(0, 1, 1, 1),
                x.repeat(2, 2, 3, 1),
                x.repeat(8, 1, 1, 1),
                x.repeat(2, 1, 1, 1, 1, 1),
            )

        self.common(
            fn,
            (torch.randn([1, 2, 4, 8]),),
        )

    def test_repeat_as_strided(self):
        # Reproducer for #127474

        def fn(x):
            view_size = (3, 2)
            full = x.repeat((3, 2))
            view = torch.as_strided(full, view_size, full.stride())
            result = view + view

            return result

        self.common(fn, (torch.randn(1, 1),))

    def test_repeat_interleave(self):
        def fn(x):
            return (
                x.repeat_interleave(2),
                x.repeat_interleave(3, dim=0),
                x.repeat_interleave(x.size(1), dim=1),
            )

        self.common(
            fn,
            (torch.randn([1, 2, 4, 8]),),
        )

    @config.patch(implicit_fallbacks=True)
    def test_repeat_interleave_2(self):
        def fn(x):
            return torch.ops.aten.repeat_interleave.Tensor(x, output_size=12)

        self.common(
            fn,
            (torch.tensor([2, 4, 6]),),
        )

    @config.patch(fallback_random=True)
    def test_randn_with_dtype_and_device(self):
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("only support cpu randn_with_dtype_and_device test")

        def fn(vectors):
            rotations_shape = (12, vectors.shape[-1], 1, 64)
            random_rotations = torch.randn(
                rotations_shape, device=vectors.device, dtype=vectors.dtype
            )
            random_rotations += 1
            return random_rotations

        self.common(
            fn,
            (torch.randn([4, 12, 2, 64]),),
        )

    def test_embedding(self):
        m = torch.nn.Sequential(
            torch.nn.Embedding(10, 4, padding_idx=0),
            torch.nn.ReLU(),
            ToTuple(),
        )

        self.common(
            m,
            (torch.randint(10, [2, 8]),),
        )

    def test_mean(self):
        def fn(x):
            return (
                x.mean(),
                x.mean(-1),
                torch.mean(x, -2, keepdim=True),
                x.mean([0, 1]),
            )

        self.common(
            fn,
            (torch.randn([1, 2, 4, 8]),),
        )

    def test_var_mean(self):
        def fn(x):
            return (
                *torch.var_mean(x, -1),
                *torch.var_mean(x, [1, 3]),
            )

        self.common(
            fn,
            (torch.randn([1, 2, 4, 8]),),
        )

    def test_var_correction(self):
        def fn(x):
            dim = -1
            return (
                torch.var(x, dim=dim, correction=1.3),
                torch.var(x, dim=dim, correction=3),
                torch.var(x, dim=dim, correction=10),
            )

        self.common(fn, (torch.randn([2, 8]),))
        # Unrolled reduction
        self.common(fn, (torch.randn([2, 4]),))

    @config.patch(pick_loop_orders=True)
    def test_transposed_propagates(self):
        @torch._dynamo.optimize("inductor", nopython=True)
        def fn(x, y):
            return x + y

        a = torch.randn(1, 4, 4, 4, device=self.device).permute(0, 2, 3, 1)
        b = torch.randn(4, 4, 4, device=self.device).permute(1, 2, 0)
        c = fn(a, b)
        self.assertEqual(a.stride(), c.stride())
        self.assertEqual(c.stride()[2], 1)

    @skip_if_gpu_halide
    def test_std(self):
        def fn(x):
            return (
                torch.var(x, True),
                torch.var(x, False),
                torch.var(x, -1, True),
                torch.var(x, -1, False),
                torch.std(x, False),
                torch.std(x, [0, 1], True),
                torch.std(x, [0, 1], False),
                torch.std(x, -2, True, keepdim=True),
            )

        self.common(
            fn,
            (torch.randn([2, 4, 4, 8]),),
        )

    def test_embedding_bag(self):
        def fn(w, i, o):
            return aten._embedding_bag(w, i, o, False, 0, False, None)

        self.common(
            fn,
            (torch.randn([10, 4]), torch.randint(10, [8]), torch.tensor([0, 2, 6])),
        )

    def test_batch_norm_2d(self):
        m = torch.nn.Sequential(
            torch.nn.BatchNorm2d(10),
            torch.nn.ReLU(),
        )
        m.eval()
        self.common(m, (torch.randn([2, 10, 8, 8]),), check_lowp=False)
        self.common(
            m,
            (torch.randn([3, 10, 16, 16]),),
            check_lowp=False,  # too painful to match types of bn model
        )

    # From yolov3
    @with_tf32_off
    def test_batch_norm_2d_2(self):
        if self.device == "cpu":
            raise unittest.SkipTest(f"requires {GPU_TYPE}")

        class Repro(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.self_0 = torch.nn.Conv2d(
                    64,
                    128,
                    kernel_size=(3, 3),
                    stride=(2, 2),
                    padding=(1, 1),
                    bias=False,
                )
                self.self_1 = torch.nn.BatchNorm2d(
                    128,
                    eps=0.0001,
                    momentum=0.03,
                    affine=True,
                    track_running_stats=True,
                )
                self.self_2 = torch.nn.LeakyReLU(negative_slope=0.1, inplace=True)

            def forward(self, l_input_: torch.Tensor):
                self_0 = self.self_0(l_input_)
                self_1 = self.self_1(self_0)
                self_2 = self.self_2(self_1)
                return (self_2,)

        inp = torch.randn((4, 64, 192, 256), dtype=torch.float32, device=GPU_TYPE)
        mod = Repro().to(device=GPU_TYPE)
        o1 = mod(inp)
        o2 = torch.compile(mod)(inp)
        self.assertEqual(o1, o2, rtol=1e-3, atol=1e-3)

    @patch.object(config.trace, "enabled", True)
    def test_layer_norm(self):
        m = torch.nn.Sequential(
            torch.nn.LayerNorm(32),
            torch.nn.ReLU(),
        )
        m.eval()
        with torch.no_grad():
            self.common(m, (torch.randn([16, 32]),), check_lowp=False)
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    @torch._functorch.config.patch("donated_buffer", True)
    def test_matmul_layer_norm(self):
        batch_size = 32
        seq_length = 50
        hidden_size = 256

        inp = torch.randn(
            batch_size,
            seq_length,
            hidden_size,
            requires_grad=True,
            device=self.device,
        )
        weight = torch.randn(
            hidden_size, hidden_size, requires_grad=True, device=self.device
        )

        layer_norm = torch.nn.LayerNorm(hidden_size, device=self.device)

        def foo(inp, weight):
            matmul_output = inp @ weight
            final_output = layer_norm(matmul_output)
            return final_output

        self.common(foo, (inp, weight), check_lowp=False)

    def test_transpose_add(self):
        def fn(a, b):
            return a.t() + b

        self.common(
            fn, (torch.randn([16, 32]), torch.randn([32, 16])), check_lowp=False
        )
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    @patch.object(config.triton, "persistent_reductions", True)
    def test_softmax_one_kernel_persist(self):
        def fn(x):
            dim = 1
            x_max = torch.amax(x, dim, keepdim=True)
            unnormalized = torch.exp(x - x_max)
            result = unnormalized / torch.sum(unnormalized, dim, keepdim=True)
            return result

        self.common(fn, (torch.randn([16, 32]),), check_lowp=False)
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    @patch.object(config.triton, "persistent_reductions", False)
    def test_softmax_one_kernel_loop(self):
        def fn(x):
            x_max = torch.amax(x, 1, keepdim=True)
            unnormalized = torch.exp(x - x_max)
            result = unnormalized / torch.sum(unnormalized, 1, keepdim=True)
            return result

        self.common(fn, (torch.randn([16, 32]),), check_lowp=False)
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    def test_complex_fallback(self):
        def fn(x):
            return x * x + 10

        self.common(
            fn,
            (torch.randn([1, 2, 4, 8]).to(dtype=torch.complex64),),
        )
        assertGeneratedKernelCountEqual(self, 0)

        class ToComplex(nn.Module):
            def forward(self, x):
                return (x + x + 12).to(torch.complex64)

        self.common(ToComplex(), (torch.rand([1, 2, 4, 8]),), check_lowp=False)

        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    def test_view_as_complex(self):
        class Repro(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, view_2):
                clone = torch.ops.aten.clone.default(
                    view_2, memory_format=torch.contiguous_format
                )
                view_2 = None
                view_as_complex = torch.ops.aten.view_as_complex.default(clone)
                clone = None
                return (view_as_complex,)

        inp = torch.empty_strided((128, 64, 12, 32, 2), (1, 98304, 8192, 256, 128)).to(
            self.device
        )
        mod = Repro()

        o1 = mod(inp)
        o2 = torch.compile(mod)(inp)

        self.assertEqual(o1, o2)

    def test_view_as_real(self):
        def fn(x):
            y = torch.view_as_real(x)
            return y + 1

        x = torch.randn(4, dtype=torch.complex64)

        self.common(fn, (x,))

    def test_polar(self):
        def fn(dist, angle):
            return torch.polar(dist, angle)

        inp = (
            torch.tensor([1, 2], dtype=torch.float64),
            torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64),
        )
        self.common(fn, (*inp,))

    @skip_if_gpu_halide  # incorrect result on CUDA
    def test_cauchy(self):
        def fn(x, y):
            return torch.sum(1 / (torch.unsqueeze(x, -1) - y))

        self.common(
            fn,
            (
                torch.randn(32),
                torch.randn(32),
            ),
            # Absolute difference: 0.0003662109375 (up to 0.0001 allowed)
            # Relative difference: 1.8804297408767818e-05 (up to 1e-05 allowed)
            atol=5 * 1e-4,
            rtol=5 * 1e-5,
            check_lowp=False,
        )
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 1)

    @skip_if_gpu_halide  # misaligned address error
    def test_fusing_write_into_disjoint_read(self):
        def test_flip(a):
            return a.copy_(torch.flip(a, (0,)))

        self.common(test_flip, (torch.rand([20]),))

        assertGeneratedKernelCountEqual(self, 2)

        # issue only manifests on cuda with large tensors
        if self.device != "cpu":

            def f(a):
                a[:, 20:40] = a[:, 20:40] + 1
                a[:, 2:900025] = a[:, 1:900024] + 2

            a = torch.rand((1, 1000000), device=self.device)
            self.common(f, (a,))

    def test_gather_scatter(self):
        def fn(node_feat, edge_index):
            src_node_feat = node_feat[edge_index[0]]
            dst_node_feat = node_feat[edge_index[1]]
            edge_feat = src_node_feat - dst_node_feat + 1
            new_node_feat = torch.zeros_like(node_feat)
            new_node_feat.scatter_add_(
                0, edge_index[1].unsqueeze(-1).expand_as(edge_feat), edge_feat
            )
            return new_node_feat

        num_nodes = 16
        num_features = 32
        node_feat = torch.randn(num_nodes, num_features)
        edge_index = torch.randint(0, num_nodes, size=(2, num_nodes * 5))
        self.common(
            fn,
            (
                node_feat,
                edge_index,
            ),
            check_lowp=False,
        )
        if self.device != "cpu":
            assertGeneratedKernelCountEqual(self, 2)

    @config.patch(max_fusion_size=1)
    def test_no_mega_fusion_during_lowering(self):
        n = 50

        def fn(*args):
            x = args[0]
            for i in range(n):
                x = torch.add(x, args[i])
            return x

        self.common(
            fn,
            [torch.randn(64) for _ in range(n)],
            check_lowp=False,
        )
        print("-->", torch._inductor.metrics.generated_kernel_count)
        if self.device != "cpu":
            self.assertTrue(torch._inductor.metrics.generated_kernel_count > 1)

    def test_move_arange(self):
        def fn(x):
            return torch.arange(len(x), device="cpu").to(x.device) + x

        self.common(fn, (torch.randn([32]),), check_lowp=False)
        # if we have a copy there will be more than 1 kernel
        assertGeneratedKernelCountEqual(self, 1)

    def test_leaky_relu(self):
        def fn(x):
            return aten.leaky_relu(x, 0.2) + 2, aten.leaky_relu(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_gelu(self):
        def fn(x):
            return aten.gelu(x) + 2, aten.gelu(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_clone(self):
        def fn(x):
            return aten.clone(x) + 2, aten.clone(x + 1)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_masked_fill(self):
        def fn(mask, value):
            return aten.masked_fill(value, mask, -10000.0) + 2, aten.masked_fill(
                value / 2.0, torch.logical_not(mask), 667
            )

        self.common(
            fn,
            (
                torch.randint(0, 1, [1, 16], dtype=torch.bool),
                torch.randn([16, 16]),
            ),
        )

    def test_masked_fill_promotion(self):
        def fn(mask, value):
            return aten.masked_fill(value, mask, torch.tensor(3.5))

        opt_fn = torch._dynamo.optimize("inductor")(fn)
        for inp in (
            torch.randn(
                [16, 16],
                dtype=torch.float16 if self.device == GPU_TYPE else torch.float32,
                device=self.device,
            ),
            torch.randint(16, (16, 16), device=self.device),
        ):
            inputs = (
                torch.randint(0, 1, [1, 16], dtype=torch.bool, device=self.device),
                inp,
            )
            self.assertEqual(fn(*inputs), opt_fn(*inputs))

    def test_masked_scatter(self):
        def fn(value, mask, source):
            return torch.masked_scatter(value, mask, source)

        value = make_tensor(10, 10, dtype=torch.float32, device=self.device)
        mask = make_tensor(10, 10, dtype=torch.bool, device=self.device)
        source = make_tensor(
            mask.count_nonzero(), dtype=torch.float32, device=self.device
        )

        self.common(fn, (value, mask, source))

    def test_fill1(self):
        def fn(x):
            tmp = torch.ones_like(x)
            return tmp, aten.fill.Scalar(tmp, 2)

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_fill2(self):
        def fn(x):
            tmp = torch.ones_like(x)
            return tmp, aten.fill.Tensor(tmp, torch.tensor(3.0))

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    def test_pow1(self):
        def fn(x):
            return [aten.pow(x, e) for e in range(-8, 9)]

        self.common(
            fn,
            (torch.randn([16, 16]),),
        )

    @xfail_if_triton_cpu
    def test_pow2(self):
        def fn(x):
            return aten.pow(1000, x), aten.pow(x, 1000)

        self.common(
            fn,
            (
                torch.randn(
                    [16, 16],
                    dtype=torch.float32,
                ),
            ),
            # Mismatched elements: 9 / 256 (3.5%)
            # Greatest absolute difference: 2.491354329061828e+28 at index (6, 6) (up to 1e-05 allowed)
            # Greatest relative difference: 2.9793410720160818e-05 at index (4, 5) (up to 1.3e-06 allowed)
            atol=1e-5,
            rtol=3e-05,
        )

    @skip_if_gpu_halide  # https://github.com/halide/Halide/issues/8318
    @config.patch("halide.scheduler_cuda", "Li2018")
    def test_pow3(self):
        # power of 0.5 is special-cased, arbitrary power would still produce triton codegen error
        def fn(x):
            z = torch.tensor(0.123, device=self.device)
            w = z + x
            return torch.pow(w, 0.5)

        opt = torch._dynamo.optimize("inductor")(fn)
        input = torch.rand((), device=self.device)
        self.assertTrue(same(opt(input), fn(input)))

    def test_pow_int(self):
        def fn(x, y):
            return torch.pow(x, 0x57), torch.pow(x, y)

        for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            intmax = torch.iinfo(dtype).max
            make_arg = functools.partial(
                make_tensor, dtype=dtype, device=self.device, requires_grad=False
            )
            self.common(
                fn,
                (
                    make_arg(16, 16),
                    make_arg(16, 16, high=intmax),
                ),
            )

    @xfail_if_triton_cpu
    def test_pow_symfloat(self):
        def fn(x):
            r = math.sqrt(x.size(0))
            r = r**10
            return x * r

        cfn = torch.compile(fullgraph=True, dynamic=True)(fn)
        x = torch.randn([16, 16], device=self.device)
        self.assertEqual(cfn(x), fn(x))

    def test_glu(self):
        def fn(x):
            return aten.glu(x, -1), aten.glu(x, 1), aten.glu(x, 2)

        self.common(
            fn,
            (torch.randn([8, 16, 8, 8]),),
        )

    @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True)
    def test_nonzero_unbacked_refinement(self):
        def fn(x):
            z = x.nonzero()
            torch._check(z.size(0) == 4)
            return z + 3

        self.common(
            fn,
            (torch.tensor([0, 1, 3, 4, 2, 0, 0]),),
        )

        with self.assertRaises(RuntimeError):
            torch.compile(fn)(torch.tensor([0, 0, 0, 0]))

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_unbacked_floordiv_simplify(self):
        def fn(x, y):
            z = y.item()
            torch._check(z // 2 == 3)
            return x + x.new_ones(z)

        self.common(
            fn,
            (
                torch.randn(6),
                torch.tensor([6]),
            ),
        )

        self.common(
            fn,
            (
                torch.randn(7),
                torch.tensor([7]),
            ),
        )

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_unbacked_floordiv_simplify_errors(self):
        def fn(x, y):
            z = y.item()
            torch._check(z // 2 == 3)
            return x + x.new_zeros(z)

        # This is a little suboptimal: we actually fail /in the compiler/ but
        # not in a way that causes Dynamo to graph break
        with self.assertRaises(RuntimeError):
            torch.compile(fn)(torch.randn(8), torch.tensor(8))

    def test_cat(self):
        def fn(a):
            tmp = a * 2
            return (
                torch.cat((a, a[:, :4] + 1, a + 2), -1),
                torch.cat((tmp, tmp), 0),
                torch.cat((tmp, tmp.double()), 0),
            )

        self.common(
            fn,
            (torch.randn([8, 16]),),
        )
        self.common(
            fn,
            (torch.randn([1, 3, 3, 16]).to(memory_format=torch.channels_last),),
        )

    def test_cat_uint8(self):
        def fn(x):
            batch_shape = x.shape[:1]
            out = torch.cat([x.new_zeros(1).expand(batch_shape + (1,)), x], dim=-1)
            return out

        self.common(
            fn,
            (torch.randint(0, 256, size=(3, 255), dtype=torch.uint8),),
        )

    def test_cat_empty(self):
        def fn_2(*tensors):
            return torch.cat(tensors)

        self.common(
            fn_2,
            (
                torch.randn([1, 3, 3, 16]),
                torch.ones([0]),
            ),
        )
        self.common(
            fn_2,
            (
                torch.randn([1, 3, 3, 16]),
                torch.ones([0]),
                torch.randn([1, 3, 3, 16]),
            ),
        )
        self.common(
            fn_2,
            (
                torch.ones([0]),
                torch.randn([1, 3, 3, 16]),
            ),
        )

    def test_cat_empty_index(self):
        def fn(out, x):
            return torch.cat([out[0], x], dim=0)

        self.common(fn, (torch.randn(1, 0, 64), torch.randn(128, 64)))

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_cat_unbacked_legacy_empty(self):
        def fn(x, y):
            z = y.item()
            return torch.cat([x, x.new_ones(z)])

        with self.assertRaisesRegex(
            RuntimeError,
            "Expected 2-D tensors, but got 1-D for tensor number 1 in the list",
        ):
            self.common(
                fn,
                (
                    torch.randn([2, 3]),
                    torch.tensor([0]),
                ),
            )

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_cat_unbacked_empty_1d(self):
        def fn(x, y):
            z = y.item()
            return torch.cat([x, x.new_ones(z)])

        self.common(
            fn,
            (
                torch.randn([2]),
                torch.tensor([0]),
            ),
        )

        self.common(
            fn,
            (
                torch.randn([2]),
                torch.tensor([3]),
            ),
        )

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_cat_unbacked_2d(self):
        def fn(x, y):
            z = y.item()
            return torch.cat([x, x.new_ones(z, x.shape[1])])

        self.common(
            fn,
            (
                torch.randn([2, 3]),
                torch.tensor([0]),
            ),
        )

        self.common(
            fn,
            (
                torch.randn([2, 3]),
                torch.tensor([4]),
            ),
        )

    def test_cat_negative_dim(self):
        def fn(*tensors):
            return torch.cat(tensors, dim=-1)

        self.common(
            fn,
            (
                torch.randn([2, 3]),
                torch.randn([2, 4]),
            ),
        )

        self.common(
            fn,
            (
                torch.randn([2, 3]),
                torch.randn([0]),
                torch.randn([2, 4]),
            ),
        )

        self.common(
            fn,
            (
                torch.randn([0]),
                torch.randn([2, 3]),
                torch.randn([2, 4]),
            ),
        )

    @expectedFailureCodegenDynamic
    def test_cat_single_empty(self):
        # fails dynamic check for 'has a dynamic dimension'
        def fn_2(*tensors):
            return torch.cat(tensors)

        self.common(
            fn_2,
            (torch.ones([0]),),
        )

    def test_cat_upcasting(self):
        def fn(arg4_1, slice_7):
            cat_1 = aten.cat.default([arg4_1, slice_7], 1)
            return (cat_1,)

        self.common(
            fn,
            (
                torch.randn([8, 16], dtype=torch.float32),
                torch.randn([8, 20], dtype=torch.float16),
            ),
        )

    def test_cat_extern_kernel(self):
        def fn(x1, x2, x3, x4):
            x = torch.mm(x2, x3)
            s = torch.narrow(x, 1, 0, 100)
            x = torch.mm(s, x4)
            c = torch.cat((x, x1), 1)
            return (c,)

        if self.device == "xpu":
            atol = 3e-4
            rtol = 1e-4
        else:
            # use default
            atol = None
            rtol = None
        self.common(
            fn,
            (
                torch.randn(256, 256),
                torch.randn(256, 1024),
                torch.randn(1024, 1600),
                torch.randn(100, 256),
            ),
            atol=atol,
            rtol=rtol,
            check_lowp=False,  # accuracy issues with relatively large matmuls
        )

    @skip_if_gpu_halide
    @skipCUDAIf(not SM80OrLater, "uses bfloat16 which requires SM >= 80")
    # Constant folding was explicitly turned off due to issue #108388
    # Turn it back on for test
    @torch._inductor.config.patch(joint_graph_constant_folding=True)
    def test_remove_no_ops(self):
        def matmul_with_op(x, y, fn):
            return fn(x @ y)

        foo_opt = torch.compile(matmul_with_op)

        # test no-op
        fns = (
            lambda x: x
            + torch.zeros(
                [256, 256], dtype=torch.float32, device=x.device
            ),  # noqa: E731
            lambda x: x
            - torch.zeros(
                [256, 256], dtype=torch.float32, device=x.device
            ),  # noqa: E731
            lambda x: x
            * torch.ones(
                [256, 256], dtype=torch.float32, device=x.device
            ),  # noqa: E731
            lambda x: x
            / torch.ones(
                [256, 256], dtype=torch.float32, device=x.device
            ),  # noqa: E731
        )

        inps = [torch.rand([256, 256], device=self.device) for _ in range(2)]

        for fn in fns:
            out, source_codes = run_and_get_code(foo_opt, inps[0], inps[1], fn)
            self.assertEqual(out, matmul_with_op(inps[0], inps[1], fn))

            if self.device == "cpu":
                FileCheck().check_not("cpp_fused").run(source_codes[0])
            else:
                FileCheck().check_not("triton.jit").run(source_codes[0])

        # test dtype conversion
        inps = [
            torch.rand([256, 256], device=self.device, dtype=torch.bfloat16)
            for _ in range(2)
        ]
        for fn in fns:
            out, source_codes = run_and_get_code(foo_opt, inps[0], inps[1], fn)
            self.assertEqual(out, matmul_with_op(inps[0], inps[1], fn))

        # test broadcasted shape bail
        fn = lambda x: x + torch.zeros(  # noqa: E731
            [256, 256, 256], dtype=torch.bfloat16, device=self.device
        )
        out, source_codes = run_and_get_code(foo_opt, inps[0], inps[1], fn)
        self.assertEqual(out, matmul_with_op(inps[0], inps[1], fn))

    def test_remove_noop_copy(self):
        def fn(x, y):
            x = x.cos()
            a = x.copy_(y)
            return a.sin()

        self.common(fn, (torch.randn(8, 8), torch.randn(8)))

        def fn2(a, b):
            abs_max = torch.abs(a).max()
            b[0] = abs_max.to(a.dtype)
            return b

        self.common(
            fn2,
            (
                torch.randn(8, 8, dtype=torch.float16),
                torch.randn(8, dtype=torch.float32),
            ),
        )

    def test_remove_noop_clone(self):
        def fn(x):
            y = x.clone().reshape(-1, 4)
            y[:, [2, 0]] = y[:, [0, 2]]
            return y + x

        self.common(fn, (torch.randn(2, 4),))

    def test_cat_of_loops_and_extern_kernel(self):
        class M(torch.nn.Module):
            def __init__(
                self,
                **kwargs,
            ):
                super().__init__()
                self.conv = torch.nn.Conv2d(
                    64,
                    5,
                    1,
                    **kwargs,
                )
                self.max_pool2d = torch.nn.MaxPool2d(2)

            def forward(self, x, y):
                x1 = self.conv(x)
                y1 = self.max_pool2d(y)
                return torch.cat([x1, y1], 1)

        mod = M()
        opt_mod = torch._dynamo.optimize("inductor")(mod)
        memory_format = torch.channels_last
        inputs = (
            torch.randn([1, 64, 16, 16]).to(memory_format=memory_format),
            torch.randn([1, 64, 32, 32]).to(memory_format=memory_format),
        )
        y = mod(*inputs)
        opt_y = opt_mod(*inputs)
        self.assertEqual(y, opt_y)
        self.assertEqual(y.stride(), opt_y.stride())

    def test_cat_inplace(self):
        def fn(x):
            rt = torch.cat([x])
            v = x.sin_()
            return rt

        # can't use self.common because input is modified inplace
        inp = torch.ones(2)
        opt_fn = torch.compile(fn)
        res = opt_fn(inp.clone())
        expected = fn(inp.clone())
        self.assertEqual(res, expected)

    def test_stack(self):
        def fn(a, b):
            return torch.stack(
                [
                    a.expand(12, 16),
                    b.expand(12, 16),
                ],
                2,
            )

        self.common(fn, (torch.randn([1, 16]), torch.randn([12, 1])))

    def test_hardtanh(self):
        def fn(x):
            return F.hardtanh(x), F.hardtanh(x + 1), F.hardtanh(x - 1)

        self.common(
            fn,
            (torch.randn([64]),),
        )

    def test_hardsigmoid(self):
        def fn(x):
            return F.hardsigmoid(x), F.hardsigmoid(x + 3), F.hardsigmoid(x - 3)

        self.common(
            fn,
            (torch.randn([64]),),
        )

    def test_hardswish(self):
        def fn(x):
            return F.hardswish(x), F.hardswish(x + 3), F.hardswish(x - 3)

        self.common(
            fn,
            (torch.randn([64]),),
        )

    def test_rsqrt(self):
        def fn(x):
            return torch.rsqrt(x), torch.rsqrt(x + 1) - 2

        self.common(
            fn,
            (torch.randn([64]),),
        )

    def test_expm1(self):
        def fn(x):
            return torch.expm1(x), torch.expm1(x) * 2

        for dtype in (torch.float16, torch.float, torch.double, torch.int, torch.int64):
            self.common(
                fn,
                (torch.randn([64]).to(dtype=dtype),),
            )
            self.common(
                fn,
                (torch.arange(-1e-5, 1e-5, 1e-7).to(dtype=dtype),),
            )

    def test_log1p(self):
        def fn(x):
            return torch.log1p(x), torch.log1p(x) * 2

        for dtype in (torch.float16, torch.float, torch.double, torch.int, torch.int64):
            self.common(
                fn,
                (torch.randn([64]).to(dtype=dtype),),
            )
            self.common(
                fn,
                (torch.arange(-1e-5, 1e-5, 1e-7).to(dtype=dtype),),
            )

    def test_flip(self):
        def fn(x):
            return torch.flip(x, (-1,)), torch.flip(x, (0, 2)) - 2

        self.common(
            fn,
            (torch.randn([1, 2, 6, 6]),),
        )

    def test_signbit(self):
        def fn(x):
            return torch.signbit(x), ~torch.signbit(-x) & 1

        self.common(
            fn,
            (torch.randn([1, 2, 6, 6]),),
        )

    def test_sign_dtype(self):
        def fn(x):
            y = torch.sign(x)
            return torch.tanh(y)

        self.common(fn, (torch.randn([1, 2, 6, 6]),))

    @xfail_if_triton_cpu
    def test_fmod(self):
        def fn(a, b):
            return torch.fmod(a, b), torch.fmod(3.0 * a, b) - 2.0

        shape = [1, 2, 6, 6]
        self.common(fn, (torch.randn(shape), torch.randn(shape)))

    @xfail_if_triton_cpu
    def test_fmod_zero_dim(self):
        def fn(a, b):
            return (torch.fmod(a, b),)

        self.common(
            fn,
            (
                make_tensor(10, device=self.device, dtype=torch.float32),
                make_tensor((), device=self.device, dtype=torch.float32),
            ),
        )
        self.common(
            fn,
            (
                make_tensor((), device=self.device, dtype=torch.float32),
                make_tensor(10, device=self.device, dtype=torch.float32),
            ),
        )

    def test_log2(self):
        def fn(x):
            return torch.log2(x), torch.log2(x + 1) - 2

        self.common(
            fn,
            (torch.randn([64]) + 10,),
        )

    def test_logsumexp(self):
        def fn(x):
            return torch.logsumexp(x, -1), torch.logsumexp(x, 0) - 2

        self.common(
            fn,
            (torch.randn([8, 8]) + 10,),
        )

    def test_log_fp64(self):
        def fn(x):
            return torch.log(x), torch.log2(x)

        self.common(
            fn,
            (torch.randn([1024], dtype=torch.float64) + 10,),
        )

    def test_bitwise(self):
        def fn(x, y):
            return (
                torch.bitwise_not(x),
                torch.bitwise_or(x, y),
                torch.bitwise_xor(x, y),
                torch.bitwise_and(x, y),
            )

        self.common(
            fn,
            (
                torch.randint(0, 2**30, [64], dtype=torch.int32),
                torch.randint(0, 2**30, [64], dtype=torch.int32),
            ),
        )

    def test_bitwise2(self):
        # again with bool types
        def fn(x, y):
            return (
                torch.bitwise_not(x),
                torch.bitwise_or(x, y),
                torch.bitwise_xor(x, y),
                torch.bitwise_and(x, y),
            )

        self.common(
            fn,
            (
                torch.randint(0, 2, (2, 20), dtype=torch.bool),
                torch.randint(0, 2, (2, 20), dtype=torch.bool),
            ),
        )

    def test_bitwise3(self):
        # Repro for https://github.com/pytorch/pytorch/issues/97968
        def fn(x, y):
            return (
                torch.max(torch.bitwise_and(x, y), y),
                torch.clamp_max(torch.bitwise_or(x, y), y),
                torch.clamp_min(torch.bitwise_xor(x, y), y),
            )

        self.common(
            fn,
            (
                torch.rand([5, 10, 1]).to(torch.int8),
                torch.rand([10, 1]).to(torch.int8),
            ),
        )

    def test_inf(self):
        def fn(a):
            return a + float("inf"), a + float("-inf"), a * -float("inf")

        self.common(fn, (torch.randn(8),))

    def test_remainder(self):
        def fn(a, b):
            return (
                torch.remainder(a, b),
                torch.remainder(a + 1, b - 1),
                torch.remainder(a - 1, b + 1),
            )

        self.common(fn, (torch.randn(64), torch.randn(64)))

    def test_zeros(self):
        def fn(a):
            return (
                a + 1,
                torch.zeros(
                    (1, 8, 64, 64),
                    dtype=torch.float32,
                    device=a.device,
                ),
                torch.zeros(
                    1,
                    8,
                    64,
                    64,
                    dtype=torch.float32,
                    device=a.device,
                ),
                torch.zeros(2, 3),
                a + torch.ones(8, device=a.device),
                torch.full((2, 3), 3.1416, device=a.device),
            )

        self.common(fn, (torch.randn(8),))

    def test_new_ones(self):
        def fn(a):
            return (
                aten.new_ones(
                    a, [], device=a.device, dtype=6, layout=0, pin_memory=False
                ),
                aten.new_zeros(
                    a, [], device=a.device, dtype=6, layout=0, pin_memory=False
                ),
            )

        self.common(fn, (torch.randn(8),))

    def test_full_like(self):
        def fn(a):
            return torch.full_like(a, 7.777) - 1

        self.common(fn, (torch.randn(8),))

    def test_full_truncation(self):
        def fn(a):
            return a + torch.full_like(a, 7.777)

        for dtype in all_types():
            self.common(fn, (make_tensor(8, dtype=dtype, device=self.device),))

    def test_full_boolean(self):
        def fn(n):
            x = torch.full((1,), n >= 1024, device=self.device)
            return x, x + 1

        self.common(fn, (1024,))
        self.common(fn, (1023,))

    def test_index1(self):
        def fn(a, b, c):
            return aten.index(a, [b, c])

        self.common(
            fn,
            (
                torch.randn(8, 8, 12),
                torch.tensor([0, 0, 2, 2], dtype=torch.int64),
                torch.tensor([3, 4, 4, 3], dtype=torch.int64),
            ),
        )
        self.common(
            fn,
            (
                torch.randn(8, 8, 12),
                torch.tensor([[0, 0, 2, 2]], dtype=torch.int64),
                torch.tensor([[3], [4], [4], [3]], dtype=torch.int64),
            ),
        )

    def test_index2(self):
        def fn(a, b):
            return (
                aten.index(a, [b]),
                aten.index(a, [None, b]),
            )

        self.common(
            fn,
            (
                torch.randn(8, 8, 8),
                torch.tensor([[0, 0, 2, 2]], dtype=torch.int64),
            ),
        )

    def test_index3(self):
        def fn(x, ia, ib):
            return (x[:, ia, None, ib, 0],)

        self.common(
            fn,
            (
                torch.randn(3, 4, 4, 4, 3),
                torch.tensor([0, 2, 1], dtype=torch.int64),
                torch.tensor([0, 2, 1], dtype=torch.int64),
            ),
        )

    def test_output_strides(self):
        def fn(x):
            y = x.permute(0, 2, 3, 1).contiguous()
            torch._dynamo.graph_break()
            return y.view(-1, 4)

        inp = torch.rand([4, 4, 4, 4], device=self.device)
        fn_opt = torch._dynamo.optimize("inductor")(fn)

        self.assertEqual(fn(inp), fn_opt(inp))
        self.assertEqual(fn(inp).stride(), fn_opt(inp).stride())

        # no redundant copy
        def foo(x):
            return x[0:2:2].T[3:].squeeze(0)

        foo_opt = torch._dynamo.optimize("inductor")(foo)
        out = foo_opt(inp)
        self.assertEqual(inp.storage(), out.storage())

    def test_index_select(self):
        def fn(a, b):
            return (
                torch.index_select(a, 0, b),
                torch.index_select(a, 1, b),
                torch.index_select(torch.index_select(a, 2, b), 1, b),
            )

        for ind_dtype in (torch.int32, torch.int64):
            self.common(
                fn,
                (
                    torch.randn(8, 8, 8),
                    torch.tensor([0, 0, 2, 1], dtype=ind_dtype),
                ),
            )

    @skipCUDAIf(not TEST_CUDNN, "CUDNN not available")
    @skipIfXpu
    @skipIfRocm
    def test_cudnn_rnn(self):
        if self.device == "cpu":
            raise unittest.SkipTest(f"requires {GPU_TYPE}")

        def fn(
            a0,
            b0,
            b1,
            b2,
            b3,
            b4,
            b5,
            b6,
            b7,
            b8,
            b9,
            b10,
            b11,
            b12,
            b13,
            b14,
            b15,
            a3,
            a4,
            a5,
        ):
            a1 = [
                b0,
                b1,
                b2,
                b3,
                b4,
                b5,
                b6,
                b7,
                b8,
                b9,
                b10,
                b11,
                b12,
                b13,
                b14,
                b15,
            ]
            return aten._cudnn_rnn(
                a0,
                a1,
                4,
                a3,
                a4,
                a5,
                2,
                2048,
                0,
                2,
                False,
                0.0,
                False,
                True,
                [],
                None,
            )

        self.common(
            fn,
            (
                torch.randn([92, 8, 2048]),
                torch.randn([8192, 2048]),
                torch.randn([8192, 2048]),
                torch.randn([8192]),
                torch.randn([8192]),
                torch.randn([8192, 2048]),
                torch.randn([8192, 2048]),
                torch.randn([8192]),
                torch.randn([8192]),
                torch.randn([8192, 4096]),
                torch.randn([8192, 2048]),
                torch.randn([8192]),
                torch.randn([8192]),
                torch.randn([8192, 4096]),
                torch.randn([8192, 2048]),
                torch.randn([8192]),
                torch.randn([8192]),
                torch.randn([167837696]),
                torch.randn([4, 8, 2048]),
                torch.randn([4, 8, 2048]),
            ),
            check_lowp=False,  # difference in rnn is too large between half and float inputs
        )

    def test_upsample_nearest1d(self):
        def fn(a):
            return (
                aten.upsample_nearest1d(a, [74], None),
                aten.upsample_nearest1d(a, [70], None),
                aten.upsample_nearest1d(a, [45], None),
                aten.upsample_nearest1d(a, [36], None),
                aten.upsample_nearest1d(a, None, [2.0]),
            )

        self.common(fn, (torch.randn([2, 4, 37]),))

    def test_upsample_nearest2d(self):
        def fn(a):
            return (
                aten.upsample_nearest2d(a, [74, 76]),
                aten.upsample_nearest2d(a, [70, 75]),
                aten.upsample_nearest2d(a, [45, 74]),
                aten.upsample_nearest2d(a, [36, 39]),
                aten.upsample_nearest2d(a, None, [2.0, 2.0]),
            )

        self.common(fn, (torch.randn([2, 4, 37, 38]),))

    def test_upsample_nearest3d(self):
        def fn(a):
            return (
                aten.upsample_nearest3d(a, [74, 76, 78], None),
                aten.upsample_nearest3d(a, [70, 75, 80], None),
                aten.upsample_nearest3d(a, [45, 74, 103], None),
                aten.upsample_nearest3d(a, [36, 39, 40], None),
                aten.upsample_nearest3d(a, None, [2.0, 2.0, 2.0]),
            )

        self.common(fn, (torch.randn([2, 4, 37, 38, 39]),))

    def test_upsample_nearest2d_backward(self):
        func = torch.ops.aten.upsample_nearest2d_backward

        def fn(a):
            return (
                func(a, output_size=[6, 12], input_size=[3, 3, 3, 6]),
                func(a, output_size=[6, 12], input_size=[3, 3, 4, 5]),
                func(a, output_size=[6, 12], input_size=[3, 3, 2, 8]),
                func(a, output_size=[6, 12], input_size=[3, 3, 2, 8]),
                func(a, output_size=[6, 12], input_size=[3, 3, 4, 7]),
            )

        self.common(fn, (torch.randn([3, 3, 6, 12]),))

    @skip_if_x86_mac()
    def test_upsample_bilinear2d_a(self):
        def fn(a):
            return (
                aten.upsample_bilinear2d(a, [45, 45], False, None),
                aten.upsample_bilinear2d(a, None, True, [2.0, 2.0]),
            )

        self.common(fn, (torch.randn([2, 4, 37, 38]),), atol=2.5e-5, rtol=1.3e-6)

    def test_upsample_bilinear2d_b(self):
        def fn(a):
            return aten.upsample_bilinear2d(a, None, True, [2.0, 2.0])

        self.common(
            fn,
            [
                torch.randn([1, 2, 40, 59]),
            ],
            atol=2.5e-5,
            rtol=1.3e-6,
        )

    @skip_if_gpu_halide  # accuracy issue
    def test_reflection_pad2d(self):
        def fn(a, pad):
            return (
                aten.reflection_pad2d(a, [1, 1, 1, 1]),
                aten.reflection_pad2d(a, pad),
            )

        self.common(
            fn,
            (
                torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),
                [5, 2, 3, 4],
            ),
        )

    def test_reflection_pad2d_backward(self):
        def template(size, padding):
            def fn(grad_output, x):
                return aten.reflection_pad2d_backward(grad_output, x, padding)

            x = torch.randint(0, 999, size=size, dtype=torch.float32)
            result = aten.reflection_pad2d(x, padding)
            grad_output = torch.randn_like(result)

            self.common(
                fn, (grad_output, x), check_lowp=not is_halide_backend(self.device)
            )

        template([1, 1, 8, 8], [0, 0, 0, 0])
        template([1, 1, 8, 8], [1, 1, 1, 1])
        template([1, 1, 8, 8], [1, 2, 3, 4])
        template([1, 1, 8, 8], [0, -1, 2, 2])
        template([1, 1, 8, 8], [-1, 0, 2, 2])
        template([1, 1, 8, 8], [2, 2, 0, -1])
        template([1, 1, 8, 8], [2, 2, -1, 0])

    def test_grid_sampler_2d(self):
        def fn(a, b):
            return (
                aten.grid_sampler_2d(a, b, 0, 0, True),
                aten.grid_sampler_2d(a, b, 0, 1, False),
            )

        self.common(
            fn,
            (
                torch.randn([4, 3, 352, 352], dtype=torch.float32),
                torch.rand([4, 352, 352, 2], dtype=torch.float32) * 2 - 1,
            ),
            check_lowp=False,
            # Mismatched elements: 154697 / 1486848 (10.4%)
            # Greatest absolute difference: 0.0001976490020751953 at index (0, 0, 101, 243) (up to 1e-05 allowed)
            # Greatest relative difference: 7.332530120481928 at index (1, 1, 258, 301) (up to 1.3e-06 allowed)
            atol=0.0002,
            rtol=1.3e-06,
        )

    def test_upsample_bicubic2d(self):
        def fn(a):
            return (
                aten.upsample_bicubic2d(a, (128, 128), True),
                aten.upsample_bicubic2d(a, (128, 256), False),
            )

        # Mismatched elements: 10 / 196608 (0.0%)
        # Greatest absolute difference: 1.3869255781173706e-05 at index (2, 1, 88, 65) (up to 1e-05 allowed)
        # Greatest relative difference: 0.0033082996811011046 at index (3, 1, 88, 91) (up to 1.3e-06 allowed)
        self.common(
            fn,
            (torch.randn([4, 3, 64, 32], dtype=torch.float32),),
            atol=2e-5,
            rtol=1e-3,
        )

    def test_float_index_expression(self):
        # Test that index propagation doesn't generate bad index_expr calls like
        # ops.index_expr(0.5*x, dtype) where the expression is not integral
        def fn(x):
            return aten.upsample_bicubic2d(x, (256, 256), False)

        x = torch.randn(1, 1, 128, 128, dtype=torch.float32, device=self.device)
        _, source_codes = run_and_get_code(fn, x)

        pattern = r"0\.50*\*[ix][\d]"
        for code in source_codes:
            self.assertIsNone(
                re.search(pattern, code), msg="Found bad index_expr in code:\n" + code
            )

    def test_float_index_expression_type_promotion(self):
        # Test that float indexing expressions participate in type promotion
        def fn(x):
            return x + 1.0 / x.size(0)

        x = torch.arange(10)
        self.common(fn, (x,))

    def test_sort(self):
        def fn(a, descending):
            return torch.sort(a)

        inp = torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32)
        self.common(fn, (inp, False))
        self.common(fn, (inp, True))

    def test_sort_stable(self):
        def fn(a, descending):
            return a.sort(dim=-1, stable=True, descending=descending)

        # Duplicates give deterministic indices when stable sorting
        inp = torch.rand(10, 128, dtype=torch.float32)
        inp[:, 10:20] = 1.0
        inp[:, 30:40] = 1.0
        self.common(fn, (inp, False))
        self.common(fn, (inp, True))

        # Non-power of two
        inp = inp[:, :120]
        self.common(fn, (inp, False))
        self.common(fn, (inp, True))

    def test_sort_bool(self):
        def fn(a, descending):
            return torch.sort(a.to(torch.int8), stable=True, descending=descending)

        inp = torch.randint(0, 2, size=[10, 128], dtype=torch.bool)
        self.common(fn, (inp, False))
        self.common(fn, (inp, True))

    @skipIfWindows(msg="Crash UT")
    def test_sort_transpose(self):
        def fn(a, descending):
            return torch.sort(a, stable=True, descending=descending)

        inp = torch.randn(128, 10).transpose(0, 1)
        self.common(fn, (inp, False))
        self.common(fn, (inp, True))

    def test_topk(self):
        def fn(a):
            return torch.topk(a, 2, -1)

        self.common(
            fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),)
        )

    def test_long_tensor(self):
        def fn(a):
            return (
                torch.LongTensor([294]).to(a.device) - a,
                torch.as_tensor([295]).to(a.device) + a,
            )

        self.common(fn, (torch.randint(0, 999, size=[8, 8]),))

    @skip_if_gpu_halide  # correctness issue
    def test_constant_pad_1d(self):
        def fn(a):
            return (
                aten.constant_pad_nd(a, [0, 1], 6.0),
                aten.constant_pad_nd(a, [2, 3], 99.0),
            )

        self.common(fn, (torch.randint(0, 999, size=[2, 16, 31], dtype=torch.float32),))

    def test_constant_pad_fill_dtype(self):
        def fn(a, b):
            return (
                aten.constant_pad_nd(a, (1, 1), 1.0) & b,
                aten.constant_pad_nd(a, (1, 1), 0.0) & b,
            )

        self.common(
            fn,
            (torch.randint(2, (4,), dtype=torch.bool), torch.ones(6, dtype=torch.bool)),
        )

    @skip_if_gpu_halide  # misaligned address
    def test_constant_pad_2d(self):
        def fn(a):
            return (
                aten.constant_pad_nd(a, [1, 1, 1, 1], 6.0),
                aten.constant_pad_nd(a, [1, 2, 3, 4], 99.0),
            )

        self.common(
            fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),)
        )

    @skip_if_gpu_halide  # misaligned address
    def test_constant_pad_3d(self):
        def fn(a):
            return (
                aten.constant_pad_nd(a, [1, 2, 3, 4, 5, 6], 6.0),
                aten.constant_pad_nd(a, [0, 0, 3, 4, 0, 0], 6.0),
            )

        self.common(
            fn, (torch.randint(0, 999, size=[2, 4, 4, 4], dtype=torch.float32),)
        )

    def test_constant_pad_float64(self):
        # Repro for https://github.com/pytorch/pytorch/issues/93351
        def fn(input):
            v1 = torch.nn.functional.pad(input, pad=(1, 0))
            return torch.gt(v1, input)

        x = torch.rand([1, 2, 2, 1], dtype=torch.float64)
        self.common(fn, (x,))

    def test_constant_pad_nd_inplace(self):
        def fn(a):
            return aten.constant_pad_nd(a, [0, 0])

        x = torch.randn([2], device=self.device)
        fn_compiled = torch.compile(fn)
        y = fn_compiled(x)
        self.assertTrue(y is not x)

    def test_l1_loss(self):
        def fn(a, b):
            return torch.nn.functional.l1_loss(a, b), torch.nn.functional.mse_loss(a, b)

        self.common(
            fn,
            (
                torch.randn([2, 3, 16, 16]),
                torch.randn([2, 3, 16, 16]),
            ),
            check_lowp=False,
        )

    def test_triu(self):
        def fn(a):
            return aten.triu(a, 1), aten.triu(a, 0), aten.triu(a, 2)

        self.common(fn, (torch.randn([2, 10, 10]),))

    def test_no_op_reduction(self):
        def fn(a):
            return a.sum(-1), torch.amax(a + 1, 1, keepdim=True)

        self.common(fn, (torch.randn([8, 1, 1]),))

    def test_inplace_add(self):
        @torch._dynamo.optimize("inductor")
        def fn(x, y):
            return x.add_(y)

        inputs = (
            rand_strided((4, 4), (4, 1), device=self.device),
            rand_strided((4, 4), (4, 1), device=self.device),
        )
        inp_clone = inputs[0].clone()
        out = fn(*inputs)
        self.assertTrue(same(out, inp_clone + inputs[1]))
        self.assertTrue(out is inputs[0])

    # The following 2 tests are meant to check the logic that drops
    # xmask from triton load/store if xnumel = 1
    @requires_gpu()
    def test_single_elem(self):
        def fn(a):
            b = a + 1
            return (b,)

        self.common(fn, (torch.randn(1),))

    @requires_gpu()
    def test_single_elem_indirect(self):
        def fn(a, b):
            c = a[b] + 1
            return (c,)

        a = torch.randn(1)
        b = (torch.tensor([0], dtype=torch.int64),)

        self.common(fn, (a, b))

    # This test is meant to check for issues from the logic
    # that drops xmask from trito load/store if XBLOCK divides xnumel

    @requires_gpu()
    def test_xblock_divides_xnumel(self):
        def fn(a):
            b = a + 1
            return (b,)

        # assumption is that XBLOCK is always a divisor of 1024
        # so xmask will be dropped iff xnumel is multiple of 1024
        self.common(fn, (torch.randn(1024),))
        self.common(fn, (torch.randn(1025),))

    def test_inplace_mixed_dtype_ops(self):
        @torch._dynamo.optimize("inductor")
        def fn(x, y):
            z = x + y.float()
            w = z.add_(y)
            return w.mul_(y)

        inputs = (
            rand_strided((4, 4), (4, 1), device=self.device, dtype=torch.float),
            rand_strided((4, 4), (4, 1), device=self.device, dtype=torch.double),
        )
        out = fn(*inputs)
        out_eager = (inputs[0] + inputs[1].float()).add_(inputs[1]).mul_(inputs[1])
        self.assertTrue(same(out, out_eager))

    @config.patch(
        {"triton.unique_kernel_names": True, "triton.descriptive_names": False}
    )
    def test_kernel_names(self):
        @torch._dynamo.optimize("inductor")
        def fn(x):
            return 2 * x

        inputs = (rand_strided((8,), (1,), device=self.device),)
        self.assertTrue(same(fn(*inputs), 2 * inputs[0]))

    @config.patch({"triton.cudagraphs": True})
    @dynamo_config.patch(automatic_dynamic_shapes=True)
    def test_strided_inputs(self):
        @torch._dynamo.optimize("inductor")
        def fn(x, y):
            return x + y

        inputs = (
            rand_strided((8, 16), (32, 2), device=self.device),
            rand_strided((8, 16), (16, 1), device=self.device),
        )
        self.assertTrue(same(fn(*inputs), inputs[0] + inputs[1]))

    @config.patch({"triton.cudagraphs": True})
    @dynamo_config.patch(automatic_dynamic_shapes=True)
    def test_input_mutation1(self):
        def fn(a):
            b = a + 1
            a.copy_(b)
            c = a + 2
            return a * b / c

        arg1 = torch.randn(64, device=self.device)
        arg2 = arg1.clone()
        arg3 = torch.randn(64, device=self.device)
        arg4 = arg3.clone()
        correct1 = fn(arg1)
        correct2 = fn(arg3)
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        actual1 = opt_fn(arg2)
        actual2 = opt_fn(arg4)

        self.assertTrue(same(actual1, correct1))
        self.assertTrue(same(actual2, correct2))
        self.assertTrue(same(arg1, arg2))
        self.assertTrue(same(arg3, arg4))

    def test_input_mutation2(self):
        def fn(a):
            b = a + 1
            a.view(64).copy_(torch.tensor([66.0], device=a.device))
            c = a + 2
            return b, c

        # NOTE: this test fails when none of the inputs require grad.
        # That seems like an inductor bug.
        arg1 = torch.randn([1, 64], device=self.device).requires_grad_(True).add(1)
        arg2 = arg1.clone()
        correct1 = fn(arg1)
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        actual1 = opt_fn(arg2)

        self.assertTrue(same(actual1, correct1))
        self.assertTrue(same(arg1, arg2))

    def test_input_mutation3(self):
        def fn(a):
            a += 1
            a *= 2
            aten.sigmoid_(a)
            a = a.view(64)
            a += 3
            a *= 4
            aten.relu_(a)
            return a

        arg1 = torch.randn([1, 64], device=self.device)
        arg2 = arg1.clone()
        correct1 = fn(arg1)
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        actual1 = opt_fn(arg2)

        self.assertTrue(same(actual1, correct1))
        self.assertTrue(same(arg1, arg2))

    def test_input_mutation4(self):
        def fn(a):
            torch.relu_(a)
            return a

        arg1 = torch.randn([1, 64], device=self.device)
        arg2 = arg1.clone()
        correct1 = fn(arg1)
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        actual1 = opt_fn(arg2)

        self.assertTrue(same(actual1, correct1))
        self.assertTrue(same(arg1, arg2))

    def test_input_mutation5(self):
        def fn(x):
            tmp = x.ceil()
            x.add_(10)
            return tmp

        opt_fn = torch._dynamo.optimize()(fn)

        a = torch.zeros((), dtype=torch.int64, device=self.device)
        a_expect = a.clone()
        expect = fn(a_expect)

        a_actual = a.clone()
        actual = opt_fn(a_actual)

        self.assertEqual(a_expect, a_actual)
        self.assertEqual(expect, actual)

    def test_slice_mutation1(self):
        def fn(a):
            x = torch.zeros_like(a)
            b = x + 1
            x[:, 3] = 3.0
            c = torch.clone(x)
            x[4, :] = 4.0
            d = x + 1
            return x, b, c, d

        self.common(fn, (torch.randn([8, 8]),))

    @skip_if_gpu_halide  # accuracy issue
    def test_slice_mutation2(self):
        def fn(a):
            a[:, 20:40] = a[:, 20:40] + 1
            a[:, 2:11] = a[:, 1:10] + 2

        arg1 = torch.randn([1, 64], device=self.device)
        arg2 = arg1.clone()
        fn(arg1)
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        opt_fn(arg2)
        self.assertTrue(same(arg1, arg2))

    def test_slice_mutation3(self):
        def fn(a):
            a[:2, :2].fill_(10)

        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)

        x1 = torch.randn(8, 8, device=self.device)
        x2 = x1.clone()
        fn(x1)
        opt_fn(x2)
        self.assertEqual(x1, x2)

    def test_tensor_index_slice(self):
        def fn(a):
            x = torch.tensor([1, 2], device=self.device)
            y = torch.tensor([2, 3], device=self.device)
            xx = torch.tensor([1, 2], device=self.device).view(1, 2)
            yy = torch.tensor([1, 2, 3], device=self.device).view(3, 1)
            return [
                a[x, y],
                a[:, x, y],
                a[:, x, y, :],
                a[x, :, y],
                a[:, x, :, y, :],
                a[xx, yy],
                a[:, xx, yy],
                a[xx, :, yy],
                a[xx, yy, :],
                a[:, xx, :, yy],
            ]

        a = torch.arange(3 * 4 * 5 * 6 * 7, device=self.device).view(3, 4, 5, 6, 7)
        refs = fn(a)
        tests = torch.compile(fn)(a)
        for ref, test in zip(refs, tests):
            torch.testing.assert_close(ref, test)

    @torch._dynamo.config.patch(cache_size_limit=10)
    def test_tensor_index_put_slice(self):
        def fn(a, version):
            x = torch.tensor([1, 2], device=self.device, dtype=torch.int32)
            y = torch.tensor([2, 3], device=self.device, dtype=torch.int32)

            xx = torch.tensor([1, 2], device=self.device).view(1, 2)
            yy = torch.tensor([1, 2, 3], device=self.device).view(3, 1)

            if version == 0:
                a[x, y] = torch.zeros_like(a[x, y])
            elif version == 1:
                a[:, x, y] = torch.zeros_like(a[:, x, y])
            elif version == 2:
                a[:, x, y, :] = torch.zeros_like(a[:, x, y, :])
            elif version == 3:
                a[x, :, y] = torch.zeros_like(a[x, :, y])
            elif version == 4:
                a[:, x, :, y, :] = torch.zeros_like(a[:, x, :, y, :])
            elif version == 5:
                a[xx, yy] = torch.zeros_like(a[xx, yy])
            elif version == 6:
                a[:, xx, yy] = torch.zeros_like(a[:, xx, yy])
            elif version == 7:
                a[xx, :, yy] = torch.zeros_like(a[xx, :, yy])
            elif version == 8:
                a[xx, yy, :] = torch.zeros_like(a[xx, yy, :])
            elif version == 9:
                a[:, xx, :, yy] = torch.zeros_like(a[:, xx, :, yy])

            return a

        a = torch.arange(3 * 4 * 5 * 6 * 7, device=self.device, dtype=torch.int32).view(
            3, 4, 5, 6, 7
        )
        for i in range(10):
            ref = fn(torch.clone(a), i)
            test = torch.compile(fn)(torch.clone(a), i)
            torch.testing.assert_close(ref, test)

    def test_indirect_load_broadcast(self):
        def fn(in_ptr0, in_ptr1, in_ptr2):
            return torch.gather(in_ptr1, 0, in_ptr2) + in_ptr0

        arg190 = rand_strided((32, 21), (1, 32), device=self.device, dtype=torch.int64)
        arg190.fill_(0)
        arg111 = rand_strided(
            (9521, 512), (512, 1), device=self.device, dtype=torch.float32
        )
        self.common(
            fn,
            (
                torch.randn(32, 1),
                arg111,
                arg190,
            ),
        )

    def test_roi_align(self):
        if not has_torchvision_roi_align():
            raise unittest.SkipTest("requires torchvision")

        def fn(a, b):
            return torch.ops.torchvision.roi_align(a, b, 0.25, 7, 7, 2, False)

        self.common(fn, (torch.zeros([4, 256, 296, 304]), torch.zeros([2292, 5])))

    # https://github.com/halide/Halide/issues/8256
    @config.patch("halide.scheduler_cuda", "Li2018")
    def test_nll_loss_forward(self):
        def fn(a, b):
            return aten.nll_loss_forward(a, b, None, 1, -100)

        labels = (
            torch.zeros([5], dtype=torch.int64),
            torch.tensor([-100, -100, 3, -100, -100], dtype=torch.int64),
        )
        inps = (torch.randn(5, 5), torch.randn(5, 5))
        for a, b in zip(inps, labels):
            self.common(
                fn,
                (a, b),
            )

    def test_nll_loss_backward(self):
        def fn(a, b, c):
            return aten.nll_loss_backward(
                a, b, c, None, 1, -100, torch.tensor(1.0, device=self.device)
            )

        labels = (
            torch.zeros([5], dtype=torch.int64),
            torch.tensor([-100, -100, 3, -100, -100], dtype=torch.int64),
        )
        inps = (torch.randn(5, 5), torch.randn(5, 5))
        grad_outs = (torch.randn(()), torch.randn(()))
        for a, b, c in zip(grad_outs, inps, labels):
            self.common(
                fn,
                (a, b, c),
            )

    def test_isinf(self):
        def fn(x):
            return x.isinf(), x.isnan()

        self.common(
            fn, [torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")])]
        )
        self.common(
            fn,
            [
                torch.tensor(
                    [1, float("inf"), 2, float("-inf"), float("nan")],
                    dtype=torch.float64,
                )
            ],
        )

    @skip_if_halide  # different nan behavior in ==
    def test_isinf2(self):
        def fn(x):
            y = torch.tensor(
                [1, float("inf"), 2, float("-inf"), float("nan")], device=self.device
            )
            return x == y

        self.common(
            fn, (torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]),)
        )

    def test_any(self):
        def fn(x):
            return (
                x.any(-1),
                x.isinf().any(),
                torch.all(x.isinf(), dim=0),
                torch.all(torch.logical_not(x.isinf())),
            )

        self.common(fn, [-torch.rand(64)])
        tmp = torch.randn(16, 8)
        tmp[1, 1] = float("inf")
        self.common(fn, [tmp])

    @skip_if_gpu_halide
    def test_multilayer_any(self):
        def fn(x):
            return (x.isinf().any(), x.isfinite().all())

        sample = torch.rand(9, 3, 353, 353)
        self.common(fn, [sample])

        sample.view(-1)[-1] = float("inf")
        self.common(fn, [sample])

    def test_inplace_activations(self):
        def fn(x):
            a = aten.hardswish_(x + 1)
            b = aten.hardtanh_(x + 1)
            c = aten.leaky_relu_(x + 1)
            d = aten.silu_(x + 1)
            e = aten.log1p(x + 1)
            f = aten.masked_fill_(x + 1, torch.zeros_like(x, dtype=torch.bool), 99.0)
            h = aten.masked_fill_(x + 1, torch.ones_like(x, dtype=torch.bool), 99.0)
            return (a, b, c, d, e, f, h)

        self.common(fn, [torch.randn(64) * 10])

    def test_baddbmm(self):
        def fn(a, b, c, beta):
            return aten.baddbmm(a, b, c, beta=beta)

        b = torch.randn(6, 128, 64)
        c = torch.randn(6, 64, 100)
        options = itertools.product(
            [torch.randn(6, 1, 100), torch.randn(6, 1, 100).fill_(torch.nan)],
            [0.0, 1.0],
        )
        for a, beta in options:
            self.common(
                fn,
                [a, b, c, beta],
                # Mismatched elements: 1212 / 76800 (1.6%)
                # Greatest absolute difference: 0.001953125 at index (0, 0, 93) (up to 1e-05 allowed)
                # Greatest relative difference: 1.0 at index (3, 19, 4) (up to 0.001 allowed)
                atol=0.002,
                rtol=0.001,
            )

    @config.patch({"triton.max_tiles": 2})
    def test_fuse_tiled(self):
        def fn(a, b, c):
            return a + b, c + 1

        self.common(
            fn, [torch.randn(128, 1), torch.randn(1, 128), torch.randn(128, 128)]
        )

    def test_expand_as(self):
        def fn(a, b):
            return aten.expand_as(a, b), aten.expand_as(a + 1, b + 1) + 1

        self.common(
            fn,
            [
                torch.randn(6, 1, 100),
                torch.randn(6, 128, 100),
            ],
        )

    def test_index_put1(self):
        def fn(a, b, c):
            return (
                torch.index_put(a, [b], c),
                torch.index_put_(a + 1, [b + 1], c + 1) + 1,
            )

        self.common(
            fn,
            [
                torch.randn([800, 256, 7, 7]),
                torch.randperm(601),
                torch.randn([601, 256, 7, 7]),
            ],
        )
        self.common(
            fn, [torch.randn(1024, 4, 2), torch.arange(4), torch.randn(4, 1, 1)]
        )

    def test_index_put2(self):
        def fn(a, b, c):
            return torch.index_put(a, [b], c, True)

        self.common(
            fn,
            [
                torch.randn([100, 256, 7, 7]),
                torch.randint(0, 100, size=[600], dtype=torch.int64),
                torch.randn([600, 256, 7, 7]),
            ],
            # workaround for https://github.com/openai/triton/issues/558
            check_lowp=False,
        )

    def test_index_put3(self):
        def fn(a, b, c):
            torch.ops.aten.index_put_(a, (None, b, None), c)
            a1 = a + 1
            torch.ops.aten.index_put_(a1, (None, b + 1, None), c + 1)
            return (a, a1)

        self.common(
            fn,
            [
                torch.randn([1024, 4, 2]),
                torch.arange(3),
                torch.randn([1024, 1, 2]),
            ],
        )

    def test_index_put4(self):
        # a, b[0] are not broadcastable
        # https://github.com/pytorch/pytorch/issues/97104
        def fn(a, b, c):
            return torch.index_put(a, [b], c)

        self.common(
            fn,
            [
                torch.rand([8, 2]),
                torch.rand([8]) > 0.5,
                torch.rand([]),
            ],
        )

    def test_index_put_as_masked_fill(self):
        def fn(a, b, c, d):
            a = a.clone()
            torch.ops.aten.index_put_(a, [b], c, d)
            return a

        self.common(
            fn,
            (
                torch.randn([1024, 4, 2]),
                torch.randn([1024, 4, 2]) > 0,
                torch.randn([]),
                False,
            ),
        )

        self.common(
            fn,
            (
                torch.randn([1024, 4, 2]),
                torch.randn([1024, 4, 2]) > 0,
                torch.randn([]),
                True,
            ),
        )

    def test_index_put_fallback1(self):
        def fn(a, b, c, d):
            a = a.clone()
            torch.ops.aten.index_put_(a, [b], c, d)
            return a

        self.common(
            fn,
            (
                torch.randn([3]),
                torch.as_tensor([True, True, False]),
                torch.randn([2]),
                False,
            ),
        )

        self.common(
            fn,
            (
                torch.randn([3]),
                torch.as_tensor([True, True, False]),
                torch.randn([2]),
                True,
            ),
        )

    def test_index_put_fallback2(self):
        def fn(a, b, c, d, e):
            a = a.clone()
            torch.ops.aten.index_put_(a, [None, b, c], d, e)
            return a

        self.common(
            fn,
            (
                torch.randn([1, 2, 3]),
                torch.as_tensor([0, 1]),
                torch.as_tensor([True, True, False]),
                torch.randn([]),
                False,
            ),
        )
        self.common(
            fn,
            (
                torch.randn([1, 2, 3]),
                torch.as_tensor([0, 1]),
                torch.as_tensor([True, True, False]),
                torch.randn([]),
                True,
            ),
        )

    def test_index_put_deterministic_fallback(self):
        with DeterministicGuard(True):

            def fn(a, b, c):
                return torch.index_put(a, [b], c, True)

            self.common(
                fn,
                [
                    torch.randn([100, 32]),
                    torch.randint(0, 100, size=[600], dtype=torch.int64),
                    torch.randn([600, 32]),
                ],
                check_lowp=False,
            )

    @skip_if_gpu_halide  # https://github.com/halide/Halide/issues/8312
    def test_index_put_index(self):
        def fn(ind, x, src):
            y = torch.ops.aten.index_put.default(x, [ind], src)
            return torch.ops.aten.index.Tensor(y, [ind])

        args = [torch.tensor([1], dtype=torch.int64), torch.randn(8, 4), torch.randn(4)]
        self.common(fn, args)

    def test_index_put_reinplace(self):
        def fn(x, idx):
            src = torch.ones(idx.size(0), device=x.device)
            x.index_put_((idx,), src)
            return x.expand((2, x.shape[0]))

        a = torch.randn(1024)
        idx = torch.arange(10)
        torch._inductor.metrics.generated_kernel_count = 0
        self.common(fn, (a, idx))
        assertGeneratedKernelCountEqual(self, 1)

    def test_index_put_failed_reinplace(self):
        def fn(x, idx):
            src = torch.ones(idx.size(0), device=x.device)
            y = x.index_put((idx,), src)
            return x, y

        a = torch.randn(1024)
        idx = torch.arange(10)
        torch._inductor.metrics.generated_kernel_count = 0
        self.common(fn, (a, idx))
        assertGeneratedKernelCountEqual(self, 2)

    def test_adding_tensor_offsets(self):
        @torch.compile(fullgraph=True)
        def fn(x):
            return x[16:32]

        with torch.no_grad():
            x = torch.randn(1024, device=self.device)
            self.assertEqual(fn(x[0:]), x[16:][:16])
            self.assertEqual(fn(x[128:]), x[128 + 16 :][:16])

    # from GPT2ForSequenceClassification
    @skip_if_gpu_halide
    def test_index_tensor(self):
        def fn(x, y):
            ne = torch.ops.aten.ne.Scalar(x, 0)
            sum = torch.ops.aten.sum.dim_IntList(ne, [-1])
            sub = torch.ops.aten.sub.Tensor(sum, 1)
            iota = torch.ops.prims.iota.default(
                1,
                start=0,
                step=1,
                dtype=torch.int64,
                device=x.device,
                requires_grad=False,
            )
            return torch.ops.aten.index.Tensor(y, [iota, sub])

        self.common(fn, [torch.randn(1, 1024), torch.randn(1, 1024, 2)])

    @config.patch(fallback_random=True)
    def test_bernoulli1(self):
        def fn(a):
            b = a.clone()
            # aten.bernoulli_() uses aten.bernoulli.p() behind the scene, so it will be decomposed.
            return aten.bernoulli_(b).sum() / torch.prod(torch.tensor(a.size()))

        p = 0.3
        self.common(
            fn,
            [
                torch.ones(200, 200) * p,
            ],
            atol=p * 0.06,
            rtol=0.06,
        )

    @skip_if_triton_cpu
    def test_bernoulli2(self):
        def fn(a):
            return aten.bernoulli(a).sum() / torch.prod(torch.tensor(a.size()))

        p = 0.3
        self.common(
            fn,
            [torch.ones(200, 200) * p],
            atol=p * 0.06,
            rtol=0.06,
        )

    def test_narrow(self):
        def fn(x):
            return (
                aten.narrow(x, 1, 10, 16),
                aten.narrow(x + 2, 0, 10, 16) + 1,
                aten.narrow_copy(x, 1, 10, 16),
            )

        self.common(fn, [torch.randn(64, 64)])

    def test_as_strided(self):
        def fn(x):
            return (
                aten.as_strided(x, (8, 8, 64), (8 * 64, 64, 1), 0),
                aten.as_strided(x + 1, (8, 8, 64), (8 * 64, 64, 1), 0) + 2,
            )

        def fn_channels_last(x):
            return (
                aten.as_strided(
                    x, (8, 384, 2, 20, 12), (153600, 1, 61440, 384, 7680), 0
                ),
                aten.as_strided(
                    x + 1, (8, 384, 2, 20, 12), (153600, 1, 61440, 384, 7680), 0
                )
                + 2,
            )

        self.common(fn, [torch.randn(64, 64)])
        self.common(
            fn_channels_last,
            [torch.randn(8, 384, 20, 20).to(memory_format=torch.channels_last)],
        )

    def test_exact_stride(self):
        full = torch.randn((16, 16), device=self.device)
        view = torch.as_strided(full, (16, 8), full.stride())

        def fn(x):
            result = x + x
            result_strided = torch.empty_strided(
                x.size(), x.stride(), device=self.device
            )
            result_strided[:] = result
            return result_strided

        self.common(fn, [view])
        reference_out = fn(view)
        compiled_fn = torch.compile(fn)
        actual_out = compiled_fn(view)
        self.assertEqual(reference_out.stride(), actual_out.stride())

    @xfail_if_triton_cpu
    def test_like_channels_last(self):
        def foo():
            randn = torch.randn((4, 3, 8, 8), device=self.device, dtype=torch.float32)
            xc = randn.contiguous(memory_format=torch.channels_last)
            clone = torch.zeros_like(xc, memory_format=torch.preserve_format)
            rand_like = torch.rand_like(randn)
            return (xc, clone, rand_like)

        out = foo()
        out_comp = torch.compile()(foo)()

        for t, t_comp in zip(out, out_comp):
            self.assertEqual(t.stride(), t_comp.stride())

    def test_as_strided_scatter(self):
        def fn(a, b):
            return aten.as_strided_scatter(
                a * 8 + 10,
                b * 2 - 4,
                size=(a.shape[0], a.shape[1] // 2),
                stride=(a.shape[1], 2),
                storage_offset=0,
            )

        self.common(fn, [torch.randn(10, 1024), torch.randn(10, 512)])

    def test_select_scatter(self):
        def fn(x, a, b):
            return (
                aten.select_scatter(x, a, 1, 0),
                aten.select_scatter(x, b, 0, 1),
            )

        self.common(
            fn,
            [
                torch.randn(8, 197, 38),
                torch.randn(8, 38),
                torch.randn(197, 38),
            ],
        )

    @skip_if_gpu_halide  # accuracy issue
    def test_slice_scatter(self):
        def fn(x, a):
            return (
                aten.slice_scatter(x, a, 2, 10, -10),
                aten.slice_scatter(x, a[:, :, :40], 2, 10, -10, 2),
            )

        self.common(
            fn,
            [
                torch.randn(4, 8, 100),
                torch.randn(4, 8, 80),
            ],
        )

    def test_slice_scatter2(self):
        def fn(a, b):
            return aten.slice_scatter(a, b, 0, 0, 9223372036854775807)

        self.common(
            fn,
            [
                torch.randn([8, 197, 384]),
                torch.randn([8, 197, 384]),
            ],
        )

    def test_slice_scatter3(self):
        def fn(a, b):
            return aten.slice_scatter.default(a, b, 1, 1, 9223372036854775807, 2)

        self.common(
            fn,
            [
                torch.randn([1, 4]),
                torch.randn([1, 2]),
            ],
        )

    def test_slice_scatter4(self):
        def fn(a, b):
            return aten.slice_scatter.default(a, b, 1, 2, 9223372036854775807, 3)

        self.common(
            fn,
            [
                torch.randn([1, 9]),
                torch.randn([1, 3]),
            ],
        )

    def test_slice_scatter5(self):
        # empty slices that require clamping the start or end
        def fn(a, b):
            return (
                aten.slice_scatter.default(a, b, 0, 2, 0, 1),
                aten.slice_scatter.default(a, b, 0, a.shape[0], a.shape[0] + 10, 1),
                aten.slice_scatter.default(a, b, 0, -20, 0, 1),
                aten.slice_scatter.default(a, b, 0, -20, -16, 1),
            )

        a = torch.arange(10, dtype=torch.float)
        b = torch.empty(0)
        self.common(fn, [a, b])

    @with_tf32_off
    def test_slice_scatter_reinplace(self):
        class M(nn.Module):
            def __init__(self, device):
                super().__init__()
                self.linear1 = nn.Linear(64, 64, bias=False)
                self.cache_k = torch.zeros((56, 384, 8, 64), device=device)

            def forward(self, x, start_pos):
                bsz, seqlen, _, _ = x.shape
                xk = self.linear1(x)
                with torch.no_grad():
                    self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
                keys = self.cache_k[:bsz, : start_pos + seqlen]
                scores = torch.matmul(
                    xk.transpose(1, 2), keys.transpose(1, 2).transpose(2, 3)
                )
                return scores

        kv_cache_module = M(self.device)
        inp = torch.randn(1, 32, 8, 64)

        # Test that the cache update is reinplaced such that the cache is updated inplace
        # rather than copy-scatter-copy-back.

        torch._inductor.metrics.generated_kernel_count = 0
        with torch.no_grad():
            self.common(kv_cache_module, (inp, 1), check_lowp=False)
        assertGeneratedKernelCountEqual(self, 1)

    @skip_if_gpu_halide  # compile error on gpu
    def test_scatter1(self):
        def fn(a, dim, index, b):
            return aten.scatter(a, dim, index, b)

        self.common(
            fn,
            [
                torch.zeros(2, 3),
                -1,
                torch.tensor([[0]]),
                torch.ones(2, 3),
            ],
        )

    def test_scatter2(self):
        if self.device == "cuda":
            raise unittest.SkipTest("unstable on sm86")

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        def fn(a, dim, index, b):
            return aten.scatter.reduce(a, dim, index, b, reduce="add")

        self.common(
            fn,
            [
                torch.zeros(64, 512),
                0,
                torch.zeros((64, 512), dtype=torch.int64),
                torch.ones(64, 512),
            ],
            check_lowp=check_lowp,
        )

    def test_scatter3(self):
        def fn(a, dim, index, b):
            return aten.scatter(a, dim, index, b, reduce="add")

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        self.common(
            fn,
            [
                torch.randn(5, 29, 13),
                2,
                torch.tensor([[[3, 5, 7, 9]]]),
                0.8,  # src can be a scalar
            ],
            # Mismatched elements: 1 / 1885 (0.1%)
            # Greatest absolute difference: 0.00018310546875 at index (0, 0, 3) (up to 1e-05 allowed)
            # Greatest relative difference: 0.0022371364653243847 at index (0, 0, 3) (up to 0.001 allowed)
            atol=2e-4,
            rtol=1e-3,
            check_lowp=check_lowp,
        )

    def test_scatter4(self):
        def fn(x, ind, src):
            return torch.scatter(x, 0, ind, src)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for deterministic in [False, True]:
            with DeterministicGuard(deterministic):
                self.common(
                    fn,
                    [
                        torch.randn(196, 992),
                        torch.randint(196, (1, 992)),
                        torch.randn(1, 992),
                    ],
                    check_lowp=check_lowp,
                )

    def test_scatter5(self):
        def fn(a, dim, index, b, reduce):
            a = a.clone()
            a.scatter_(dim, index, b, reduce=reduce)
            a1 = a + 1.0
            a1.scatter_(dim, index, b, reduce=reduce)
            return (a, a1)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for reduce in ["add", "multiply"]:
            self.common(
                fn,
                [
                    torch.ones((4, 5)),
                    0,
                    torch.tensor([[1], [2], [3]], dtype=torch.int64),
                    torch.randn(4, 5),
                    reduce,
                ],
                check_lowp=check_lowp,
            )

    def test_scatter6(self):
        def fn(a, dim, index, b):
            return aten.scatter(a, dim, index, b)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for deterministic in [False, True]:
            with DeterministicGuard(deterministic):
                self.common(
                    fn,
                    [
                        torch.randn(5, 8, 13),
                        2,
                        torch.tensor([[[3, 5, 7, 9]]]),
                        0.8,  # src can be a scalar
                    ],
                    check_lowp=check_lowp,
                )

    @unittest.skip("Flaky test, needs debugging")
    def test_scatter_add1(self):
        def fn(a, dim, index, b):
            return aten.scatter_add(a, dim, index, b)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        self.common(
            fn,
            [
                torch.randn(2, 3),
                0,
                torch.tensor([[0]]),
                torch.randn(2, 3),
            ],
            check_lowp=check_lowp,
        )

    def test_scatter_add2(self):
        def fn(a, dim, index, b):
            return aten.scatter_add(a, dim, index, b)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        self.common(
            fn,
            [
                torch.randn(2, 3),
                0,
                torch.tensor([[0, 0, 0], [1, 1, 1]]),
                torch.randn(2, 3),
            ],
            check_lowp=check_lowp,
        )

    def test_scatter_add3(self):
        def fn(a, dim, index, b):
            return aten.scatter_add(a, dim, index, b)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for deterministic in [False, True]:
            if deterministic and self.device == "xpu":
                # There is no deterministic implementation for scatter_add on Intel GPU.
                continue
            with DeterministicGuard(deterministic):
                self.common(
                    fn,
                    [
                        torch.randn(5, 29, 13),
                        2,
                        torch.tensor([[[3, 5, 7, 9]]]),
                        torch.randn(1, 1, 10),
                    ],
                    check_lowp=check_lowp,
                )

    def test_scatter_reduce1(self):
        def fn(a, dim, index, b):
            return aten.scatter_reduce(a, dim, index, b, "sum")

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        self.common(
            fn,
            [
                torch.randn(5, 29, 13),
                2,
                torch.tensor([[[3, 5, 7, 9]]]),
                torch.randn(1, 1, 10),
            ],
            check_lowp=check_lowp,
        )

    def test_scatter_reduce2(self):
        def fn(a, dim, index, b, reduce):
            return aten.scatter_reduce(a, dim, index, b, reduce, include_self=False)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for reduce in ["sum", "amax"]:
            self.common(
                fn,
                [
                    torch.randn(2, 3),
                    0,
                    torch.zeros((2, 3), dtype=torch.int64),
                    torch.randn(2, 3),
                    reduce,
                ],
                check_lowp=check_lowp,
            )

    def test_scatter_reduce3(self):
        def fn(a, dim, index, b, reduce):
            a = a.clone()
            a.scatter_reduce_(dim, index, b, reduce=reduce)
            a1 = a + 1.0
            a1.scatter_reduce_(dim, index, b, reduce=reduce)
            return (a, a1)

        check_lowp = True
        if self.device == "xpu":
            check_lowp = False

        for reduce in ["sum", "prod"]:
            self.common(
                fn,
                [
                    torch.ones((4, 5)),
                    0,
                    torch.tensor([[1], [2], [3]], dtype=torch.int64),
                    torch.randn(4, 5),
                    reduce,
                ],
                check_lowp=check_lowp,
            )

    @skip_if_gpu_halide
    def test_dense_mask_index(self):
        r"""
        There will be a little difference for reduce order between aten and inductor
        https://github.com/pytorch/pytorch/pull/122289
        Absolute difference: 0.00067138671875 (up to 1e-05 allowed)
        Relative difference: 3.1747371732500974e-06 (up to 1.3e-06 allowed)
        """
        kwargs = {}
        if self.device == "cpu":
            kwargs["atol"] = 1e-4
            kwargs["rtol"] = 1.3e-5

        def fn(x, y):
            y = torch.ops.aten.select.int(y, 0, 2)
            z = x * y
            return z.sum()

        self.common(fn, [torch.randn(102400), torch.randn(3)], **kwargs)

    def test_empty1(self):
        def fn():
            return torch.empty((1, 128, 128))

        self.common(fn, [], assert_equal=False)

    def test_empty2(self):
        def fn():
            return aten.empty((1, 128, 128))

        self.common(fn, [], assert_equal=False)

    def test_new_empty(self):
        def fn(a):
            return aten.new_empty(a, [1, 128, 128])

        self.common(fn, [torch.randn(55)], assert_equal=False)

    def test_empty_strided(self):
        def fn():
            return aten.empty_strided([1, 128, 128], [16384, 128, 1])

        self.common(fn, [], assert_equal=False)

    def test_new_empty_strided(self):
        def fn(a):
            return aten.new_empty_strided(a, [1, 128, 128], [16384, 128, 1])

        self.common(fn, [torch.randn(55)], assert_equal=False)

    def test_dropout_trivial_0(self):
        def fn1(a):
            return torch.nn.functional.dropout(a, 0.0, True) + a

        self.common(fn1, [torch.randn(55)])

    def test_dropout_trivial_1(self):
        def fn2(a):
            return torch.nn.functional.dropout(a, 1.0, True) + a

        self.common(fn2, [torch.randn(55)])

    @config.patch({"triton.cudagraphs": True})
    @dynamo_config.patch(automatic_dynamic_shapes=True)
    def test_dropout(self):
        random.seed(1234)
        torch.manual_seed(1234)

        @torch._dynamo.optimize("inductor")
        def fn1(a):
            return torch.nn.functional.dropout(a)

        x = torch.ones(1000, device=self.device, dtype=torch.float32)
        result1 = fn1(x)
        self.assertTrue(400 < result1.nonzero().shape[0] < 600)
        self.assertTrue(0.9 < result1.mean().item() < 1.1)

        random.seed(1234)
        torch.manual_seed(1234)

        @torch._dynamo.optimize("inductor")
        def fn2(a):
            return torch.nn.functional.dropout(a, 0.5, True)

        result2 = fn2(x)
        self.assertTrue(400 < result2.nonzero().shape[0] < 600)
        self.assertTrue(0.9 < result2.mean().item() < 1.1)

    @dynamo_config.patch(automatic_dynamic_shapes=True)
    def test_dropout_deterministic(self):
        @torch._dynamo.optimize("inductor")
        def fn(a):
            return torch.nn.functional.dropout(a, 0.55, True)

        for cg in [False, True]:
            with patch.object(config.triton, "cudagraphs", cg):
                torch._dynamo.reset()

                x = torch.ones(1024, device=self.device, dtype=torch.float32)

                torch.manual_seed(1234)
                a0 = fn(x).clone()
                a1 = fn(x).clone()
                a2 = fn(x).clone()

                torch.manual_seed(1234)
                b0 = fn(x).clone()
                b1 = fn(x).clone()
                b2 = fn(x).clone()

                # same seed, same values
                self.assertTrue(torch.allclose(a0, b0))
                self.assertTrue(torch.allclose(a1, b1))
                self.assertTrue(torch.allclose(a2, b2))

                # different calls, different values
                self.assertFalse(torch.allclose(a0, a1))
                self.assertFalse(torch.allclose(a1, a2))

    def test_rand_like_deterministic(self):
        @torch._dynamo.optimize("inductor")
        def fn(a):
            return torch.rand_like(a), torch.rand_like(a)

        x = torch.ones(1024, device=self.device, dtype=torch.float32)

        torch.manual_seed(1234)
        a0 = fn(x)[0].clone()
        a1 = fn(x)[0].clone()
        a2 = fn(x)[0].clone()

        torch.manual_seed(1234)
        b0 = fn(x)[0].clone()
        b1 = fn(x)[0].clone()
        b2 = fn(x)[0].clone()

        # same seed, same values
        self.assertTrue(torch.allclose(a0, b0))
        self.assertTrue(torch.allclose(a1, b1))
        self.assertTrue(torch.allclose(a2, b2))

        # different calls, different values
        self.assertFalse(torch.allclose(a0, a1))
        self.assertFalse(torch.allclose(a1, a2))

        c, d = fn(x)
        self.assertFalse(torch.allclose(c, d))
        self.assertTrue((c >= 0).all())
        self.assertTrue((c < 1).all())
        self.assertTrue((d >= 0).all())
        self.assertTrue((d < 1).all())

    @config.patch(implicit_fallbacks=True)
    def test_fallback_mutable_op_basic(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as m:

            def impl(a, b, c, d, e=2):
                a.add_(b[0] * c * e),
                if d is not None:
                    d.add_(b[1])

            m.define(
                "inplace_(Tensor(a!) a, Tensor[] b, SymInt c, *, Tensor(b!)? d, SymInt e=2) -> ()"
            )
            m.impl("inplace_", impl, "CompositeExplicitAutograd")

            # We do some clones and copy_ to test that Inductor doesn't reorder
            # the copy_ w.r.t. inplace_.
            def f(a, b1, b2, c, d):
                a_ = a.clone()
                d_ = d if d is None else d.clone()
                torch.ops.mylib.inplace_(a_, (b1, b2), c, d=d_)
                a.copy_(a_)
                if d is not None:
                    d.copy_(d_)
                return ()

            a = torch.tensor([0.0, 1.0, 2])
            b = [torch.tensor([2.0, 3.0, 5.0]), torch.tensor([1.0, 4.0, 6.0])]
            c = 4
            d = torch.tensor([2.0, 1, 0])
            args = (a, b[0], b[1], c, d)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            mod = make_fx(f)(*cloned_args)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_f = compile_fx_inner(mod, cloned_args)

            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_f(list(cloned_args))
            f(*args)
            self.assertEqual(cloned_args, args)

    @config.patch(implicit_fallbacks=True)
    def test_fallback_mutable_op_with_return(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as m:

            def impl(a, b, c, d, e=2):
                a.add_(b[0] * c * e),
                if d is not None:
                    d.add_(b[1])
                return b[0] + b[1]

            m.define(
                "inplace_(Tensor(a!) a, Tensor[] b, SymInt c, *, Tensor(b!)? d, SymInt e=2) -> Tensor"
            )
            m.impl("inplace_", impl, "CompositeExplicitAutograd")

            # We do some clones and copy_ to test that Inductor doesn't reorder
            # the copy_ w.r.t. inplace_.
            def f(a, b0, b1, c, d):
                a_ = a.clone()
                d_ = d if d is None else d.clone()
                res = torch.ops.mylib.inplace_(a_, (b0, b1), c, d=d_)
                a.copy_(a_)
                if d is not None:
                    d.copy_(d_)
                return (res,)

            a = torch.tensor([0.0, 1.0, 2])
            b = [torch.tensor([2.0, 3.0, 5.0]), torch.tensor([1.0, 4.0, 6.0])]
            c = 4
            d = torch.tensor([2.0, 1, 0])
            args = (a, b[0], b[1], c, d)

            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            mod = make_fx(f)(*cloned_args)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_f = compile_fx_inner(mod, cloned_args)

            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_out = compiled_f(list(cloned_args))
            out = f(*args)
            self.assertEqual(cloned_args, args)
            self.assertEqual(compiled_out, out)

    @config.patch(implicit_fallbacks=True)
    def test_fallback_mutable_op_no_mutated_tensors(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as m:

            def impl(a, b):
                if b is not None:
                    b.add_(1)

            m.define("inplace_(Tensor a, Tensor(b!)? b) -> ()")
            m.impl("inplace_", impl, "CompositeExplicitAutograd")

            def f(a):
                torch.ops.mylib.inplace_(a, None)
                return ()

            a = torch.tensor([0.0, 1.0, 2])
            args = (a,)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            mod = make_fx(f)(*cloned_args)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_f = compile_fx_inner(mod, cloned_args)

            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            compiled_f(list(cloned_args))
            f(*args)
            self.assertEqual(cloned_args, args)

    @config.patch(implicit_fallbacks=True)
    @skip_if_cpp_wrapper(
        "Without major redesign, cpp_wrapper will not support custom ops that are "
        "defined in Python."
    )
    def test_fallback_mutable_op_list(self):
        with torch.library._scoped_library("mylib", "FRAGMENT") as m:

            def impl(a, b):
                for bi in b:
                    bi.add_(a)

            m.define("inplace_(Tensor a, Tensor(a!)[] b) -> ()")
            m.impl("inplace_", impl, "CompositeExplicitAutograd")

            def f(a, b):
                torch.ops.mylib.inplace_(a, b)
                return None

            a = torch.tensor([0.0, 1.0, 2])
            b = [torch.tensor([2.0, 3.0, 5.0]), torch.tensor([1.0, 4.0, 6.0])]
            args = (a, b)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)
            mod = make_fx(f)(*cloned_args)
            cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args)

            compiled_f = compile_fx_inner(mod, cloned_args)

        @torch.library.custom_op("mylib::sin_out", mutates_args={"outs"})
        def sin_out(x: torch.Tensor, outs: typing.List[torch.Tensor]) -> None:
            x_np = x.numpy()
            assert len(outs) == 2
            out_np0 = out[0].numpy()
            out_np1 = out[1].numpy()
            np.sin(x_np, out=out_np0)
            np.sin(x_np, out=out_np1)

        @torch.compile
        def g(x):
            outs = [torch.empty_like(x) for _ in range(2)]
            sin_out(x, outs)
            return outs

        x = torch.randn(3)
        out = [torch.empty_like(x) for _ in range(2)]
        y = g(x)

    def test_functionalize_rng_wrappers(self):
        # Ideally, we would like to use torch.compile for these operators. But
        # currently the plan is to introduce these operators at the partitioner
        # level, obviating the need to support them fully through the
        # torch.compile stack. To ensure that we have good enough debugging with
        # minifiers, we have ensure that they work with make_fx. This test uses
        # make_fx to do the testing. In future, we can move on torch.compile.
        def fn():
            rng_state1, a1 = torch._prims.rng_prims.run_and_save_rng_state(
                torch.ops.aten.rand.default,
                [4, 4],
                dtype=torch.float32,
                device=self.device,
            )
            rng_state2, a2 = torch._prims.rng_prims.run_and_save_rng_state(
                torch.ops.aten.rand.default,
                [4, 4],
                dtype=torch.float32,
                device=self.device,
            )

            b1 = torch._prims.rng_prims.run_with_rng_state(
                rng_state1,
                torch.ops.aten.rand.default,
                [4, 4],
                dtype=torch.float32,
                device=self.device,
            )
            b2 = torch._prims.rng_prims.run_with_rng_state(
                rng_state2,
                torch.ops.aten.rand.default,
                [4, 4],
                dtype=torch.float32,
                device=self.device,
            )

            return (a1, a2, b1, b2)

        mod = make_fx(fn)()
        compiled_f = compile_fx_inner(mod, ())
        a1, a2, b1, b2 = compiled_f(())
        self.assertEqual(a1, b1)
        self.assertEqual(a2, b2)

    @patch.object(torch._functorch.config, "functionalize_rng_ops", True)
    @expectedFailureXPU
    @skip_if_gpu_halide  # rand
    def test_philox_rand(self):
        if self.device == "cpu":
            raise unittest.SkipTest(
                f"functionalization of rng ops supported only on {GPU_TYPE}"
            )

        @torch._dynamo.optimize("inductor")
        def fn(x):
            a = torch.rand_like(x) * x
            a = torch.rand_like(x) * a
            return a

        def check(x):
            torch.manual_seed(123)
            a = fn(x)

            torch.manual_seed(1234)
            b = fn(x)

            torch.manual_seed(123)
            c = fn(x)

            # same seed, same values
            self.assertTrue(torch.allclose(a, c))

            # different calls, different values
            self.assertFalse(torch.allclose(a, b))

        check(torch.ones(1024, device=self.device, dtype=torch.float32))
        # Need comment: should we add "_get_rng_state_offset" to common device interface?
        self.assertEqual(getattr(torch, self.device)._get_rng_state_offset(), 2048)
        # Check non-multiple of 4 numel
        check(torch.ones(3, device=self.device, dtype=torch.float32))
        self.assertEqual(getattr(torch, self.device)._get_rng_state_offset(), 8)

    # Already on by default, just want to make sure
    @patch.object(torch._inductor.config, "allow_buffer_reuse", True)
    def test_reuse_buffers_with_aliasing(self):
        def f(x):
            z = x + 1
            z = torch.view_as_complex(z)
            a = torch.view_as_real(z)
            out = a + 1
            return out, torch.view_as_real(z + 1)

        self.common(f, (torch.zeros((4, 2)),))

        code = run_and_get_triton_code(torch.compile(f), torch.zeros((4, 2)))
        # Make sure that we haven't added complex support and made this test
        # invalid. If we've added complex support please update the test to use
        # a different set of view ops we don't lower
        self.assertTrue("aten.view_as_real" in code)

        def f2(x):
            z = x + 1
            z = torch.view_as_complex(z)
            z = torch.view_as_real(z)
            z = torch.view_as_complex(z)
            a = torch.view_as_real(z)
            out = a + 1
            return out, torch.view_as_real(z + 1)

        self.common(f, (torch.zeros((4, 2)),))

    @xfail_if_triton_cpu  # libdevice.fma
    def test_softmax_backward_data(self):
        def fn(a, b):
            return aten._softmax_backward_data(a, b, dim=1, input_dtype=torch.float32)

        self.common(
            fn,
            (
                torch.randn(10, 10),
                torch.randn(10, 10),
            ),
        )

    def test_randn_like_empty(self):
        class Model(torch.nn.Module):
            def __init__(
                self,
            ):
                super().__init__()

            def forward(self, v1: torch.Tensor):
                vx = v1.min(dim=1).values
                v2 = torch.randn_like(vx)
                return v2

        model = Model()
        x = torch.rand(10, 3, 0)

        self.common(model, (x,))

    def test_randint(self):
        @torch.compile(fullgraph=True)
        def fn(x):
            return (
                torch.randint(10, [1024], device=x.device),
                torch.randint(-4, 7, [1024], dtype=torch.int32, device=x.device),
                torch.randint_like(x, 2**50),
            )

        torch.manual_seed(12345)
        a0, b0, c0 = fn(torch.zeros([40, 40], device=self.device))
        self.assertEqual(a0.shape, [1024])
        self.assertEqual(b0.shape, [1024])
        self.assertEqual(c0.shape, [40, 40])
        torch.manual_seed(12345)
        a1, b1, c1 = fn(torch.zeros([40, 40], device=self.device))
        self.assertEqual(a0, a1)
        self.assertEqual(b0, b1)
        self.assertEqual(c0, c1)

        self.assertEqual(a0.min(), 0)
        self.assertEqual(a0.max(), 9)

        self.assertEqual(b0.min(), -4)
        self.assertEqual(b0.max(), 6)

        self.assertGreaterEqual(c0.min(), 0)
        self.assertGreater(c0.max(), 2**40)
        self.assertLess(c0.max(), 2**50)

    @config.patch(fallback_random=True)
    def test_like_rands(self):
        def fn(x):
            return torch.rand_like(x), torch.randn_like(x)

        self.common(fn, [torch.zeros([20, 20])])

    @config.patch(check_stack_no_cycles_TESTING_ONLY=True)
    def test_check_stack_no_cycles(self):
        if config.cpp_wrapper and self.device != "cpu":
            raise unittest.SkipTest(
                "codegen() gets called twice in cpp_wrapper GPU compilation, which "
                "causes this test to fail.  This can be removed if GPU compilation is "
                "done in a single pass."
            )

        @torch.compile()
        def fn(x):
            return x * 3

        r = fn(torch.randn(2, device=self.device, requires_grad=True))
        # Backward compilation isn't hooked into cprofile, it probably
        # should...
        # r.sum().backward()

    def test_like_rands2(self):
        # rand_like with kwargs `device` of str type
        d = self.device
        assert isinstance(d, str)

        @torch.compile
        def fn(x):
            return torch.rand_like(x, device=d)

        x = torch.ones(10, device=self.device, dtype=torch.float32)
        a0 = fn(x).clone()
        a1 = fn(x).clone()
        self.assertFalse(torch.allclose(a0, a1))

    @requires_gpu()
    @skip_if_triton_cpu("Flaky on Triton CPU")
    def test_like_rands3(self):
        # rand_like with `device` which is different from `x.device`
        def test_like_rands_on_different_device(device1, device2):
            @torch.compile
            def fn(x, device):
                return torch.rand_like(x, device=device)

            x = torch.ones(10, device=device1, dtype=torch.float32)
            return fn(x, device2).clone()

        a0 = test_like_rands_on_different_device("cpu", GPU_TYPE)
        a1 = test_like_rands_on_different_device(GPU_TYPE, "cpu")
        self.assertTrue(a0.device.type == GPU_TYPE)
        self.assertTrue(a1.device.type == "cpu")

    def test_max_pool2d_with_indices_backward(self):
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [2, 2], [2, 2], [0, 0], [1, 1], False, c
            )

        x = torch.randn([2, 4, 18, 14])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [2, 2],
            [2, 2],
            [0, 0],
            [1, 1],
            False,
        )

        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )

    @skip_if_gpu_halide  # slow
    def test_max_pool2d_with_indices_backward2(self):
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [3, 3], [2, 2], [1, 1], [1, 1], True, c
            )

        x = torch.randn([2, 4, 40, 56])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [3, 3],
            [2, 2],
            [1, 1],
            [1, 1],
            True,
        )

        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )

    # From https://github.com/pytorch/torchdynamo/issues/1200
    def test_max_pool2d_with_indices_backward3(self):
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [1, 1], [2, 2], [0, 0], [1, 1], False, c
            )

        x = torch.randn([32, 256, 37, 38])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [1, 1],
            [2, 2],
            0,
            1,
            False,
        )
        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )

    # From https://github.com/pytorch/torchdynamo/issues/1352
    @skip_if_halide  # hangs forever
    def test_max_pool2d_with_indices_backward4(self):
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [5, 5], [1, 1], [2, 2], [1, 1], False, c
            )

        torch._inductor.metrics.generated_kernel_count = 0
        x = torch.randn([2, 64, 3, 4])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [5, 5],
            [1, 1],
            2,
            1,
            False,
        )
        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )
        assertGeneratedKernelCountEqual(self, 1)

    @expectedFailureXPU
    def test_max_pool2d_with_indices_backward5(self):
        # Window size is too big. Should fallback
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [13, 13], [1, 1], [2, 2], [1, 1], False, c
            )

        torch._inductor.metrics.generated_kernel_count = 0
        x = torch.randn([2, 64, 20, 20])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [13, 13],
            [1, 1],
            2,
            1,
            False,
        )
        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )
        assertGeneratedKernelCountEqual(self, 0)

    # From https://github.com/pytorch/pytorch/issues/93384
    def test_max_pool2d_with_indices_backward6(self):
        # dilation is not 1. Should fallback
        def fn(a, b, c):
            return aten.max_pool2d_with_indices_backward(
                a, b, [3, 2], [2, 1], [1, 1], [1, 2], False, c
            )

        torch._inductor.metrics.generated_kernel_count = 0
        x = torch.randn([2, 2, 3, 6])
        result, indices = aten.max_pool2d_with_indices(
            x,
            [3, 2],
            [2, 1],
            [1, 1],
            [1, 2],
            False,
        )
        self.common(
            fn,
            [
                torch.randn_like(result),
                x,
                indices,
            ],
        )
        assertGeneratedKernelCountEqual(self, 0)

    def test_issue102546(self):
        def fn(x):
            return x.mean(0)

        self.common(fn, [torch.rand(())])

    def test_avg_pool2d_backward(self):
        def fn(a, b):
            return aten.avg_pool2d_backward(
                a,
                b,
                [2, 2],
                [2, 2],
                [0, 0],
                True,
                False,
                None,
            )

        self.common(
            fn,
            [
                torch.randn([2, 4, 7, 7]),
                torch.randn([2, 4, 14, 14]),
            ],
        )

    @skip_if_gpu_halide  # slow
    def test_avg_pool2d_backward2(self):
        def fn(a, b):
            return aten.avg_pool2d_backward(
                a,
                b,
                [3, 3],
                [1, 1],
                [1, 1],
                True,
                False,
                None,
            )

        self.common(
            fn,
            [
                torch.randn([1, 1, 20, 15]),
                torch.randn([1, 1, 20, 15]),
            ],
        )

    def test_avg_pool2d_backward3(self):
        def fn(a, b):
            return aten.avg_pool2d_backward(
                a,
                b,
                [1, 1],
                [2, 2],
                [0, 0],
                False,
                False,
                None,
            )

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            [
                torch.randn([1, 2016, 11, 11]),
                torch.randn([1, 2016, 21, 21]),
            ],
        )
        assertGeneratedKernelCountEqual(self, 1)

    def test_avg_pool2d_backward4(self):
        def fn(a, b):
            return aten.avg_pool2d_backward(
                a,
                b,
                [13, 13],
                [1, 1],
                [0, 0],
                True,
                False,
                None,
            )

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            [
                torch.randn([1, 16, 12, 12]),
                torch.randn([1, 16, 24, 24]),
            ],
            check_lowp=False,
        )
        assertGeneratedKernelCountEqual(self, 0)

    def test_avg_pool3d_backward(self):
        def fn(a, b):
            return aten.avg_pool3d_backward(
                a,
                b,
                [2, 2, 2],
                [2, 2, 2],
                [0, 0, 0],
                True,
                False,
                None,
            )

        self.common(
            fn,
            [
                torch.randn([2, 4, 7, 7, 7]),
                torch.randn([2, 4, 14, 14, 14]),
            ],
        )

    @skip_if_halide  # compiles for 5+ minutes
    def test_avg_pool3d_backward2(self):
        def fn(a, b):
            return aten.avg_pool3d_backward(
                a,
                b,
                [3, 3, 3],
                [1, 1, 1],
                [1, 1, 1],
                True,
                False,
                None,
            )

        self.common(
            fn,
            [
                torch.randn([1, 1, 20, 20, 15]),
                torch.randn([1, 1, 20, 20, 15]),
            ],
        )

    def test_avg_pool3d_backward3(self):
        def fn(a, b):
            return aten.avg_pool3d_backward(
                a,
                b,
                [1, 1, 1],
                [2, 2, 2],
                [0, 0, 0],
                False,
                False,
                None,
            )

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            [
                torch.randn([1, 2016, 11, 11, 11]),
                torch.randn([1, 2016, 21, 21, 21]),
            ],
        )
        assertGeneratedKernelCountEqual(self, 1)

    def test_avg_pool3d_backward4(self):
        def fn(a, b):
            return aten.avg_pool3d_backward(
                a,
                b,
                [13, 13, 13],
                [1, 1, 1],
                [0, 0, 0],
                True,
                False,
                None,
            )

        torch._inductor.metrics.generated_kernel_count = 0
        self.common(
            fn,
            [
                torch.randn([1, 16, 12, 12, 12]),
                torch.randn([1, 16, 24, 24, 24]),
            ],
            check_lowp=False,
        )
        assertGeneratedKernelCountEqual(self, 0)

    @config.patch(search_autotune_cache=False)
    def test_mm_views(self):
        def fn(a, b):
            return torch.mm(a.view(32, 32), b.view(32, 32))

        self.common(
            fn,
            (
                torch.randn([32, 32]).transpose(0, 1),
                torch.randn([1, 32, 32]).transpose(0, 1),
            ),
            check_lowp=False,
        )
        expected_kernel = 0
        # codegen mm kernel from template
        self.assertEqual(
            torch._inductor.metrics.generated_kernel_count, expected_kernel
        )

    @torch._dynamo.config.patch(assume_static_by_default=False)
    def test_dtype_sympy_expr(self):
        @torch._dynamo.optimize_assert("inductor")
        def fn(a):
            y = a[..., :-1, :].contiguous()
            return y

        result = fn(torch.randn([1, 2, 16, 4]).requires_grad_())
        result.sum().backward()

    def test_dropout2(self):
        n = 100000
        weight = torch.ones(
            n, device=self.device, dtype=torch.float32, requires_grad=True
        )
        ones = torch.ones(n, device=self.device, dtype=torch.float32)

        @torch._dynamo.optimize_assert("inductor")
        def run(x, train=True):
            return F.dropout(x * weight, 0.33, train)

        def check(r, g):
            rmean = r.mean().item()
            gmean = g.mean().item()
            rcount = len(r.nonzero())
            gcount = len(g.nonzero())

            # dropped elements should match
            self.assertTrue(same(r.nonzero(), g.nonzero()))
            self.assertEqual(rcount, gcount)

            # dropped should be close to 0.33
            self.assertGreater(rcount, 0.64 * n)
            self.assertGreater(0.68 * n, rcount)

            self.assertAlmostEqual(rmean, gmean)
            self.assertAlmostEqual(rmean, 1.0, places=2)

        r1 = run(ones, train=False)
        r1.sum().backward()
        g1 = weight.grad.clone()
        # eval mode should be all ones
        self.assertTrue(same(r1, torch.ones_like(r1)))
        self.assertTrue(same(g1, torch.ones_like(g1)))

        torch.manual_seed(1234)
        weight.grad.zero_()
        r2, (fw_code, bw_code) = run_fw_bw_and_get_code(lambda: run(ones))
        if is_halide_backend(self.device):
            self.assertEqual(fw_code.count("halide_helpers.rand"), 1)
            self.assertEqual(bw_code.count("halide_helpers.rand"), 0)
        elif self.device == GPU_TYPE:
            self.assertEqual(fw_code.count("tl.rand"), 1)
            self.assertEqual(bw_code.count("tl.rand"), 0)
        g2 = weight.grad.clone()
        check(r2, g2)

        torch.manual_seed(1234)
        weight.grad.zero_()
        r3 = run(ones)
        r3.sum().backward()
        g3 = weight.grad.clone()
        check(r3, g3)

        # second run is same result as first
        self.assertTrue(same(r2, r3))
        self.assertTrue(same(g2, g3))

    @config.patch(search_autotune_cache=False)
    def test_dropout3(self):
        m = torch.nn.Sequential(
            torch.nn.Linear(32, 32, bias=False),
            torch.nn.Dropout(),
            torch.nn.Linear(32, 32, bias=False),
            torch.nn.Dropout(),
        ).to(self.device)

        @torch._dynamo.optimize_assert("inductor")
        def run(x):
            return m(x)

        torch._inductor.metrics.generated_kernel_count = 0

        result, (fw_code, bw_code) = run_fw_bw_and_get_code(
            lambda: run(torch.randn([8, 32], device=self.device))
        )

        if is_halide_backend(self.device):
            self.assertEqual(fw_code.count("halide_helpers.rand"), 2)
            self.assertEqual(bw_code.count("halide_helpers.rand"), 0)
        elif self.device == GPU_TYPE:
            self.assertEqual(fw_code.count("tl.rand"), 2)
            self.assertEqual(bw_code.count("tl.rand"), 0)
        self.assertEqual(torch._inductor.metrics.generated_kernel_count, 4)

    def test_randint_kernel_count(self):
        if self.device != GPU_TYPE:
            raise unittest.SkipTest("Only valid for GPU!")

        @torch._dynamo.optimize_assert("inductor")
        def fn1():
            random_tensor1 = torch.randint(10, [32], device=self.device)
            random_tensor2 = torch.randint(10, [32], device=self.device)
            random_tensor3 = torch.randint(10, [32], device=self.device)
            return random_tensor1, random_tensor2, random_tensor3

        _, source_codes = run_and_get_code(fn1)
        # cpp_wrapper does a 2-pass generation on GPU.
        self.assertEqual(len(source_codes), 1)
        self.assertEqual(source_codes[0].count("async_compile.triton"), 2)

    def test_roll(self):
        def fn(a):
            return (
                aten.roll(a, [-3, 10], [1, 2]),
                aten.roll(a, [5]),
            )

        self.common(
            fn,
            [
                torch.randn([2, 56, 56, 16]),
            ],
        )

    def test_argmax_min_int32(self):
        # https://github.com/pytorch/pytorch/issues/94055
        def fn(a, b):
            c = a.argmax(3)
            return torch.min(b, c)

        a = torch.rand(3, 4, 2, 1).int()
        b = torch.rand(2, 2, 1, 4, 1).int()
        self.common(fn, (a, b))

    def test_argmax_argmin1(self):
        def fn(x):
            return (aten.argmax(x), aten.argmin(x))

        self.common(
            fn,
            [
                torch.randn([8, 256, 256]),
            ],
        )

    def test_argmax_argmin2(self):
        def fn(x):
            return (
                aten.argmax(x, 0),
                aten.argmin(x, 0),
                aten.argmax(x, 1),
                aten.argmin(x, 1),
            )

        self.common(fn, (torch.randn([144, 144]),))

    def test_argmax_argmin_with_duplicates(self):
        def fn(x):
            return (
                aten.argmax(x, 0),
                aten.argmin(x, 0),
                aten.argmax(x, 1),
                aten.argmin(x, 1),
            )

        # Unrolled reduction
        t1 = torch.randint(2, size=(6, 6))
        self.common(fn, (t1,))

        # Persistent reduction
        t1 = torch.randint(8, size=(32, 32))
        self.common(fn, (t1,))

        # Non-persistent reduction
        t1 = torch.randint(8, size=(1028, 1028))
        self.common(fn, (t1,))

    @skip_if_halide  # nan behavior
    def test_argmax_argmin_with_nan(self):
        def fn(x):
            return (
                aten.argmax(x, 0),
                aten.argmin(x, 0),
                aten.argmax(x, 1),
                aten.argmin(x, 1),
            )

        # Unrolled reduction
        t1 = torch.randn((6, 6))
        t1[:, 1] = float("nan")
        t1[:, 3] = float("nan")
        self.common(fn, (t1,))

        # Persistent reduction
        t1 = torch.randn((32, 32))
        t1[:, 4] = float("nan")
        t1[:, 8] = float("nan")
        self.common(fn, (t1,))

        # Non-persistent reduction
        t1 = torch.randn((1028, 1028))
        t1[:, 40] = float("nan")
        t1[:, 100] = float("nan")
        self.common(fn, (t1,))

    def test_conv_backward(self):
        def fn(rank4_inps, rank3_inps, rank5_inps):
            out1 = aten.convolution_backward(
                *rank4_inps,
                [C],
                [1, 1],
                [0, 0],
                [1, 1],
                False,
                [0, 0],
                1,
                [True, True, True],
            )
            out2 = aten.convolution_backward(
                *rank4_inps,
                [C],
                [1, 1],
                [0, 0],
                [1, 1],
                False,
                [0, 0],
                1,
                [True, False, False],
            )
            out3 = aten.convolution_backward(
                *rank3_inps,
                [C],
                [1],
                [0],
                [1],
                False,
                [0],
                1,
                [True, True, True],
            )
            out4 = aten.convolution_backward(
                *rank5_inps,
                [C],
                [1, 1, 1],
                [0, 0, 0],
                [1, 1, 1],
                False,
                [0, 0, 0],
                1,
                [True, True, True],
            )
            return (out1, out2, out3, out4)

        B = 3
        C = 4
        H = 5
        grad_out = torch.randn(B, C, H - 2, H - 2, H - 2)
        inp = torch.randn(B, C, H, H, H)
        weight = torch.randn(C, C, 3, 3, 3)

        def shrink_rank(x, rank):
            res = x
            while res.dim() > rank:
                res = torch.select(res, -1, 0)
            return res.contiguous()

        rank4_inps = [shrink_rank(x, 4) for x in [grad_out, inp, weight]]
        rank3_inps = [shrink_rank(x, 4) for x in [grad_out, inp, weight]]
        rank5_inps = [shrink_rank(x, 5) for x in [grad_out, inp, weight]]

        with torch.backends.cudnn.flags(enabled=True, allow_tf32=False):
            self.common(
                fn,
                [rank4_inps, rank3_inps, rank5_inps],
            )

    def test_argmax_argmin3(self):
        def fn(x):
            return (
                aten.argmax(x, 0),
                aten.argmin(x, 0),
                aten.argmax(x, -1),
                aten.argmin(x, -1),
            )

        self.common(
            fn,
            [torch.randint(0, 5, [64, 64])],
        )

    def test_vdd_clamp(self):
        def fn(x):
            return torch.clamp_min(x, 3)

        self.common(
            fn,
            [
                torch.randn([16], requires_grad=True) * 10,
            ],
        )

    def test_tmp_not_defined_issue1(self):
        def forward(
            primals_3,
            primals_4,
            add_tensor,
            convert_element_type_default,
            div_default,
            reciprocal_default,
        ):
            var_default = torch.ops.aten.var(
                convert_element_type_default, [2], correction=0
            )
            sub_tensor = torch.ops.aten.sub.Tensor(add_tensor, div_default)
            mul_tensor_1 = torch.ops.aten.mul.Tensor(sub_tensor, reciprocal_default)
            mul_tensor_2 = torch.ops.aten.mul.Tensor(mul_tensor_1, primals_3)
            add_tensor_2 = torch.ops.aten.add.Tensor(mul_tensor_2, primals_4)
            convert_element_type_default_1 = add_tensor_2.to(dtype=torch.float32)
            convert_element_type_default_2 = convert_element_type_default_1.to(
                dtype=torch.float32
            )
            var_default_1 = torch.ops.aten.var(
                convert_element_type_default_2, [2], correction=0
            )
            broadcast_in_dim_default_2 = var_default_1.reshape(1, 512, 1)
            sum_default_1 = convert_element_type_default_2.sum(2)
            add_tensor_3 = torch.ops.aten.add.Tensor(broadcast_in_dim_default_2, 1e-05)
            return (var_default, sum_default_1, add_tensor_3)

        inps = [
            (torch.Size([1024]), torch.float32),
            (torch.Size([1024]), torch.float32),
            (torch.Size([1, 512, 1024]), torch.float32),
            (torch.Size([1, 512, 1024]), torch.float32),
            (torch.Size([1, 512, 1]), torch.float32),
            (torch.Size([1, 512, 1]), torch.float32),
        ]
        inps = [torch.randn(shape, dtype=dtype) for (shape, dtype) in inps]
        self.common(forward, inps, atol=1e-05, rtol=2e-05)

    @unittest.skipIf(
        os.environ.get("BUILD_ENVIRONMENT", "").startswith("parallelnative"),
        "TODO: debug this with asan",
    )
    @skip_if_gpu_halide
    @xfailIfS390X
    def test_tmp_not_defined_issue2(self):
        def forward(arg38_1, arg81_1, getitem_17, new_zeros_default_4):
            div_tensor_7 = torch.ops.aten.div.Tensor(getitem_17, arg81_1)
            mul_tensor_24 = torch.ops.aten.mul.Tensor(div_tensor_7, arg38_1)
            sum_default_7 = torch.ops.aten.sum.default(mul_tensor_24)
            return (new_zeros_default_4, sum_default_7)

        dtype = torch.float32
        args = [
            ((1, 88, 40, 40), (140800, 1600, 40, 1), dtype),
            ((), (), dtype),
            ((1, 88, 40, 40), (140800, 1600, 40, 1), dtype),
            ((3,), (1,), dtype),
        ]
        args = [
            rand_strided(shape, stride, dtype).requires_grad_(True).add(1)
            for shape, stride, dtype in args
        ]
        self.common(forward, args, atol=1e-5, rtol=1e-5)

    @requires_gpu()
    @skip_if_halide  # cascading accuracy issues due rsqrt fallback
    def test_tmp_not_defined_issue3(self):
        from torch import device

        def forward(
            self,
            primals_1: "f32[1001, 6]",
            primals_2: "f32[1001]",
            primals_3: "f32[1001, 64]",
            primals_4: "f32[4190]",
            primals_5: "f32[4190]",
            primals_6: "f32[1739, 4190]",
            primals_48: "f32[6144, 4191]",
        ):
            _tensor_constant0: "i64[4190]" = self._tensor_constant0
            lift_fresh_copy: "i64[4190]" = torch.ops.aten.lift_fresh_copy.default(
                _tensor_constant0
            )

            index: "f32[6144, 4190]" = torch.ops.aten.index.Tensor(
                primals_48, [None, lift_fresh_copy]
            )

            _tensor_constant1: "i64[6]" = self._tensor_constant1
            lift_fresh_copy_1: "i64[6]" = torch.ops.aten.lift_fresh_copy.default(
                _tensor_constant1
            )
            index_1: "f32[6144, 6]" = torch.ops.aten.index.Tensor(
                primals_48, [None, lift_fresh_copy_1]
            )
            primals_48 = lift_fresh_copy_1 = None
            permute: "f32[6, 1001]" = torch.ops.aten.permute.default(primals_1, [1, 0])
            addmm: "f32[6144, 1001]" = torch.ops.aten.addmm.default(
                primals_2, index_1, permute
            )
            amax: "f32[6144, 1]" = torch.ops.aten.amax.default(addmm, [-1], True)
            sub: "f32[6144, 1001]" = torch.ops.aten.sub.Tensor(addmm, amax)
            exp: "f32[6144, 1001]" = torch.ops.aten.exp.default(sub)
            sum_1: "f32[6144, 1]" = torch.ops.aten.sum.dim_IntList(exp, [-1], True)
            div: "f32[6144, 1001]" = torch.ops.aten.div.Tensor(exp, sum_1)

            full_default: "i32[6144, 1001]" = torch.ops.aten.full.default(
                [6144, 1001],
                1,
                dtype=torch.int32,
                layout=torch.strided,
                device=device(type=GPU_TYPE, index=0),
                pin_memory=False,
            )

            iota: "i32[1001]" = torch.ops.prims.iota.default(
                1001,
                start=0,
                step=1,
                dtype=torch.int32,
                device=device(type=GPU_TYPE),
                requires_grad=False,
            )

            mul: "i32[6144, 1001]" = torch.ops.aten.mul.Tensor(full_default, iota)
            iota_1: "i32[6144]" = torch.ops.prims.iota.default(
                6144,
                start=0,
                step=1001,
                dtype=torch.int32,
                device=device(type=GPU_TYPE, index=0),
                requires_grad=False,
            )
            view: "i32[6150144]" = torch.ops.aten.reshape.default(mul, [-1])
            view_1: "f32[6150144]" = torch.ops.aten.reshape.default(div, [-1])
            _embedding_bag = torch.ops.aten._embedding_bag.default(
                primals_3, view, iota_1, False, 0, False, view_1
            )
            getitem: "f32[6144, 64]" = _embedding_bag[0]
            getitem_1: "i32[6150144]" = _embedding_bag[1]
            getitem_2: "i32[6144]" = _embedding_bag[2]
            getitem_3: "i32[0]" = _embedding_bag[3]
            unsqueeze: "f32[6144, 1, 64]" = torch.ops.aten.unsqueeze.default(getitem, 1)
            var_mean = torch.ops.aten.var_mean.correction(
                index, [1], correction=0, keepdim=True
            )
            getitem_4: "f32[6144, 1]" = var_mean[0]
            getitem_5: "f32[6144, 1]" = var_mean[1]
            add: "f32[6144, 1]" = torch.ops.aten.add.Tensor(getitem_4, 1e-05)
            rsqrt: "f32[6144, 1]" = torch.ops.aten.rsqrt.default(add)
            sub_1: "f32[6144, 4190]" = torch.ops.aten.sub.Tensor(index, getitem_5)
            mul_1: "f32[6144, 4190]" = torch.ops.aten.mul.Tensor(sub_1, rsqrt)
            mul_2: "f32[6144, 4190]" = torch.ops.aten.mul.Tensor(mul_1, primals_4)
            add_1: "f32[6144, 4190]" = torch.ops.aten.add.Tensor(mul_2, primals_5)
            permute_1: "f32[4190, 1739]" = torch.ops.aten.permute.default(
                primals_6, [1, 0]
            )

            return [
                index,
                index_1,
                addmm,
                amax,
                sum_1,
                iota_1,
                view,
                view_1,
                getitem_1,
                getitem_2,
                getitem_3,
                unsqueeze,
                getitem_5,
                rsqrt,
                add_1,
                permute_1,
            ]

        kwargs = aot_graph_input_parser(forward, device=GPU_TYPE)
        self.common(forward, [], kwargs=kwargs)

    @skip_if_gpu_halide
    @config.patch("halide.scheduler_cpu", "Mullapudi2016")
    def test_misaligned_address_issue1(self):
        def forward(sub_tensor_1, unsqueeze_default):
            gather_default = torch.ops.aten.gather.default(
                sub_tensor_1, 1, unsqueeze_default
            )
            return gather_default

        args = [
            ((1, 1000), (1000, 1), torch.float32),
            ((1, 1), (1, 1), torch.int64),
        ]
        args = [rand_strided(shape, stride, dtype) for shape, stride, dtype in args]
        self.common(forward, args)

    def test_invalid_operand_issue1(self):
        def forward(arg0_1, arg1_1, arg3_1, squeeze, view_1, slice_1):
            slice_scatter = torch.ops.aten.slice_scatter.default(
                slice_1, arg3_1, 1, 1, 9223372036854775807
            )
            slice_scatter_1 = torch.ops.aten.slice_scatter.default(
                arg1_1, slice_scatter, 0, 0, 9223372036854775807
            )
            slice_2 = torch.ops.aten.slice.Tensor(
                slice_scatter_1, 0, 0, 9223372036854775807
            )
            select_scatter = torch.ops.aten.select_scatter.default(
                slice_2, squeeze, 1, 0
            )
            slice_scatter_2 = torch.ops.aten.slice_scatter.default(
                slice_scatter_1, select_scatter, 0, 0, 9223372036854775807
            )
            view = torch.ops.aten.view.default(slice_scatter_2, [-1, 128])
            embedding = torch.ops.aten.embedding.default(arg0_1, view, 1)
            return [embedding, view_1]

        args = [
            ((50005, 768), (768, 1), torch.float32),
            ((8, 128), (128, 1), torch.int64),
            ((8, 127), (127, 1), torch.int64),
            ((8,), (1,), torch.int64),
            ((1024,), (1,), torch.int64),
            ((8, 128), (128, 1), torch.int64),
        ]
        args = [rand_strided(shape, stride, dtype) for shape, stride, dtype in args]
        self.common(forward, args)

    def test_sizehint_issue1(self):
        def forward(x):
            return torch.nn.functional.unfold(
                x, kernel_size=[4, 4], dilation=1, padding=0, stride=[4, 4]
            )

        args = [((2, 24, 56, 56), (75264, 3136, 56, 1), torch.float32, False)]
        args = [
            rand_strided(sh, st, dt).requires_grad_(rg) for (sh, st, dt, rg) in args
        ]
        self.common(forward, args)

    def test_zero_dim_reductions(self):
        for kd in [True, False]:
            inps0 = (torch.zeros(2, 0, device=self.device, dtype=torch.float16), 1, kd)
            failed_ops = [aten.argmin, aten.argmax, aten.max, aten.min]
            for fo in failed_ops:
                with self.assertRaisesRegex(
                    IndexError, "Expected reduction dim 1 to have non-zero size"
                ):
                    mod = make_fx(fo)(*inps0)
                    _ = compile_fx_inner(mod, inps0)

            pass_ops = [
                lambda *x: fn(*x) for fn in [aten.sum, aten.prod, aten.any, aten.all]
            ]
            for po in pass_ops:
                compiled = torch._dynamo.optimize("inductor")(po)
                expected = po(*inps0)
                actual = compiled(*inps0)

            self.assertTrue(torch.allclose(actual, expected, atol=1e-3, rtol=1e-3))

    def test_unfold_zero_dimension_tensor(self):
        def forward(x):
            return torch.unfold_copy(dimension=1, input=x, size=0, step=7)

        x = torch.rand([1, 0], dtype=torch.float32)

        y = forward(x)
        compiled_y = torch.compile(forward, fullgraph=True)(x)

        self.assertEqual(y, compiled_y)

    def test_zero_element_mutation(self):
        class CustomModel(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.layer1 = nn.LeakyReLU(negative_slope=5.2955089, inplace=True)

            def forward(self, inputs):
                return self.layer1(inputs)

        ip_size = [0]
        input_tensor = torch.randn(ip_size)

        mymodel = CustomModel()
        self.common(mymodel, (input_tensor,))

    def test_lerp(self):
        # non-contiguous inputs for lerp
        def fn0(i0, i1):
            x1 = i0.transpose(-2, -3)
            return torch.lerp(i1, x1, 70000)

        # contiguous inputs for lerp
        def fn1(i0, i1):
            return torch.lerp(i1, i0, 70000)

        self.common(fn0, [torch.rand(10, 3, 10), torch.rand(3, 10, 10)])
        self.common(fn1, [torch.rand(3, 10, 10), torch.rand(3, 10, 10)])

    @parametrize(
        "dtype",
        test_dtypes,
    )
    def test_unspec_inputs(self, dtype):
        if self.device == "cpu":
            raise unittest.SkipTest("Testing mixed devices")

        if (
            is_halide_backend(self.device)
            and getattr(self.device, "type", self.device) == "cuda"
        ):
            # https://github.com/halide/Halide/issues/8318
            raise unittest.SkipTest("halide not supported")

        def fn(x, y):
            return x + y, x * y, x / y

        opt = torch._dynamo.optimize("inductor")(fn)
        inputs = (
            rand_strided((2, 3), (3, 1), dtype=torch.float32, device=GPU_TYPE),
            rand_strided((), (), dtype=dtype, device="cpu"),
        )
        self.assertTrue(same(opt(*inputs), fn(*inputs)))
        inputs = (inputs[1], inputs[0])
        self.assertTrue(same(opt(*inputs), fn(*inputs)))

    @dynamo_config.patch(automatic_dynamic_shapes=True)
    def test_list_clearing(self):
        if self.device == "cpu":
            contexts = [contextlib.nullcontext]
        else:
            contexts = [
                contextlib.nullcontext,
                lambda: config.patch({"triton.cudagraphs": True}),
            ]

        for context in contexts:
            with context():
                inps = [
                    torch.rand([5, 5]).to(self.device),
                    torch.rand([5, 5]).to(self.device),
                ]
                inp_refs = [weakref.ref(inp) for inp in inps]

                def fn(x, y):
                    a = x + y
                    return (a @ a,)

                fn_fx = make_fx(fn)(inps[0], inps[1])
                fn_compiled = compile_fx_inner(fn_fx, inps)

                test_self = self
                matmul_seen = False

                class TestRefMode(TorchDispatchMode):
                    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                        kwargs = kwargs if kwargs else {}

                        nonlocal inps
                        nonlocal inp_refs
                        nonlocal test_self
                        nonlocal matmul_seen

                        # by matmul, inputs should be deallocated
                        # TODO: should not be necessary, ref-cycle ?
                        gc.collect()
                        if func is aten.mm.out:
                            matmul_seen = True
                            test_self.assertEqual(len(inps), 0)
                            test_self.assertIsNone(inp_refs[0]())
                            test_self.assertIsNone(inp_refs[1]())

                        return func(*args, **kwargs)

                with TestRefMode():
                    fn_compiled(inps)

                # do an extra run to make sure we are deallocating on warmup and record
                if self.device == GPU_TYPE:
                    inps.extend(
                        [
                            torch.rand([5, 5]).to(self.device),
                            torch.rand([5, 5]).to(self.device),
                        ]
                    )
                    inp_refs.extend([weakref.ref(inp) for inp in inps])
                    matmul_seen = False

                    with TestRefMode():
                        fn_compiled(inps)

                # for some reason, TorchDispatch doesnt capture the
                # cuda mm call (even without cudagraphs)
                if self.device == "cpu":
                    self.assertTrue(matmul_seen)
                else:
                    self.assertEqual(len(inps), 0)

    def test_dtype_mismatch_issue(self):
        def fn(x):
            attn = torch.nn.functional.pad(x, [0, 1])
            return attn.softmax(dim=-1)

        x = torch.rand(128, 32, 63)
        self.common(fn, (x,))

    def test_vectorized_ops_masked(self):
        def fn(x):
            index = torch.arange(64, device=x.device)
            mask = index.view(1, 1, 64) < 63
            indices = [None, None, index]
            return torch.ops.aten._unsafe_masked_index(x, mask, indices, 7)

        x = torch.rand(128, 32, 63)
        self.common(fn, (x,))

    def test_vectorized_ops_masked_var_novec(self):
        def fn(x):
            index = torch.arange(10, device=x.device)
            mask = (index < 5).view(1, 1, 1, 10)
            indices = [None, None, None, index]
            return torch.ops.aten._unsafe_masked_index(x, mask, indices, 7)

        x = torch.rand(1, 1, 8, 8)
        self.common(fn, (x,))

    def test_diagonal_copy(self):
        def fn(x):
            return torch.diagonal_copy(x)

        for x in (torch.randn(2, 3), torch.randn(2, 2), torch.randn(3, 2)):
            self.common(fn, (x,))

    @skip_if_cpp_wrapper(
        "cannot currently handle fallback ops with return types containing list[Tensor]"
    )
    def test_kwargs(self):
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("histogramdd only supports cpu")

        def fn(x, y):
            return torch.histogramdd(
                x,
                bins=[3, 3],
                weight=y,
            )

        self.common(
            fn,
            [torch.randn((4, 2)), torch.randn(4)],
        )

    # Shape padding causes the inputs to all get specialized, so the codegen
    # test fails
    @expectedFailureCodegenDynamic
    @requires_gpu()
    @torch._inductor.config.patch("shape_padding", True)
    def test_shape_padding(self):
        dtypes = [
            torch.float16,
            torch.float32,
        ]

        b, m, n, k = 7, 11, 13, 15

        def gen(*shape, dtype=torch.float32):
            return torch.randn(*shape, device=GPU_TYPE, dtype=dtype) / k + 1.0

        for dtype in dtypes:
            x = gen(m, k, dtype=dtype)
            y = gen(k, n, dtype=dtype)
            z = gen(n, dtype=dtype)
            self.common(lambda x, y: torch.mm(x, y), (x, y))
            self.common(lambda x, y: torch.matmul(x, y), (x, y))
            self.common(lambda x, y, z: torch.addmm(z, x, y), (x, y, z))

        for dtype in dtypes:
            x = gen(b, m, k, dtype=dtype)
            y = gen(b, k, n, dtype=dtype)
            z = gen(n, dtype=dtype)
            self.common(lambda x, y: torch.bmm(x, y), (x, y))
            self.common(lambda x, y: torch.matmul(x, y), (x, y))
            self.common(lambda x, y, z: torch.baddbmm(z, x, y), (x, y, z))

    @requires_gpu()
    @torch._inductor.config.patch("layout_optimization", True)
    @tf32_on_and_off(0.005)
    def test_inductor_layout_optimization_input_mutations(self):
        # channel dim must be > 64 for inductor to do layout optimization and use NHWC
        mod = nn.Conv2d(3, 128, 1, stride=1, bias=False).to(GPU_TYPE)

        def f(x):
            x.mul_(2)
            out = mod(x)
            return out

        f_compiled = torch.compile(f)
        x_ref = torch.rand(2, 3, 128, 128, device=GPU_TYPE)
        x_test = x_ref.detach().clone()
        with torch.no_grad():
            out_ref = f(x_ref)
            out_test = f_compiled(x_test)
            self.assertEqual(out_ref, out_test)
            self.assertEqual(out_ref.shape, out_test.shape)
            # Importantly, since inductor._config.keep_output_stride is True,
            # the outputs should have matching strides here.
            self.assertEqual(out_ref.stride(), out_test.stride())
            self.assertEqual(x_ref, x_test)

    @requires_gpu()
    def test_stride_preservation_with_stride_modifying_fx_pass(self):
        def f(x):
            return x + 1

        def custom_pass(g: torch.fx.Graph) -> None:
            """
            Applies `lamda x: x.t().contiguous().t()` to the output.
            """
            output_node = g.find_nodes(op="output")[0]
            assert len(output_node.args) == 1
            output = output_node.args[0][0]

            with g.inserting_before(output_node):
                output = g.call_function(
                    torch.ops.aten.permute.default, args=(output, [1, 0])
                )
                output = g.call_function(
                    torch.ops.aten.clone.default,
                    args=(output,),
                    kwargs={"memory_format": torch.contiguous_format},
                )
                output = g.call_function(
                    torch.ops.aten.permute.default, args=(output, [1, 0])
                )
            output_node.args = ((output,),)
            return g

        with config.patch(
            post_grad_custom_post_pass=custom_pass,
        ):
            f_compiled = torch.compile(f)

            x = torch.rand(4, 4, device=GPU_TYPE)
            y = f(x)
            y_compiled = f_compiled(x)

            self.assertEqual(y, y_compiled)
            self.assertEqual(y.stride(), y_compiled.stride())

    def test_int_input_dynamic_shapes(self):
        @torch.compile(dynamic=True)
        def fn(x, i):
            y = x * i
            return y

        # Constant must not get matched as constant
        self.common(fn, [torch.randn(3, 1, 1, 1, 1), 9132])

    def test_sqrt_dynamic_shapes(self):
        # TIMM convit_base model: https://github.com/pytorch/pytorch/issues/97877.
        # TODO: support cuda path.
        if self.device == GPU_TYPE:
            raise unittest.SkipTest("sqrt dynamic shapes only supports cpu")

        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                B, N, C = x.shape
                return self.get_rel_indices(N)

            def get_rel_indices(self, num_patches: int) -> torch.Tensor:
                img_size = int(num_patches**0.5)
                ind = torch.arange(img_size)
                return ind

        self.common(
            Model(),
            [
                torch.randn(8, 4, 4),
            ],
        )

    def test_rsqrt_dynamic_shapes(self):
        # From HF hf_BigBird model.
        @torch.compile(dynamic=True)
        def fn(a, b):
            r = 1 / math.sqrt(a.size(1))
            return torch.bmm(a, b) / r

        self.common(
            fn,
            [
                torch.randn(2, 4, 4),
                torch.randn(2, 4, 4),
            ],
        )

    @xfail_if_triton_cpu
    def test_index_dynamic_shapes(self):
        # Repro from vision_maskrcnn
        def fn(arg0_1):
            unsqueeze = arg0_1.unsqueeze(0)
            sym_size = arg0_1.size(1)
            ceil = math.ceil(sym_size * 1.8735363483428955)
            iota = torch.ops.prims.iota.default(
                ceil,
                start=0,
                step=1,
                dtype=torch.int64,
                device=arg0_1.device,
                requires_grad=False,
            )
            convert_element_type_1 = iota.to(torch.float32)
            sym_size_1 = arg0_1.size(2)
            floor_1 = math.floor(sym_size_1 * 1.8735363483428955)
            ceil_1 = math.ceil(floor_1)
            iota_1 = torch.ops.prims.iota.default(
                ceil_1,
                start=0,
                step=1,
                dtype=torch.int64,
                device=arg0_1.device,
                requires_grad=False,
            )
            convert_element_type_3 = iota_1.to(torch.float32)
            sub_2 = (convert_element_type_1 + 0.5) * (sym_size / ceil) - 0.5
            clamp_min = sub_2.clamp_min(0.0)
            sub_3 = (convert_element_type_3 + 0.5) * (sym_size_1 / floor_1) - 0.5
            clamp_min_1 = sub_3.clamp_min(0.0)
            convert_element_type_4 = clamp_min.to(torch.int64)
            sub_4 = sym_size - 1
            clamp_max = clamp_min.ceil().clamp_max(sub_4)
            convert_element_type_5 = clamp_max.to(torch.int64)
            convert_element_type_6 = clamp_min_1.to(torch.int64)
            unsqueeze_2 = convert_element_type_4.unsqueeze(1)
            index = torch.ops.aten.index.Tensor(
                unsqueeze, [None, None, unsqueeze_2, convert_element_type_6]
            )
            index_1 = torch.ops.aten.index.Tensor(
                unsqueeze,
                [
                    None,
                    None,
                    convert_element_type_5.unsqueeze(1),
                    convert_element_type_6,
                ],
            )
            sub_6 = clamp_min.unsqueeze(1) - unsqueeze_2
            mul_10 = (index * (1.0 - sub_6) + index_1 * (sub_6)) * (
                1.0 - (clamp_min_1 - convert_element_type_6)
            )
            select = torch.ops.aten.select.int(mul_10, 0, 0)
            return (select,)

        x = torch.randn(15, 20, 3)
        self.common(
            fn,
            [x],
        )

    def test_setitem_with_int_parameter(self):
        x = torch.zeros(7, device=self.device)

        def fn(n, a):
            a[n] = -1
            return a

        cnts = CompileCounterWithBackend("inductor")
        opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn)

        for n in range(2, x.shape[0]):
            opt_fn(n, x)
            self.assertEqual(x[n], -1)

        # If assume_static_by_default is set, the calls above will trigger
        # 3 function compilation:
        #   1. assuming 'n' is static (equals 2)
        #   2. making 'n' dynamic, but with the guard 'end <= x.shape[0]'
        #      (from: torch._inductor.ir.SliceView.create)
        frame_count = 2 if torch._dynamo.config.assume_static_by_default else 1
        self.assertEqual(cnts.frame_count, frame_count)

        # Negative index triggers new compilation.
        opt_fn(-x.shape[0], x)
        self.assertEqual(x[0], -1)
        self.assertEqual(cnts.frame_count, frame_count + 1)

    @config.patch({"triton.autotune_at_compile_time": False})
    @config.patch(profiler_mark_wrapper_call=True)
    def test_profiler_mark_wrapper_call(self):
        from torch.profiler import profile

        @torch._dynamo.optimize("inductor", nopython=True)
        def fn(a, b):
            return a + b

        a = torch.rand((100,), device=self.device)
        b = torch.rand((100,), device=self.device)
        with profile() as prof:
            fn(a, b)
        assert any(
            "inductor_wrapper_call" in e.name for e in prof.profiler.function_events
        )

    def test_insignificant_strides(self):
        def f(x):
            tmp = x + 1
            return tmp.view(-1, 1, 2)

        x = torch.arange(8, device=self.device, dtype=torch.float32)
        out = f(x)
        compiled_out = torch.compile(f)(x)

        self.assertEqual(out.stride(), compiled_out.stride())
        self.assertEqual(out, compiled_out)

    @unittest.skipIf(IS_X86 and not HAS_AVX2, "Requires AVX2")
    def test_pixel_shuffle_channels_last(self):
        def fn(x):
            x = torch.nn.functional.pixel_shuffle(x, 2)
            x = torch.nn.functional.relu(x)
            return x

        self.common(
            fn,
            (torch.randn(1, 16, 64, 72).to(memory_format=torch.channels_last),),
        )

    def test_where_broadcast(self):
        # https://github.com/pytorch/pytorch/issues/93374
        def fn(x, p1, p0):
            o = torch.where(x, p1, p0)
            return o

        # https://github.com/pytorch/pytorch/issues/94725
        class Repro(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self._tensor_constant0 = nn.Buffer(torch.randn([], dtype=torch.float32))

            def forward(self, arg0_1, arg1_1):
                convert_element_type = torch.ops.prims.convert_element_type.default(
                    arg1_1, torch.bool
                )
                bitwise_not = torch.ops.aten.bitwise_not.default(convert_element_type)
                _tensor_constant0 = self._tensor_constant0
                lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(
                    _tensor_constant0
                )
                where = torch.ops.aten.where.self(bitwise_not, lift_fresh_copy, arg0_1)
                return (where, bitwise_not)

        self.common(
            fn,
            (torch.tensor([[True]]), torch.rand(13, 7, 3), torch.rand(1, 1)),
        )

        args = [
            torch.randn(1, 4, 64, 64),
            torch.zeros(1, 1, 64, 64, dtype=torch.uint8),
        ]
        args[1][:, :, :32, :32] = 1
        eager_args = [x.clone() for x in args]
        eager_mod = Repro()
        mod = make_fx(eager_mod, tracing_mode="real")(*args)
        compiled = compile_fx_inner(mod, args)
        inductor_out = compiled(args)
        eager_out = eager_mod(*eager_args)
        self.assertEqual(inductor_out, eager_out)

    @skipIfRocm
    def test_require_stride_expanded(self):
        def forward(arg6, arg7, arg16):
            convolution = torch.ops.aten.convolution(
                arg16.unsqueeze(0), arg7, arg6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1
            )
            return (convolution,)

        self.common(
            forward,
            (
                None,
                rand_strided(
                    (64, 3, 11, 11),
                    (363, 121, 11, 1),
                    torch.float32,
                    device=self.device,
                ).to(memory_format=torch.channels_last),
                rand_strided(
                    (1, 3, 224, 224),
                    (150528, 50176, 224, 1),
                    torch.float32,
                    device=self.device,
                )
                .to(memory_format=torch.channels_last)
                .squeeze(0),
            ),
            atol=1e-3,
            rtol=0.001,
        )

        # expanded dim should not cause copy in require_stride_order
        assertGeneratedKernelCountEqual(self, 0)

    @requires_gpu()
    @parametrize("prefer_nd_tiling", (False, True))
    @parametrize("use_block_ptr", (False, True))
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_FLASH_ATTENTION,
        "Does not support SDPA or pre-SM80 hardware",
    )
    def test_sdpa(self, use_block_ptr: bool, prefer_nd_tiling: bool):
        def foo(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
            view = torch.ops.aten.view.default(arg3_1, [23760, 128])
            arg3_1 = None
            mm = torch.ops.aten.mm.default(view, arg4_1)
            view = arg4_1 = None
            view_1 = torch.ops.aten.view.default(mm, [3, 99, 80, 8])
            mm = None
            view_2 = torch.ops.aten.view.default(view_1, [3, 99, 80, 8])
            view_1 = None
            permute = torch.ops.aten.permute.default(view_2, [0, 3, 1, 2])
            view_2 = None
            view_3 = torch.ops.aten.view.default(permute, [3, 8, 99, 80])
            permute = None

            clone = torch.ops.aten.clone.default(
                view_3, memory_format=torch.contiguous_format
            )
            view_3 = None

            expand = torch.ops.aten.expand.default(clone, [3, 8, 99, 80])
            clone = None
            _scaled_dot_product_efficient_attention = (
                torch.ops.aten._scaled_dot_product_efficient_attention.default(
                    arg0_1, arg1_1, arg2_1, expand, False
                )
            )
            arg0_1 = arg1_1 = arg2_1 = expand = None
            getitem = _scaled_dot_product_efficient_attention[0]
            _scaled_dot_product_efficient_attention = None
            return (getitem,)

        if self.device == "cpu":
            raise unittest.SkipTest(f"requires {GPU_TYPE}")

        DEVICE = torch.device(f"{GPU_TYPE}:0")
        DTYPE = torch.float16
        B = 3
        H = 8
        Q = 99
        K = 80
        D = 32
        C_bias = 128

        # inputs
        query = torch.randn((B, H, Q, D), device=DEVICE, dtype=DTYPE)
        key = torch.randn((B, H, K, D), device=DEVICE, dtype=DTYPE)
        value = torch.randn((B, H, K, D), device=DEVICE, dtype=DTYPE)
        bias = torch.randn((B, Q, K, C_bias), device=DEVICE, dtype=DTYPE)
        weights = torch.randn((C_bias, H), device=DEVICE, dtype=DTYPE)
        inps = (query, key, value, bias, weights)

        with config.patch(
            {
                "triton.prefer_nd_tiling": prefer_nd_tiling,
                "triton.use_block_ptr": use_block_ptr,
            }
        ):
            # Check accuracy
            self.common(
                foo,
                inps,
                atol=0.02,
                rtol=1e4,
            )

            # Check code for block pointers
            foo_opt = torch._dynamo.optimize("inductor")(foo)
            code = run_and_get_triton_code(foo_opt, *inps)
            have_block_ptr = code.count("tl.make_block_ptr") > 0
            if not is_halide_backend(self.device):
                self.assertEqual(have_block_ptr, use_block_ptr)

    @requires_gpu()
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
        "Does not support mem_eff_attention",
    )
    def test_sdpa_unaligned_mask(self):
        def foo(
            arg0_1: "f32[8, 8, 16, 16]",
            arg1_1: "f32[8, 8, 15, 16]",
            arg2_1: "f32[8, 8, 15, 16]",
            arg3_1: "f32[1, 1, 16, 15]",
        ):
            constant_pad_nd: "f32[1, 1, 16, 16]" = (
                torch.ops.aten.constant_pad_nd.default(arg3_1, [0, 1], 0.0)
            )
            arg3_1 = None
            slice_1: "f32[1, 1, 16, 15]" = torch.ops.aten.slice.Tensor(
                constant_pad_nd, -1, 0, 15
            )
            constant_pad_nd = None
            expand: "f32[8, 8, 16, 15]" = torch.ops.aten.expand.default(
                slice_1, [8, 8, 16, 15]
            )
            slice_1 = None
            _scaled_dot_product_efficient_attention = (
                torch.ops.aten._scaled_dot_product_efficient_attention.default(
                    arg0_1, arg1_1, arg2_1, expand, False
                )
            )
            arg0_1 = arg1_1 = arg2_1 = expand = None
            getitem: "f32[8, 8, 16, 16]" = _scaled_dot_product_efficient_attention[0]
            _scaled_dot_product_efficient_attention = None
            return (getitem,)

        query = torch.rand(8, 8, 16, 16, device=GPU_TYPE)
        key = torch.rand(8, 8, 15, 16, device=GPU_TYPE)
        value = torch.rand(8, 8, 15, 16, device=GPU_TYPE)
        bias = torch.rand(1, 1, 16, 15, device=GPU_TYPE)
        self.common(
            foo,
            (query, key, value, bias),
            atol=0.02,
            rtol=1e4,
        )

    @requires_gpu()
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
        "Does not support mem_eff_attention",
    )
    @config.patch(freezing=True)
    def test_sdpa_unaligned_mask_freezing(self):
        class Mod(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.arg3_1 = torch.rand(1, 1, 16, 15, device=GPU_TYPE)

            def forward(
                self,
                arg0_1: "f32[8, 8, 16, 16]",
                arg1_1: "f32[8, 8, 15, 16]",
                arg2_1: "f32[8, 8, 15, 16]",
            ):
                arg3_1 = self.arg3_1
                constant_pad_nd: "f32[1, 1, 16, 16]" = (
                    torch.ops.aten.constant_pad_nd.default(arg3_1, [0, 1], 0.0)
                )
                arg3_1 = None
                slice_1: "f32[1, 1, 16, 15]" = torch.ops.aten.slice.Tensor(
                    constant_pad_nd, -1, 0, 15
                )
                constant_pad_nd = None
                expand: "f32[8, 8, 16, 15]" = torch.ops.aten.expand.default(
                    slice_1, [8, 8, 16, 15]
                )
                slice_1 = None
                _scaled_dot_product_efficient_attention = (
                    torch.ops.aten._scaled_dot_product_efficient_attention.default(
                        arg0_1, arg1_1, arg2_1, expand, False
                    )
                )
                arg0_1 = arg1_1 = arg2_1 = expand = None
                getitem: "f32[8, 8, 16, 16]" = _scaled_dot_product_efficient_attention[
                    0
                ]
                _scaled_dot_product_efficient_attention = None
                return (getitem,)

        query = torch.rand(8, 8, 16, 16, device=GPU_TYPE)
        key = torch.rand(8, 8, 15, 16, device=GPU_TYPE)
        value = torch.rand(8, 8, 15, 16, device=GPU_TYPE)

        mod = Mod()
        out_eager = mod(query, key, value)

        with torch.no_grad():
            out_compiled = torch.compile(mod)(query, key, value)
            self.assertEqual(out_eager, out_compiled, atol=0.02, rtol=1e4)

    def test_where_with_logical_op(self):
        def fn_and(x, y):
            return torch.where(torch.logical_and(x, y), 1.0, 0.0)

        def fn_or(x, y):
            return torch.where(torch.logical_or(x, y), 1.0, 0.0)

        self.common(
            fn_and,
            (torch.randn(32), torch.randn(32)),
        )
        self.common(
            fn_or,
            (torch.randn(32), torch.randn(32)),
        )

    @skipIfRocm
    def test_conv_with_as_strided(self):
        class Model(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.kv = torch.nn.Conv2d(
                    256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False
                )

            def forward(self, x):
                convolution = self.kv(x)
                constant_pad_nd = torch.ops.aten.constant_pad_nd.default(
                    convolution, [2, 2, 2, 2], 0.0
                )
                # as_strided inputs are depend on input's size and stide.
                as_strided = torch.ops.aten.as_strided.default(
                    constant_pad_nd, [8, 384, 2, 20, 12], [153600, 400, 160, 1, 20]
                )
                as_strided_1 = torch.ops.aten.as_strided.default(
                    as_strided, [8, 384, 2, 2, 12, 12], [153600, 400, 160, 8, 20, 1]
                )
                clone = torch.ops.aten.clone.default(
                    as_strided_1, memory_format=torch.contiguous_format
                )
                return clone

        self.common(
            Model(),
            (torch.randn(8, 256, 16, 16),),
            check_lowp=not is_halide_backend(self.device),
        )

    def test_inplace_where_pointwise(self):
        # https://github.com/pytorch/pytorch/issues/96446
        def fn(a, b):
            a[0] = 2
            return a * b

        self.common(fn, (torch.rand(1), torch.rand(2)))

    @xfail_if_triton_cpu
    def test_view_on_aliased(self):
        # https://github.com/pytorch/pytorch/issues/96728
        def fn1(a, b):
            a = a.max(0).values
            c = torch.cat((a, b))
            c = c.round()
            b >= a[0]  # noqa: B015
            return c

        some_const = torch.tensor(6324)

        def fn2():
            a = torch.tensor([[0.6324]])
            ret = torch.cat((a, a), dim=0)
            some_const >= a[0]  # noqa: B015
            return ret

        self.common(fn1, (torch.tensor([[4.0]]), torch.tensor([5.0])))
        self.common(fn2, ())

    def test_argmax_to_float(self):
        # https://github.com/pytorch/pytorch/issues/97127
        def fn():
            a = torch.zeros([2, 2])
            b = a.argmax(0)
            return b.float().mean()

        self.common(fn, ())

    def test_const_int32_to_float(self):
        # https://github.com/pytorch/pytorch/issues/97124
        def fn():
            a = torch.zeros([1, 2], dtype=torch.int32)
            a = a + a
            b = a.to(dtype=torch.float32)
            return b * 0.8

        self.common(fn, ())

    def test_getitem(self):
        out_features = ["p3", "p4", "p5", "p6", "p7"]
        in_feature = "p5"

        def fn(a):
            return a[out_features.index(in_feature)]

        x = [
            torch.rand([1, 256, 100, 152], device=self.device),
            torch.rand([1, 256, 50, 76], device=self.device),
            torch.rand([1, 256, 25, 38], device=self.device),
        ]
        opt_fn = torch._dynamo.optimize("inductor")(fn)
        same(fn(x), opt_fn(x))

    def test_pad_view(self):
        def fn(a):
            y = torch.nn.functional.pad(a, (0, 0, 0, 1))
            y = y.view(*y.size()[:-2], y.size(-1), y.size(-2))
            return y

        x = torch.rand(48, 3, 512, 512)
        self.common(fn, (x,))

    def test_pad_cast(self):
        def fn(x):
            return torch.nn.functional.pad(x.to(torch.float32), (0, 3, 0, 0))

        for dtype in [torch.int32, torch.int64]:
            self.common(fn, (torch.ones(1, 1, 13, dtype=dtype),))

    @unittest.skipIf(not HAS_CPU, "requires C++ compiler")
    @xfail_if_triton_cpu  # bf16
    @skip_if_halide  # bf16
    def test_data_type_propogation(self):
        from torch._dynamo.utils import detect_fake_mode
        from torch._inductor.codegen.common import boolean_ops
        from torch._inductor.compile_fx import shape_env_from_inputs
        from torch._inductor.debug import DebugContext
        from torch._inductor.decomposition import decompositions
        from torch._inductor.graph import GraphLowering
        from torch._inductor.virtualized import V
        from torch.fx.passes.fake_tensor_prop import FakeTensorProp

        def get_data_type(node: torch.fx.Node):
            if OptimizationContext.key in node.meta:
                return node.meta[OptimizationContext.key].dtype
            else:
                return None

        def func(arg0_1):
            max_pool2d_with_indices = torch.ops.aten.max_pool2d_with_indices.default(
                arg0_1, [3, 3], [2, 2], [1, 1]
            )
            arg0_1 = None
            getitem = max_pool2d_with_indices[0]
            max_pool2d_with_indices = None
            return (getitem,)

        example_inputs = [
            torch.randn(10, 32, 20, 20, dtype=torch.bfloat16).to(
                memory_format=torch.channels_last
            )
        ]

        gm = make_fx(func, decomposition_table=decompositions, tracing_mode="fake")(
            *example_inputs
        )

        shape_env = shape_env_from_inputs(example_inputs)

        fake_mode = detect_fake_mode(example_inputs)
        if not fake_mode:
            fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
            FakeTensorProp(gm, mode=fake_mode).propagate(*example_inputs)
        else:
            FakeTensorProp(gm, mode=fake_mode).propagate_dont_convert_inputs(
                *example_inputs
            )
        with V.set_fake_mode(fake_mode):
            graph = GraphLowering(
                gm,
                shape_env=shape_env,
            )
            with V.set_graph_handler(graph), V.set_debug_handler(DebugContext()):
                graph.run(*example_inputs)
                graph.compile_to_module()
                scheduler_node = graph.scheduler.nodes[0]
                DataTypePropagation.propagate_scheduler_node(scheduler_node)
                root_graph = scheduler_node._body.root_block.graph
                for node in root_graph.nodes:
                    if node.op == "placeholder":
                        self.assertEqual(get_data_type(node), None)
                    elif node.target in boolean_ops():
                        self.assertEqual(get_data_type(node), torch.bool)
                    elif node.target in (
                        "constant",
                        "to_dtype",
                        "index_expr",
                    ):
                        self.assertEqual(get_data_type(node), node.args[-1])
                    elif node.target in (
                        "get_index",
                        "index_expr",
                    ):
                        self.assertEqual(get_data_type(node), torch.int64)
                    elif node.target in (
                        "load",
                        "store",
                    ):
                        self.assertEqual(
                            get_data_type(node), V.graph.get_dtype(node.args[1])
                        )
                    elif node.target == "reduction":
                        _, _, dtype, _, _, _, _ = node.args
                        self.assertEqual(get_data_type(node), dtype)
                    elif node.target.startswith("masked_subblock"):
                        """
                        masked_subblocks:
                        opcode       name       target     args                        kwargs
                        -----------  ---------  ---------  --------------------------  --------
                        placeholder  ops        ops        ()                          {}
                        call_module  get_index  get_index  ('index2',)                 {}
                        call_method  load       load       (ops, 'arg0_1', get_index)  {}
                        call_method  to_dtype   to_dtype   (ops, load, torch.float32)  {}
                        output       output     output     (to_dtype,)                 {}
                        """
                        self.assertEqual(get_data_type(node), torch.float)
                    elif node.target == "and_":
                        """
                        and_'s input is boolean_ops:
                        -----------  ---------  ---------  --------------------------  --------
                        call_method  and__22           and_              (ops, ge_15, lt_15)
                        -----------  ---------  ---------  --------------------------  --------
                        """
                        self.assertEqual(get_data_type(node), torch.bool)
                    elif node.target == "maximum":
                        """
                        maximum's input is maximum or masked_subblock:
                        -----------  ---------  ---------  --------------------------  --------
                        call_method  maximum_6         maximum           (ops, masked_subblock8, maximum_5)
                        -----------  ---------  ---------  --------------------------  --------
                        """
                        self.assertEqual(get_data_type(node), torch.float)
                    elif node.target == "output":
                        self.assertEqual(get_data_type(node), torch.bfloat16)

    # Calling div only torch.SymInt arguments is not yet supported.
    # To support this behavior, we need to allow const-propping tensors that store symint data.
    # For now, dynamo will explicitly graph break when it encounters user code with this behavior.
    @xfailIfS390X
    @expectedFailureCodegenDynamic
    @skip_if_gpu_halide  # accuracy error
    def test_AllenaiLongformerBase_repro(self):
        def fn(query, scores, window_overlap):
            batch_size, seq_len, num_heads, _ = query.size()
            chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
            diagonal_attention_scores = scores.new_zeros(
                (
                    batch_size * num_heads,
                    chunks_count + 1,
                    window_overlap,
                    window_overlap * 2 + 1,
                )
            )
            diagonal_attention_scores[:, :-1, :, window_overlap:] = scores[
                :, :, :window_overlap, : window_overlap + 1
            ]
            input_tensor = diagonal_attention_scores.view(
                batch_size, num_heads, seq_len, 2 * window_overlap + 1
            ).transpose(2, 1)
            beginning_input = input_tensor[:, :window_overlap, :, : window_overlap + 1]
            input_tensor[:, :window_overlap, :, : window_overlap + 1] = torch.full_like(
                beginning_input, -float("inf")
            )
            return input_tensor

        args = [
            ((4, 1024, 12, 64), (768, 3072, 64, 1)),
            ((48, 3, 512, 513), (787968, 262656, 513, 1)),
        ]
        args = [rand_strided(sh, st) for (sh, st) in args]
        args.append(256)

        if is_cpp_backend(self.device):
            opt_fn = torch._dynamo.optimize("inductor")(fn)
            _, code = run_and_get_cpp_code(opt_fn, *args)
            num = (
                2
                if cpu_vec_isa.valid_vec_isa_list()
                and os.getenv("ATEN_CPU_CAPABILITY") != "default"
                else 1
            )
            FileCheck().check_count(
                "static_cast<int64_t>(256)",
                num,
                exactly=True,
            ).run(code)

        self.common(fn, args)

    def test_cumsum_pattern_matcher_issue(self):
        def fn(input_ids) -> torch.Tensor:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size, seq_length = input_shape
            past_key_values_length = 0
            mask_seq_length = past_key_values_length + seq_length
            attention_mask = torch.ones(
                batch_size, mask_seq_length, device=input_ids.device
            )
            attention_mask = attention_mask.long()
            return torch.cumsum(attention_mask, dim=1)

        x = torch.randn(2, 2)
        self.common(fn, (x,), atol=0, rtol=0)

    @staticmethod
    def _check_resize_common(
        self, fn, x, size_or_y, memory_format, inplace, deterministic
    ):
        x = x.to(self.device)
        x_ref_arg = x.clone()
        x_opt_arg = x.clone()
        x_numel = x.numel()
        torch._dynamo.reset_code_caches()
        opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn)
        correct = fn(x_ref_arg, size_or_y, memory_format)
        actual = opt_fn(x_opt_arg, size_or_y, memory_format)

        def get_numel(size_or_y):
            if isinstance(size_or_y, torch.Tensor):
                return size_or_y.numel()
            else:
                # assume shape
                return functools.reduce(lambda x, y: x * y, size_or_y, 1)

        if deterministic:
            nele_check = correct.numel()
        else:
            nele_check = min(x_numel, get_numel(size_or_y))

        correct_values = correct.as_strided((nele_check,), (1,))
        actual_values = actual.as_strided((nele_check,), (1,))
        self.assertTrue(same(correct_values, actual_values, equal_nan=deterministic))
        correct_strides = correct.stride()
        actual_strides = actual.stride()
        self.assertEqual(correct_strides, actual_strides)

    @staticmethod
    def _cases_resize_common():
        sizes = [
            ((2,), (1, 3, 2, 3)),
            ((100,), (1, 3, 2, 3)),
            ((1, 3, 2, 3), (1, 3, 2, 3)),
            ((2,), (1, 3, 2, 3, 1)),
            ((100,), (1, 3, 2, 3, 1)),
            ((1, 3, 2, 3, 1), (1, 3, 2, 3, 1)),
            ((2, 0, 1), (2, 2)),
        ]
        for x_size, y_size in sizes:
            memory_formats = [torch.contiguous_format]
            if len(y_size) == 4:
                memory_formats.append(torch.channels_last)
            if len(y_size) == 5:
                memory_formats.append(torch.channels_last_3d)
            for memory_format in memory_formats:
                x = torch.randn(*x_size)
                yield x, y_size, memory_format
                # check some non-contiguous tensors
                if x.numel() == 100:
                    x_strided = x[::2].reshape(25, 2).transpose(0, 1)
                    yield x_strided, y_size, memory_format

    def test_resize(self):
        def fn(x, size, memory_format):
            # NOTE: Tensor.resize() =/= aten::resize()
            return torch.ops.aten.resize(x, size, memory_format=memory_format)

        for deterministic in [True, False]:
            with DeterministicGuard(
                deterministic, fill_uninitialized_memory=deterministic
            ):
                for x, y_size, memory_format in CommonTemplate._cases_resize_common():
                    CommonTemplate._check_resize_common(
                        self,
                        fn,
                        x,
                        y_size,
                        memory_format,
                        inplace=False,
                        deterministic=deterministic,
                    )

    @staticmethod
    def _cases_resize_as_common():
        for x, y_size, memory_format in CommonTemplate._cases_resize_common():
            # each sizes /memory_format combintation tested in 2 ways:
            # 1. y is contiguous fn gets memory_format kwargs
            # 2. y has memory_format contiguity and fn gets preserve kwarg
            # 3. y has some other strides (not contiguous or channels last) and fn gets preserve
            yield x, torch.randn(*y_size), memory_format
            yield x, torch.randn(*y_size).contiguous(
                memory_format=memory_format
            ), torch.preserve_format
            yield x, torch.randn(*y_size).permute(
                tuple(reversed(range(len(y_size))))
            ), torch.preserve_format

    @skipIfXpu
    def test_resize_as(self):
        def fn(x, y, memory_format):
            return torch.ops.aten.resize_as(x, y, memory_format=memory_format)

        for deterministic in [True, False]:
            with DeterministicGuard(
                deterministic, fill_uninitialized_memory=deterministic
            ):
                for x, y, memory_format in CommonTemplate._cases_resize_as_common():
                    CommonTemplate._check_resize_common(
                        self,
                        fn,
                        x,
                        y,
                        memory_format,
                        inplace=False,
                        deterministic=deterministic,
                    )

    def test_inplace_resize_as(self):
        def fn(x, y):
            x.resize_as_(y)
            return x

        x = torch.randn(2, 3)
        y = torch.randn(200, 300)
        x_clone = x.clone()
        opt_fn = torch._dynamo.optimize("inductor")(fn)
        same(fn(x, y), opt_fn(x_clone, y))

    @xfail_if_triton_cpu
    def test_erfc(self):
        def fn(x):
            return torch.erfc(x)

        self.common(fn, (torch.randn(8, 8),))

    @skip_if_halide  # erfinv not implemented
    @xfail_if_triton_cpu
    def test_erfinv(self):
        def fn(x):
            return torch.erfinv(x)

        # domain for erfinv is (-1, 1)
        x = torch.empty(8, 8).uniform_(-1, 1)
        self.common(fn, (x,))

    def test_uint(self):
        def fn(z):
            x = torch.tensor(5, device=z.device, dtype=torch.uint8)
            y = torch.neg(x)
            return x < y

        self.common(fn, (torch.randn(26),))

    def test_scaled_dot_product_attention(self):
        if self.device == "cuda" and not PLATFORM_SUPPORTS_FLASH_ATTENTION:
            raise unittest.SkipTest("Can't run flash attention on this platform")
        if self.device == "cuda" and TEST_WITH_ROCM:
            raise unittest.SkipTest(
                "Flash attention support is incomplete on this platform"
            )

        def fn(q, k, v):
            return torch.nn.functional.scaled_dot_product_attention(
                q.transpose(1, 2).contiguous(),
                k.transpose(1, 2),
                v.transpose(1, 2),
                scale=0.125,
            )[:2]

        self.common(
            fn,
            (
                torch.randn(4, 2, 4, 2),
                torch.randn(4, 2, 4, 2),
                torch.randn(4, 2, 4, 2),
            ),
            atol=2e-4,  # to pass lowp check on GPU
            rtol=1e-2,  # to pass lowp check on GPU
        )

    @expectedFailureXPU
    def test_scaled_dot_product_efficient_attention(self):
        if self.device == "cpu":
            raise unittest.SkipTest(f"requires {GPU_TYPE}")

        # The first two values should be the same, attention output
        # and logsumexp since dropout is not being set
        def fn(q, k, v, attn_bias, compute_log_sumexp):
            return aten._scaled_dot_product_efficient_attention(
                q, k, v, attn_bias, compute_log_sumexp
            )[:2]

        self.common(
            fn,
            (
                torch.randn(4, 4, 36, 36),
                torch.randn(4, 4, 36, 36),
                torch.randn(4, 4, 36, 36),
                torch.randn(4, 4, 36, 36),
                False,
            ),
            check_lowp=False,
        )

    def test_fft_real_input(self):
        def fn(x):
            return torch.fft.fftn(x)

        self.common(fn, (torch.randn((16, 16, 16)),), check_lowp=False)

    def test_fft_real_input_real_output(self):
        def fn(x):
            return torch.fft.fftn(x).real

        self.common(fn, (torch.randn((16, 16, 16)),), check_lowp=False)

    def test_searchsorted(self):
        def fn(sorted_sequence, values, out_int32, right, side, sorter):
            return torch.searchsorted(
                sorted_sequence,
                values,
                out_int32=out_int32,
                right=right,
                side=side,
                sorter=sorter,
            )

        shapes = (
            ((1,), (16, 16)),  # scalar sorted_sequence
            ((16,), ()),  # scalar values
            ((32,), (16, 16)),  # 1-D sorted_sequence
            ((16, 32), (16, 16)),  # N-D sorted_sequence
            ((3, 5), (3, 7)),  # prime dimensioned sequence, to flush out indexing bugs
        )
        booleans = (False, True)

        for (seq_shape, value_shape), out_int32, right in itertools.product(
            shapes, booleans, booleans
        ):
            unsorted_sequence = torch.rand(seq_shape)
            sorted_sequence, sorting_indices = torch.sort(unsorted_sequence)
            values = torch.rand(value_shape)

            side = "right" if right else "left"
            self.common(
                fn,
                (sorted_sequence, values, out_int32, right, side, None),
                check_lowp=False,
            )
            self.common(
                fn,
                (
                    unsorted_sequence,
                    values,
                    out_int32,
                    right,
                    side,
                    sorting_indices,
                ),
                check_lowp=False,
            )

    def test_bucketize(self):
        def fn(input, boundaries, out_int32, right):
            return torch.bucketize(input, boundaries, out_int32=out_int32, right=right)

        input = torch.rand((64, 64)) * 2 - 1
        boundaries = torch.tensor([-0.9, -0.8, 0.1, 0.2, 0.5, 0.9])

        for out_int32 in [True, False]:
            for right in [True, False]:
                out_int32 = True
                right = False
                self.common(fn, (input, boundaries, out_int32, right), check_lowp=False)

    def test_bucketize_default_kwargs(self):
        def fn(input, offsets):
            return torch.bucketize(input, offsets)

        input = torch.tensor(
            [-1.0, -0.9, -0.8, -0.5, 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.9, 0.91]
        )
        offsets = torch.tensor([-0.9, -0.8, 0.1, 0.2, 0.5, 0.9])

        self.common(fn, (input, offsets), check_lowp=False)

    def test_bucketize_int(self):
        def fn(input, offsets, out_int32, right):
            return torch.bucketize(input, offsets, out_int32=out_int32, right=right)

        input = torch.randint(0, 102, (64, 64))
        offsets = torch.arange(10, dtype=torch.int32) ** 2 + 1

        for out_int32 in [True, False]:
            for right in [True, False]:
                self.common(fn, (input, offsets, out_int32, right), check_lowp=False)

    @patch.object(config.triton, "autotune_pointwise", True)
    def test_bucketize_add_autotune(self):
        # Causes a @pointwise(size_hints) where size_hints is 2D

        def fn(input, offsets, add_value):
            return torch.bucketize(input, offsets) + add_value

        input = torch.rand((16, 16, 64, 64))
        boundaries = torch.tensor([-0.9, -0.8, 0.1, 0.2, 0.5, 0.9])
        add_value = torch.randint(0, 1024, (16, 16, 64, 64)).to(
            memory_format=torch.channels_last
        )

        self.common(fn, (input, boundaries, add_value), check_lowp=False)

        assertGeneratedKernelCountEqual(self, 1)

    def test_bucketize_computed_offsets(self):
        def fn(inp, offsets):
            return torch.bucketize(inp, offsets + 0.01)

        inp = torch.tensor(
            [-1.0, -0.9, -0.8, -0.5, 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.9, 0.91]
        )
        offsets = torch.tensor([-0.9, -0.8, 0.1, 0.2, 0.5, 0.9]) - 0.01

        self.common(fn, (inp, offsets), check_lowp=False)

    @requires_gpu()
    @config.patch(assume_aligned_inputs=False)
    def test_config_option_dont_assume_alignment(self):
        def fn(x: torch.Tensor) -> torch.Tensor:
            return x.sin() + x.cos()

        # Inductor specializes on the (unguarded) alignment of the initial input.
        # Make sure that for different configurations, nothing breaks.
        for offset in (0, 1, 2, 3, 4):
            base = torch.randn(64 * 64 + 64, dtype=torch.float32, device=self.device)
            inp = torch.as_strided(base, (64, 64), (64, 1), offset)
            torch._dynamo.reset()
            fn_c = torch.compile(fn)

            ref = fn(inp)
            res = fn_c(inp)
            self.assertEqual(ref, res)

            for offset2 in (0, 1, 2, 3, 4):
                base2 = torch.randn(
                    64 * 64 + 64, dtype=torch.float32, device=self.device
                )
                inp2 = torch.as_strided(base2, (64, 64), (64, 1), offset2)
                ref2 = fn(inp2)
                res2 = fn_c(inp2)
                self.assertEqual(ref2, res2, atol=1e-5, rtol=1e-5)

    @requires_gpu()
    @config.patch(assume_aligned_inputs=False)
    def test_config_option_dont_assume_alignment_recompiles(self):
        # Inputs:
        #  1. (32, 32) shape
        #  2. (64, 64) shape -> causes a recompile
        #  3. (64, 64) shape with different storage offset -> should NOT cause a recompile
        failed_guards = []

        def fail(guard):
            nonlocal failed_guards
            failed_guards.append(guard)

        def fn(x: torch.Tensor) -> torch.Tensor:
            return x.sin() + x.cos()

        base = torch.randn(64 * 64 + 64, dtype=torch.float32, device=self.device)

        inp1 = torch.as_strided(base, (32, 32), (32, 1), 4)
        inp2 = torch.as_strided(base, (64, 64), (64, 1), 4)
        inp3 = torch.as_strided(base, (64, 64), (64, 1), 5)

        torch._dynamo.reset()

        fn_c = torch._dynamo.optimize("inductor", guard_fail_fn=fail)(fn)

        ref1 = fn(inp1)
        res1 = fn_c(inp1)
        self.assertEqual(ref1, res1)
        self.assertEqual(0, len(failed_guards))

        ref2 = fn(inp2)
        res2 = fn_c(inp2)
        self.assertEqual(ref2, res2)
        # if dynamic shapes isn't already turned on, we might have a guard failure as we turn
        # on dynamic shapes
        self.assertLessEqual(len(failed_guards), 1)
        failed_guard_count_iteration_2 = len(failed_guards)

        failed_guards = []
        ref3 = fn(inp3)
        res3 = fn_c(inp3)
        self.assertEqual(ref3, res3)
        # we might still have the dynamics shapes failure, but offset change shouldn't be guarded on
        # see Note: [Input Alignment handling in Inductor]
        self.assertLessEqual(len(failed_guards), failed_guard_count_iteration_2)

    @requires_gpu()
    @config.patch(assume_aligned_inputs=False)
    def test_config_option_dont_assume_alignment_cudagraphs(self):
        def fn(x):
            return x.cos() * x.sin()

        fn_c = torch.compile(fn, mode="reduce-overhead", dynamic=True)

        for size, stride, offset in (
            ((32, 32), (32, 1), 4),
            ((48, 48), (48, 1), 4),
            ((64, 64), (64, 1), 5),
        ):
            torch.manual_seed(42)
            base = torch.randn(64 * 64 + 64, dtype=torch.float32, device=self.device)
            torch.manual_seed(42)
            base_ref = torch.randn(
                64 * 64 + 64, dtype=torch.float32, device=self.device
            )

            inp = torch.as_strided(base, size, stride, offset)
            inp_ref = torch.as_strided(base_ref, size, stride, offset)

            inp.requires_grad_(True)
            inp_ref.requires_grad_(True)

            res = fn_c(inp)
            ref = fn(inp_ref)
            self.assertEqual(ref, res)

            res.sum().backward()
            ref.sum().backward()
            self.assertEqual(base.grad, base_ref.grad)

    @config.patch(implicit_fallbacks=True)
    def test_custom_op_1(self):
        import torch.library

        def foo_cpu(x):
            return 3 * x

        def foo_cuda(x):
            return 3 * x

        def foo_xpu(x):
            return 3 * x

        def foo_meta(x):
            return torch.empty_like(x)

        define_custom_op_for_test("foo", foo_cpu, foo_cuda, foo_xpu, foo_meta)

        def fn(x):
            a = torch.nn.functional.relu(x)
            b = torch.ops.test.foo(a)
            c = torch.cos(b)
            return c

        self.common(fn, (torch.randn((16, 32)),), check_lowp=False)

    @config.patch(implicit_fallbacks=True)
    def test_custom_op_2(self):
        import torch.library

        def foo_cpu(x, scale: float):
            return scale * x, torch.cos(x)

        def foo_cuda(x, scale: float):
            return scale * x, torch.cos(x)

        def foo_xpu(x, scale: float):
            return scale * x, torch.cos(x)

        def foo_meta(x, scale: float):
            return torch.empty_like(x), torch.empty_like(x)

        define_custom_op_2_for_test("foo2", foo_cpu, foo_cuda, foo_xpu, foo_meta)

        def fn(x, scale: float):
            a = torch.nn.functional.relu(x)
            return torch.ops.test.foo2(a, scale)

        self.common(fn, (torch.randn((16, 32)), 2.0), check_lowp=False)

    @config.patch(implicit_fallbacks=True)
    def test_custom_op_3(self):
        import torch.library

        def foo_cpu(x):
            result = torch.zeros_like(x[0])
            for t in x:
                result += t
            return result

        def foo_cuda(x):
            result = torch.zeros_like(x[0])
            for t in x:
                result += t
            return result

        def foo_xpu(x):
            result = torch.zeros_like(x[0])
            for t in x:
                result += t
            return result

        def foo_meta(x):
            return torch.empty_like(x[0])

        define_custom_op_3_for_test("foo3", foo_cpu, foo_cuda, foo_xpu, foo_meta)

        def fn(x):
            return torch.ops.test.foo3(x)

        self.common(
            fn,
            ([torch.randn((16, 32)), torch.randn((16, 32)), torch.randn((16, 32))],),
            check_lowp=False,
        )

    @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True)
    @torch._inductor.config.patch(implicit_fallbacks=True)
    def test_custom_op_unbacked_symints(self):
        @torch.library.custom_op("test_unbacked_symints::foo", mutates_args={})
        def foo(x: torch.Tensor) -> torch.Tensor:
            return x.clone()

        @foo.register_fake
        def _(x):
            u0 = torch.library.get_ctx().new_dynamic_size()
            u1 = torch.library.get_ctx().new_dynamic_size()
            u2 = torch.library.get_ctx().new_dynamic_size()
            return x.new_empty(u0, u1, u2)

        @torch.library.custom_op("test_unbacked_symints::bar", mutates_args={})
        def bar(x: torch.Tensor) -> torch.Tensor:
            return x.clone()

        @bar.register_fake
        def _(x):
            return torch.empty_like(x)

        x = torch.randn(2, 3, 4)

        @torch.compile(fullgraph=True)
        def f(x):
            y = foo(x)
            z = bar(y)
            return z

        # No error
        f(x)

    @requires_gpu()
    @torch._inductor.config.patch("layout_optimization", True)
    @torch._inductor.config.patch("keep_output_stride", False)
    @config.patch(implicit_fallbacks=True)
    @tf32_on_and_off(0.005)
    def test_custom_op_fixed_layout_sequential(self):
        import torch.library

        mod = nn.Conv2d(3, 128, 1, stride=1, bias=False).to(device=GPU_TYPE)
        inp = torch.rand(2, 3, 128, 128, device=GPU_TYPE)
        expected_stride = mod(inp).stride()

        def bar_cpu(x):
            self.assertEqual(x.stride(), expected_stride)
            return x.clone()

        def bar_cuda(x):
            self.assertEqual(x.stride(), expected_stride)
            return x.clone()

        def bar_xpu(x):
            self.assertEqual(x.stride(), expected_stride)
            return x.clone()

        def bar_meta(x):
            return torch.empty_like(x)

        define_custom_op_for_test(
            "bar",
            bar_cpu,
            bar_cuda,
            bar_xpu,
            bar_meta,
            tags=[torch._C.Tag.needs_fixed_stride_order],
        )

        def fn(x):
            z = mod(x)
            output = torch.ops.test.bar(z)
            return output

        with torch.no_grad():
            # With keep_output_stride False, inductor would normally have different layout from eager execution
            # But because our custom op needs fixed layout, the assertions in the custom op will pass
            self.common(fn, (inp,), check_lowp=False)

    @requires_gpu()
    @config.patch(implicit_fallbacks=True)
    @skip_if_cpp_wrapper(
        "Without major redesign, cpp_wrapper will not support custom ops that are "
        "defined in Python."
    )
    @tf32_on_and_off(0.005)
    def test_mutable_custom_op_fixed_layout2(self):
        with torch.library._scoped_library("mylib", "DEF") as lib:
            mod = nn.Conv2d(3, 128, 1, stride=1, bias=False).to(device=GPU_TYPE)
            inp = torch.rand(2, 3, 128, 128, device=GPU_TYPE)
            expected_stride = mod(inp).clone().stride()

            lib.define(
                "bar(Tensor x, bool is_compiling) -> Tensor",
                tags=torch.Tag.flexible_layout,
            )

            bar_strides = []

            @torch.library.impl(lib, "bar", "CompositeExplicitAutograd")
            def _(x, is_compiling):
                if is_compiling:
                    bar_strides.append(x.stride())
                result = x.clone()
                assert x.stride() == result.stride()
                return result

            @torch.library.impl(lib, "bar", "Meta")
            def _(x, is_compiling):
                return x.clone()

            lib.define(
                "add_one(Tensor(a!) x) -> ()",
                tags=torch.Tag.needs_fixed_stride_order,
            )

            @torch.library.impl(lib, "add_one", "CompositeExplicitAutograd")
            def _(x):
                self.assertEqual(x.stride(), expected_stride)
                x.copy_(x + 1)

            def fn(x):
                # Inductor changes the conv to be channels-last
                z = mod(x)
                output = torch.ops.mylib.bar(z, torch._dynamo.is_compiling())
                torch.ops.mylib.add_one(output)
                return output**2

            with torch.no_grad():
                self.common(fn, (inp,), check_lowp=False)

            # Dynamic shapes and rocm invalidate this test case
            if torch._dynamo.config.assume_static_by_default and not TEST_WITH_ROCM:
                # For this test to be valid, Inductor must have changed the conv
                # to be channels-last. If this assertion ever fails then we need
                # a new test case.
                self.assertEqual(len(bar_strides), 1)
                self.assertNotEqual(bar_strides[0], expected_stride)

    @config.patch(implicit_fallbacks=True)
    @skip_if_cpp_wrapper(
        "Without major redesign, cpp_wrapper will not support custom ops that are "
        "defined in Python."
    )
    def test_mutable_custom_op_fixed_layout(self):
        with torch.library._scoped_library("mylib", "DEF") as lib:
            lib.define(
                "copy_(Tensor(a!) dst, Tensor src) -> ()",
                tags=torch.Tag.needs_fixed_stride_order,
            )

            @torch.library.impl(lib, "copy_", "Meta")
            def _(dst, src):
                return None

            @torch.library.impl(lib, "copy_", "CompositeExplicitAutograd")
            def _(dst, src):
                dst.copy_(src)

            def f(x):
                full_default_3 = torch.full([3], 7.0, device="cpu")
                chunk_cat_default_1 = torch.ops.mylib.copy_.default(full_default_3, x)
                mul_out = torch.mul(full_default_3, full_default_3)
                return mul_out

            x = torch.arange(3, dtype=torch.float, device="cpu")
            eager_out = f(x)

            compiled_inductor_f = torch.compile(f, backend="inductor", fullgraph=True)
            compiled_inductor_out = compiled_inductor_f(x)
            self.assertEqual(compiled_inductor_out, eager_out)

    @requires_gpu()
    @config.patch(implicit_fallbacks=True)
    def test_custom_op_fixed_layout_channels_last(self):
        class Block(nn.Module):
            def __init__(
                self,
            ):
                super().__init__()

                self.in_layers = nn.Sequential(
                    nn.Dropout(p=0.1),
                )

            def helper(self, x):
                out = F.gelu(x)
                out = self.in_layers(out)
                return out

            def forward(self, x):
                out = self.helper(x)
                out = torch.ops.test.baz(out)
                return out

        model = Block()
        model = model.to(GPU_TYPE).to(memory_format=torch.channels_last)
        input_t = torch.randn([1, 320, 128, 128], dtype=torch.float32, device=GPU_TYPE)
        input_t = input_t.to(memory_format=torch.channels_last)
        expected_strides = model.helper(input_t).stride()

        def baz_cpu(x):
            self.assertEqual(expected_strides, x.stride())
            return x.clone()

        def baz_cuda(x):
            self.assertEqual(expected_strides, x.stride())
            return x.clone()

        def baz_xpu(x):
            self.assertEqual(expected_strides, x.stride())
            return x.clone()

        def baz_meta(x):
            return torch.empty_like(x)

        define_custom_op_for_test(
            "baz",
            baz_cpu,
            baz_cuda,
            baz_xpu,
            baz_meta,
            tags=[torch._C.Tag.needs_fixed_stride_order],
        )

        with torch.no_grad():
            net = torch.compile(model)
            out = net(input_t)

    @skip_if_gpu_halide  # cuda error
    def test_buffer_use_after_remove(self):
        # https://github.com/pytorch/pytorch/issues/102857

        def rotvec_to_rotmat(rotvec) -> torch.Tensor:
            """Simplified rotvec to rotmat code from RoMa
            (https://github.com/naver/roma/blob/06e4b0cdc1c802a60a012bb19c581d6600c63358/roma/mappings.py#L371)
            """
            theta = torch.norm(rotvec, dim=-1)
            axis = rotvec / theta[..., None]
            kx, ky, kz = axis[:, 0], axis[:, 1], axis[:, 2]
            sin_theta = torch.sin(theta)
            cos_theta = torch.cos(theta)
            one_minus_cos_theta = 1 - cos_theta
            xs = kx * sin_theta
            ys = ky * sin_theta
            zs = kz * sin_theta
            xyc = kx * ky * one_minus_cos_theta
            xzc = kx * kz * one_minus_cos_theta
            yzc = ky * kz * one_minus_cos_theta
            xxc = kx**2 * one_minus_cos_theta
            yyc = ky**2 * one_minus_cos_theta
            zzc = kz**2 * one_minus_cos_theta
            R_rodrigues = torch.stack(
                [
                    1 - yyc - zzc,
                    xyc - zs,
                    xzc + ys,
                    xyc + zs,
                    1 - xxc - zzc,
                    -xs + yzc,
                    xzc - ys,
                    xs + yzc,
                    1 - xxc - yyc,
                ],
                dim=-1,
            ).reshape(-1, 3, 3)
            R = R_rodrigues
            return R

        def f(coord, rot, trans):
            rot_mat = rotvec_to_rotmat(rot)
            coord = torch.einsum("...ij,...bj->...bi", rot_mat, coord) + trans
            return coord.sum()

        foo_c = torch.compile(f, dynamic=True)

        def run(fn):
            coord = torch.ones((2, 3), device=self.device)
            rot = nn.Parameter(torch.ones((2, 3), device=self.device))
            trans = nn.Parameter(torch.ones((2, 3), device=self.device))

            U = fn(coord, rot, trans)
            U.backward()

            return U, rot, trans

        U_e, rot_e, trans_e = run(f)
        U, rot, trans = run(foo_c)

        self.assertEqual(U, U_e)
        self.assertEqual(rot.grad, rot_e.grad)
        self.assertEqual(trans.grad, trans_e.grad)

    # If we serve from the cache, the init hook isn't called
    @config.patch({"fx_graph_cache": False, "fx_graph_remote_cache": False})
    @skipIfWindows(msg="torch._dynamo.exc.Unsupported")
    def test_inner_fn_str_and_stride(self):
        def f(x):
            x = x + 1
            x = test_operators.realize(x)
            x = x * 2
            x = test_operators.realize(x)
            return x

        x = torch.rand(3, 2, device=self.device).t()
        ref = f(x)
        called = False

        def hook_fn(scheduler, nodes):
            nonlocal called
            called = True

            if self.device != "cpu":
                self.assertEqual(len(nodes), 3)
                _, mul_buf, _ = nodes
                self.assertTrue(
                    all(
                        V.graph.sizevars.size_hints(buf.get_stride()) == (1, 2)
                        for buf in nodes
                    )
                )
                # before the fix, the wrong index expression
                # 'i1 + 3 * i0' is cached.
                self.assertTrue(
                    "i0 + 2 * i1" in mul_buf.data.inner_fn_str()
                    or "i0 + i1 * s1" in mul_buf.data.inner_fn_str()
                )

        with add_scheduler_init_hook(hook_fn):
            actual = torch.compile(f, fullgraph=True)(x)
        self.assertEqual(ref, actual)
        self.assertTrue(called)

    @skip_if_gpu_halide  # cuda error
    def test_mutations_loop_fusion(self):
        def fn(tensor, index, source):
            out = tensor.index_add(0, index, source, alpha=2.0) / 2
            return out

        device = "cpu"
        tensor = torch.rand((1,), dtype=torch.double, device=device)
        index = torch.tensor([0], dtype=torch.long, device=device)
        source = torch.rand((1,), dtype=torch.double, device=device)
        self.common(
            fn,
            (
                tensor,
                index,
                source,
            ),
        )

    @config.patch(
        "triton.autotune_pointwise", True
    )  # needed to introduce config that exceed max shared memory usage
    @serialTest()
    def test_large_block_sizes(self):
        """
        Inductor will try triton configs like x = 64 and y = 1024 which will
        result in out of shared memory if dtype is fp32.

        Currently inductor will skip such bad configs and pick the best one
        from the remaining configs.
        """
        # If this is running with cpp_wrapper, the auto-tuning step will generate an
        # additional array of the same size as the input.  Numbers derived
        # experimentally.
        required_memory = (
            2**34 + 2**32 + 2**31
            if config.cpp_wrapper
            else 2**33 + 2**32 + 2**31
        )
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        @torch.compile
        def fn(x, y):
            return x.t() + y

        # Use shape (2**24, 65) rather than (2**24, 128) potentially avoid OOM in
        # CI while still keep the same up-rounded size-hints.
        a = torch.randn(2**24, 65, device=self.device)
        b = torch.randn(65, 2**24, device=self.device)
        fn(a, b)

    # Skipped on ROCm until https://github.com/ROCm/triton/issues/443 resolved
    @slowTest
    def test_fuse_large_params(self):
        def pt2_optimizer_step(optimizer):
            @torch.compile()
            def f():
                optimizer.step()

            f()

        params = [
            torch.rand(10, 10, dtype=torch.float32, device=self.device)
            for _ in range(194)
        ]
        for p in params:
            p.grad = torch.rand_like(p)

        o = torch.optim.AdamW(params)
        pt2_optimizer_step(o)

    @skip_if_gpu_halide
    def test_adaptive_avg_pool1d_argmax(self):
        # https://github.com/pytorch/pytorch/issues/113013
        def fn(x):
            x = torch.adaptive_avg_pool1d(input=x, output_size=2)
            x = torch.argmax(input=x)
            return x

        x = torch.rand([4, 4, 3], dtype=torch.float64)
        self.common(fn, (x,))

    @skipCUDAIf(not SM80OrLater, "uses bfloat16 which requires SM >= 80")
    @parametrize(
        "dtype_x, dtype_y",
        list(itertools.product(test_dtypes, test_dtypes)),
    )
    def test_dtypeview(self, dtype_x, dtype_y):
        if TEST_WITH_ASAN:
            return

        if is_triton_cpu_backend(self.device):
            raise unittest.SkipTest("Compile time crash in Triton CPU CI")

        # https://github.com/pytorch/pytorch/issues/126338
        def fn(x, y, x_dtype, x2):
            x = x.view(x_dtype)
            y = y.view(x_dtype) + 1
            x2 = x2.view(x_dtype) + 1
            return x @ y, x2 @ x

        # @ operation needs arguments to be the same dtype
        for view_dtype in test_dtypes:
            try:
                x = rand_strided((2, 2), (2, 1), device=self.device, dtype=dtype_x)
                y = rand_strided((2, 2), (2, 1), device=self.device, dtype=dtype_y)
                x2 = x.clone()
                fn(x, y, view_dtype, x2)
            except Exception as e:
                continue
            self.common(
                fn,
                (x, y, view_dtype, x2),
                reference_in_float=False,
                check_lowp=False,
            )

    def test_dtypeview_fusion(self):
        @torch.compile
        def fn(x):
            x = x + 1
            x = torch.ops.aten.view.dtype(x, torch.int16)
            x = x * 2
            return x

        torch._inductor.metrics.generated_kernel_count = 0
        x = torch.randn([1024], dtype=torch.float16, device=self.device)
        self.common(fn, (x,), reference_in_float=False)
        assertGeneratedKernelCountEqual(self, 1)

    @expectedFailureCodegenDynamic
    def test_reinterpret_dtypeview(self):
        @torch.compile
        def fn(x, x2):
            return x.view([10, 10]).view(torch.int32), x2.view(torch.int32).view(
                [10, 10]
            )

        x = torch.randn([100, 1], device=self.device)
        x2 = x.clone()
        self.common(fn, (x, x2), reference_in_float=False, check_lowp=False)

        # The cpp_wrapper code is significantly more complex, so skip checking for exact
        # code lines.
        if not config.cpp_wrapper:
            x = torch.randn([100, 1], device=self.device)
            x2 = x.clone()
            _, code = run_and_get_code(fn, x, x2)
            FileCheck().check("aten.view.dtype(reinterpret_tensor").run(code[0])

    @xfail_if_triton_cpu
    @requires_gpu()
    def test_scalar_cpu_tensor_arg(self):
        def fn(x, y):
            return x + y.sum()

        test_dtypes = [
            torch.float32,
            torch.float64,
            torch.float16,
            torch.bfloat16,
        ]
        for cpu_dtype in test_dtypes:
            x = torch.rand([20], device=GPU_TYPE)
            y = torch.rand([4], device="cpu", dtype=cpu_dtype)
            self.common(
                fn,
                (x, y),
                check_lowp=False,
                copy_to_gpu=False,
                reference_in_float=False,
            )

    def test_float16_to_int16(self):
        def fn(x):
            x_view = x.view(dtype=torch.int16)
            return x_view.mul(2)

        x = torch.ones(4, dtype=torch.float16, device=self.device)
        ref = fn(x)
        actual = torch.compile(fn)(x)
        self.assertEqual(ref, actual)

    @skipCUDAIf(not SM80OrLater, "uses bfloat16 which requires SM >= 80")
    @skip_if_gpu_halide  # https://github.com/halide/Halide/issues/8311
    def test_bfloat16_to_int16(self):
        def fn(a, b):
            x = a + b
            x_view = x.view(dtype=torch.int16)
            return x_view.mul(2)

        a = torch.ones(4, dtype=torch.bfloat16, device=self.device)
        b = torch.ones(4, dtype=torch.bfloat16, device=self.device)
        ref = fn(a, b)
        actual = torch.compile(fn)(a, b)
        self.assertEqual(ref, actual)

    def test_float32_to_int32(self):
        def fn(a, b):
            x = a + b
            x_view = x.view(dtype=torch.int32)
            return x_view.mul(2)

        a = 0.5 * torch.ones(4, dtype=torch.float32, device=self.device)
        b = 0.5 * torch.ones(4, dtype=torch.float32, device=self.device)
        ref = fn(a, b)
        actual = torch.compile(fn)(a, b)
        self.assertEqual(ref, actual)

    def test_randint_int64_mod(self):
        # This used to not compile due to a wrong return type of randint64_cpu
        # See https://github.com/pytorch/pytorch/issues/117435
        def fn(n):
            return (
                torch.randint(
                    low=-5, high=5, size=(n,), dtype=torch.int64, device=self.device
                )
                % 10
            )

        res = torch.compile(fn)(20)
        self.assertTrue(torch.all((0 <= res) & (res < 10)).item())

    @torch._inductor.config.patch(force_shape_pad=True)
    @skip_if_gpu_halide  # correctness issue
    def test_should_pad_bench_for_bmm(self):
        B = 2
        M = 1024
        N = 1024
        K = 1024 + 1  # a size that requires padding

        mat1 = torch.rand(B, M, K, device=self.device)
        mat2 = torch.rand(B, K, N, device=self.device)

        should_pad = pad_mm.should_pad_bench(None, mat1, mat2, torch.ops.aten.bmm)

        self.assertTrue(should_pad)

    @parametrize(
        "name, op",
        [
            subtest((name, getattr(torch.special, name)), name=name)
            for name in torch.special.__all__
            if name not in {"softmax", "log_softmax", "logsumexp"}
        ],
    )
    def test_pointwise(self, name, op):
        dtype = torch.float32
        check_lowp = True
        if self.device == GPU_TYPE and name in {
            "airy_ai",
            "bessel_i0",
            "bessel_i1",
            "bessel_j0",
            "bessel_j1",
            "bessel_y0",
            "bessel_y1",
            "erfcx",
            "gammainc",
            "gammaincc",
            "i1",
            "i1e",
            "modified_bessel_i0",
            "modified_bessel_i1",
            "modified_bessel_k0",
            "modified_bessel_k1",
            "ndtri",
            "scaled_modified_bessel_k0",
            "scaled_modified_bessel_k1",
            "spherical_bessel_j0",
            "zeta",
            "chebyshev_polynomial_t",
            "chebyshev_polynomial_v",
            "chebyshev_polynomial_u",
            "chebyshev_polynomial_w",
            "legendre_polynomial_p",
            "shifted_chebyshev_polynomial_t",
            "shifted_chebyshev_polynomial_u",
            "shifted_chebyshev_polynomial_v",
            "shifted_chebyshev_polynomial_w",
            "hermite_polynomial_h",
            "hermite_polynomial_he",
            "laguerre_polynomial_l",
        }:
            # <func>_cuda not implemented for Half
            check_lowp = False

        if (
            is_halide_backend(self.device)
            or is_triton_cpu_backend(self.device)
            and name
            in (
                "erfinv",
                "airy_ai",
                "bessel_j0",
                "bessel_j1",
                "bessel_y0",
                "bessel_y1",
                "chebyshev_polynomial_t",
                "chebyshev_polynomial_u",
                "chebyshev_polynomial_v",
                "chebyshev_polynomial_w",
                "digamma",
                "gammainc",
                "gammaincc",
                "gammaln",
                "hermite_polynomial_h",
                "hermite_polynomial_he",
                "i0",
                "i0e",
                "i1",
                "i1e",
                "laguerre_polynomial_l",
                "legendre_polynomial_p",
                "modified_bessel_i0",
                "modified_bessel_i1",
                "modified_bessel_k0",
                "modified_bessel_k1",
                "multigammaln",
                "ndtri",
                "polygamma",
                "psi",
                "scaled_modified_bessel_k0",
                "scaled_modified_bessel_k1",
                "shifted_chebyshev_polynomial_t",
                "shifted_chebyshev_polynomial_u",
                "shifted_chebyshev_polynomial_v",
                "shifted_chebyshev_polynomial_w",
                "spherical_bessel_j0",
                "zeta",
            )
        ):
            raise unittest.SkipTest(f"Halide & Triton CPU do not support {name}")

        if is_triton_cpu_backend(self.device) and name in [
            "erfc",
            "erfcx",
            "round",
            "log_ndtr",
        ]:
            raise unittest.SkipTest(f"Triton CPU does not support {name}")

        if name in {"gammainc", "gammaincc"}:
            args = (
                torch.randn(8, 8, dtype=dtype, device=self.device),
                torch.empty(8, 8, dtype=dtype, device=self.device).uniform_(1, 2),
            )

            def fn(x, y):
                return op(x, y)

        elif name in {"xlog1py", "xlogy", "zeta"}:
            args = (
                torch.randn(8, 8, dtype=dtype, device=self.device),
                torch.empty(8, 8, dtype=dtype, device=self.device).uniform_(1, 2),
            )

            def fn(x, y):
                return op(x, y)

        elif name == "multigammaln":
            args = (
                torch.empty(8, 8, dtype=dtype, device=self.device).uniform_(1, 2),
                2,
            )

            def fn(x, p):
                return op(x, p)

        elif name == "polygamma":
            args = (
                1,
                torch.empty(8, 8, dtype=dtype, device=self.device).uniform_(1, 10),
            )

            def fn(n, x):
                return op(n, x)

        elif "_polynomial_" in name:
            args = (
                torch.randn(8, 8, dtype=dtype, device=self.device),
                2,
            )

            def fn(x, n):
                return op(x, n)

        else:
            args = (torch.randn(8, 8, dtype=dtype, device=self.device),)

            def fn(x):
                return op(x)

        self.common(fn, args, check_lowp=check_lowp, atol=1e-4, rtol=1e-4)

    # codegen test fails with no dynamic for loop in dynamic shape tests
    @expectedFailureCodegenDynamic
    def test_view_uint8_through_differing_bitwidths(self):
        # https://github.com/pytorch/pytorch/issues/120998
        def fn(x, view_dtype):
            return x.view(view_dtype).view(torch.uint8)

        view_dtypes = [torch.int16, torch.int32, torch.int64]
        for dtype in view_dtypes:
            x = torch.randint(0, 2**4, [4096, 4096], dtype=torch.uint8)
            self.common(
                fn,
                (
                    x,
                    dtype,
                ),
            )

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_split_with_sizes_with_unbacked_symints(self):
        @torch.compile()
        def f(sz, x):
            s0, s1 = sz.tolist()
            r0, r1 = torch.ops.aten.split_with_sizes.default(x, [s0, s1])
            return torch.ops.aten.sort.default(r1)

        N = 7312
        S0 = 420
        S1 = N - S0

        result = f(torch.tensor([S0, S1]), torch.randn(N))
        self.assertTrue(len(result) == 2)

        @torch.compile()
        def f2(x):
            y = torch.arange(x.item())
            return torch.ops.aten.split_with_sizes.default(y, [5, 5, 10])

        result = f2(torch.tensor([20]))
        self.assertTrue(len(result) == 3)

    @torch._dynamo.config.patch(capture_scalar_outputs=True)
    def test_split_with_unbacked_symints(self):
        # https://github.com/pytorch/pytorch/issues/122937
        @torch.compile()
        def f(x):
            y = torch.arange(x.item())
            return torch.split(y, [5, 5, 10])

        result = f(torch.tensor([20]))
        self.assertTrue(len(result) == 3)

    def test_complex_memory_overlap(self):
        t = rand_strided((8, 1500, 1), (1504, 1, 1), device=self.device)
        self.assertFalse(complex_memory_overlap(t))

    def test_generate_rand_fp8(self):
        """
        PyTorch can not generate fp8 tensors with a normal distribution because of
        missing needed kernels.

        We work around that in rand_strided by generating an fp16 tensor first and
        then do casting.
        """
        t = rand_strided((2, 3), (3, 1), device=self.device, dtype=torch.float8_e4m3fn)
        self.assertTrue(t.dtype is torch.float8_e4m3fn)

    def test_large_grid(self):
        # If this is running with cpp_wrapper, the auto-tuning step will generate an
        # additional array of the same size as the input.  Numbers derived
        # experimentally.
        required_memory = (
            2**30 + 2**29 + 2**15 if config.cpp_wrapper else 2**30 + 2**15
        )
        if not _has_sufficient_memory(self.device, required_memory):
            raise unittest.SkipTest("insufficient memory")

        # https://github.com/pytorch/pytorch/issues/123210
        def fn(primals_5):
            view = torch.ops.aten.reshape.default(primals_5, [-1, 2, 4])
            primals_5 = None
            permute = torch.ops.aten.permute.default(view, [0, 2, 1])
            clone = torch.ops.aten.clone.default(
                permute, memory_format=torch.contiguous_format
            )
            return clone

        s0 = 16777472
        s1 = 8
        compiled_fn = torch._dynamo.optimize()(fn)
        actual = compiled_fn(torch.ones(s0, s1, device=self.device))
        self.assertTrue((actual == 1).all())

    @skip_if_gpu_halide
    def test_pattern_matcher_multi_user(self):
        # Reproducer for https://github.com/pytorch/pytorch/issues/129685

        def forward(float_1, view_1):
            logits = float_1 / 64.0
            loss = torch.nn.functional.cross_entropy(logits, view_1, ignore_index=5)
            logsumexp = logits.logsumexp(dim=-1)
            return [loss, logsumexp]

        a = torch.randn(512, 4096, requires_grad=True)
        b = torch.randint(size=(512,), low=0, high=4095)

        self.common(forward, (a, b))

    def test_mul_index_expr(self):
        # Minified repro from https://github.com/pytorch/pytorch/issues/111884
        def forward():
            iota = torch.ops.prims.iota.default(
                16,
                start=0,
                step=1,
                dtype=torch.int64,
                device=self.device,
                requires_grad=False,
            )
            unsqueeze = torch.ops.aten.unsqueeze.default(iota, -1)
            mul = torch.ops.aten.mul.Tensor(unsqueeze, iota)
            unsqueeze = iota = None
            neg = torch.ops.aten.neg.default(mul)
            mul = None
            div = torch.ops.aten.div.Tensor(neg, 16)
            neg = None
            return (div,)

        self.common(forward, ())

    def test_flip_cat(self):
        def forward(unsqueeze, unsqueeze_1):
            cat_1 = torch.ops.aten.cat.default([unsqueeze, unsqueeze_1], 1)
            view = torch.ops.aten.view.default(cat_1, [4])
            slice_5 = torch.ops.aten.slice.Tensor(view, 0, 0, 3)
            rev_1 = torch.ops.aten.flip.default(slice_5, [0])
            return (rev_1,)

        a = torch.randn(2, 1, requires_grad=True)
        b = torch.randn(2, 1, requires_grad=True)
        self.common(forward, (a, b))

    @config.patch(implicit_fallbacks=True)
    def test_weight_norm_bwd(self):
        """
        Weight norm backward eager kernel does not support non-contiguous
        inputs. Eager kernel silently produces incorrect results when
        inputs are non-contiguous. Inductor implicitly fallback to eager
        for weight norm backward. Fix that by requiring contiguous inputs
        for any implicit fallback kernels.
        Check: https://github.com/pytorch/pytorch/issues/140452
        """

        class Repro(nn.Module):
            def __init__(self, in_features):
                super().__init__()
                self.weight_normed_linear = nn.utils.parametrizations.weight_norm(
                    nn.Linear(in_features, out_features=2)
                )
                self.linear = nn.Linear(in_features=2, out_features=1)

            def forward(self, x):
                return self.linear(self.weight_normed_linear(x))

        def f(m, x):
            with torch.amp.autocast(device_type=self.device, dtype=torch.half):
                loss = m(x).sum()
                loss.backward()
            return loss

        # odd number on purpose to trigger comprehensive padding
        in_features = 1025
        x = torch.randn(2, in_features, dtype=torch.half, requires_grad=True).to(
            device=self.device
        )
        m = Repro(in_features)
        m = m.to(self.device)

        f(m, x)

        ref_grad_list = [p.grad for p in m.parameters()]

        for p in m.parameters():
            p.grad = None

        opt_f = torch.compile(f)
        opt_f(m, x)
        act_grad_list = [p.grad for p in m.parameters()]
        self.assertTrue(
            same(ref_grad_list, act_grad_list, tol=1e-3),
            f"Ref:\n{ref_grad_list}\nAct:\n{act_grad_list}",
        )

    def test_chunk_recompiles(self):
        def f(x):
            return x.chunk(4)

        # Runs f and its torch.compile-d version with a fresh 1D tensor
        # of a specific size, and checks that the result is correct.
        def run(size):
            input = torch.randn(size)
            expected_out = f(input)
            actual_out = optf(input)
            self.assertEqual(expected_out, actual_out)

        cnts = CompileCounterWithBackend("inductor")
        optf = torch.compile(f, backend=cnts, fullgraph=True)

        # The first run should compile once with static shapes.
        run(4)
        self.assertEqual(cnts.frame_count, 1)

        # Varying the input size should trigger a recompilation.
        # Since the input size is a multiple of 4 (i.e. all runs shall
        # generate 4 output tensors), there should be no further
        # recompilation.
        for i in range(2, 12):
            run(4 * i)
        self.assertEqual(cnts.frame_count, 2)

        # Input size: 11
        # Not a multiple of 4, but still generates 4 output tensors,
        # where the last one has size > 1.
        run(11)
        self.assertEqual(cnts.frame_count, 2)

        # Input size: 10
        # Even though it still generates 4 output tensors, the last
        # one has size 1, falling into our 0/1 specialization. Thus,
        # this one also triggers recompilation.
        run(10)
        self.assertEqual(cnts.frame_count, 3)

        # Input size: 9
        # Yields one less output tensor, which should trigger a
        # recompilation.
        run(9)
        self.assertEqual(cnts.frame_count, 4)


@dataclasses.dataclass
class TestFailure:
    suffixes: Tuple[str, ...]
    is_skip: bool = False
    __test__: bool = False


def copy_tests(
    my_cls, other_cls, suffix, test_failures=None, xfail_prop=None
):  # noqa: B902
    for name, value in my_cls.__dict__.items():
        if name.startswith("test_"):
            # You cannot copy functions in Python, so we use closures here to
            # create objects with different ids. Otherwise, unittest.skip
            # would modify all methods sharing the same object id. Also, by
            # using a default argument, we create a copy instead of a
            # reference. Otherwise, we would lose access to the value.

            @functools.wraps(value)
            def new_test(self, value=value):
                return value(self)

            # Copy __dict__ which may contain test metadata
            new_test.__dict__ = copy.deepcopy(value.__dict__)

            if xfail_prop is not None and hasattr(value, xfail_prop):
                new_test = unittest.expectedFailure(new_test)

            tf = test_failures and test_failures.get(name)
            if tf is not None and suffix in tf.suffixes:
                skip_func = (
                    unittest.skip("Skipped!")
                    if tf.is_skip
                    else unittest.expectedFailure
                )
                new_test = skip_func(new_test)

            setattr(other_cls, f"{name}_{suffix}", new_test)


if HAS_CPU:

    class SweepInputsCpuTest(SweepInputs2, TestCase):
        gen = InputGen(10, "cpu")

    SweepInputsCpuTest.populate()

    class CpuTests(TestCase):
        common = check_model
        device = "cpu"

    copy_tests(CommonTemplate, CpuTests, "cpu")

if HAS_GPU and not TEST_WITH_ASAN:

    class SweepInputsGPUTest(SweepInputs2, TestCase):
        gen = InputGen(10, GPU_TYPE)

    SweepInputsGPUTest.populate()

    class GPUTests(TestCase):
        common = check_model_gpu
        device = GPU_TYPE

    copy_tests(CommonTemplate, GPUTests, GPU_TYPE)

    @instantiate_parametrized_tests
    class TritonCodeGenTests(TestCase):
        from torch._inductor.runtime.triton_heuristics import CachingAutotuner

        device_type = GPU_TYPE
        device = GPU_TYPE

        class NoOpCompilerBackend:
            def __init__(self) -> None:
                self.example_args = None
                self.model = None

            def noop_backend(
                self,
                model_: torch.fx.GraphModule,
                example_inputs_: typing.List[torch.Tensor],
            ):
                """
                The Noop backend does not compile the fx graph it is given.
                Instead, it transforms the fx graph so that its functions are
                aten operations. It then saves this graph.
                """
                from torch._inductor.decomposition import select_decomp_table
                from torch._subclasses import FakeTensorMode
                from torch.fx import Interpreter

                fake_mode = FakeTensorMode()

                def interpret(*args, **kwargs):
                    return Interpreter(model_).run(*args[0:], **kwargs)

                fake_flat_tensor_args = [
                    fake_mode.from_tensor(x) for x in example_inputs_
                ]
                fw_module = make_fx(interpret, select_decomp_table())(
                    *fake_flat_tensor_args
                )
                self.model = fw_module
                self.example_args = fake_flat_tensor_args
                return lambda x: example_inputs_

        def get_kernels(self, fn, args) -> typing.List[CachingAutotuner]:
            from torch._inductor.debug import DebugContext
            from torch._inductor.graph import GraphLowering
            from torch._inductor.virtualized import V

            cxt = TritonCodeGenTests.NoOpCompilerBackend()
            torch._dynamo.optimize(backend=cxt.noop_backend)(fn)(*args)
            graph = GraphLowering(cxt.model)
            kernels = []
            with V.set_graph_handler(graph), V.set_debug_handler(DebugContext()):
                graph.run(*(cxt.example_args))
                mod = graph.compile_to_module()

                for val in mod.__dict__.values():
                    if isinstance(
                        val, torch._inductor.runtime.triton_heuristics.CachingAutotuner
                    ):
                        kernels.append(val)

            return kernels

        def test_divisible_by_16_covers_numel_args(self):
            torch._dynamo.reset()

            def fn(a: torch.Tensor) -> torch.Tensor:
                return torch.sum(a)

            kernels = self.get_kernels(fn, [torch.randn([256, 256], device=GPU_TYPE)])
            expected_divisible = {
                # kernel0 reduces from 256 to (xnumel=8, rnumel=8192), which means it reduces 256 by 256 into an array of
                # size 8 by accumulating 8192 elements at once note that rnumel is equal to 512 * 16, so rnumel which is
                # at slot 3 should be in the divisible by 16 descriptor
                0: (0, 1, 3),
                # kernel1 reduces from 8 elements to a single scalar.
                # Since multi-kernel generate 2 variants for each kernel. The second
                # persistent-reduction has index 2.
                1: (0, 1),
            }
            if config.triton.multi_kernel:
                self.assertEqual(len(kernels), 4)
                expected_divisible[2] = expected_divisible.pop(1)
            elif config.triton.cooperative_reductions:
                self.assertEqual(len(kernels), 1)
                expected_divisible = {
                    # one kernel, with extra workspace/semaphore args
                    0: (0, 1, 2, 3, 5),
                }
            else:
                self.assertEqual(len(kernels), 2)

            for kernel_id, expected in expected_divisible.items():
                divisible_by_16 = get_divisible_by_16(
                    kernels[kernel_id].triton_meta["configs"][0]
                )
                self.assertEqual(divisible_by_16, expected)

            torch._dynamo.reset()

        @config.patch(assume_aligned_inputs=False)
        def test_codegen_config_option_dont_assume_alignment(self):
            def fn(x: torch.Tensor) -> torch.Tensor:
                return x.sin() + x.cos()

            # We want code that assumes alignment if the initial input is 16-byte aligned
            for offset in (0, 1, 2, 3, 4):
                base = torch.randn(64 * 64 + 64, dtype=torch.float32, device=GPU_TYPE)
                inps = torch.as_strided(base, (64, 64), (64, 1), offset)
                torch._dynamo.reset()
                kernels = self.get_kernels(fn, [inps])
                arguments_that_are_divisible_by_16 = get_divisible_by_16(
                    kernels[0].triton_meta["configs"][0]
                )

                #             NO_ALIGN ALIGN     ALIGN
                # def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr)

                if offset % 4 == 0:
                    expected_aligned = (0, 1, 2)
                else:
                    expected_aligned = (1, 2)
                self.assertEqual(arguments_that_are_divisible_by_16, expected_aligned)

            # If input isn't a view, storage offset != , inductor will assume alignment.
            torch._dynamo.reset()
            inp = torch.randn((64, 64), device=GPU_TYPE)
            kernels = self.get_kernels(fn, [inp])
            arguments_that_are_divisible_by_16 = get_divisible_by_16(
                kernels[0].triton_meta["configs"][0]
            )
            self.assertEqual(arguments_that_are_divisible_by_16, (0, 1, 2))

        def test_optimize_indexing_dtype(self):
            def fn(x: torch.Tensor) -> torch.Tensor:
                return aten.upsample_bilinear2d.vec(x, None, True, [2.0, 2.0])

            fn_opt = torch._dynamo.optimize("inductor")(fn)
            inps = [torch.randn(2, 4, 16, 16, device=GPU_TYPE)]
            code = run_and_get_triton_code(fn_opt, *inps)
            self.assertTrue("to(tl.int32)" in code)
            self.assertFalse("to(tl.int64)" in code)

            self.assertEqual(fn_opt(*inps), fn(*inps))

        @config.patch({"fx_graph_remote_cache": False})
        def test_optimize_indexing_dtype_with_constraint(self):
            def fn1(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
                x = torch.arange(0, b.shape[0], device=GPU_TYPE)
                y = ((x + x) / 3).int()
                return a[y.to(torch.int64)]

            def fn2(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
                torch._check_is_size(b.shape[0])
                torch._check(b.shape[0] >= 2)
                torch._check(b.shape[0] <= 100)
                return fn1(a, b)

            fn1_opt = torch._dynamo.optimize("inductor")(fn1)
            fn2_opt = torch._dynamo.optimize("inductor")(fn2)

            a = torch.rand([100, 100], device=GPU_TYPE)
            b1 = torch.rand([102], device=GPU_TYPE)
            b2 = torch.rand([100], device=GPU_TYPE)
            torch._dynamo.mark_dynamic(b1, 0)
            torch._dynamo.mark_dynamic(b2, 0)
            inps1 = [a, b1]
            inps2 = [a, b2]

            # Run fn2 first since it has more restrictive bounds -- to avoid cache hit
            code2 = run_and_get_triton_code(fn2_opt, *inps2)
            code1 = run_and_get_triton_code(fn1_opt, *inps1)

            # The function with the constrained tensor should be optimized, but
            # the other should not:
            self.assertTrue("to(tl.int64)" in code1)
            self.assertTrue("to(tl.int32)" in code2)
            self.assertFalse("to(tl.int64)" in code2)

            self.assertEqual(fn1_opt(*inps1), fn1(*inps1))
            self.assertEqual(fn2_opt(*inps2), fn1(*inps2))

        def test_constant_folding_deallocation(self):
            import torch._inductor

            def fn():
                li = []
                for i in range(10):
                    x = torch.full([100], i)
                    x = x + 1
                    li.append(x)

                return li

            mod = make_fx(fn)()

            live_tensors = WeakTensorKeyDictionary()
            max_live_tensors = 0

            class LiveTensors(TorchDispatchMode):
                def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                    nonlocal live_tensors
                    nonlocal max_live_tensors

                    kwargs = kwargs if kwargs else {}
                    for arg in pytree.arg_tree_leaves(*args, **kwargs):
                        if isinstance(arg, torch.Tensor):
                            live_tensors[arg] = True

                    out = func(*args, **kwargs)
                    if not isinstance(out, torch.Tensor):
                        return out

                    live_tensors[out] = True
                    max_live_tensors = max(max_live_tensors, len(live_tensors))
                    return out

            mode = LiveTensors()
            from torch._inductor.fx_passes.joint_graph import UniformValueConstantFolder

            with mode:
                UniformValueConstantFolder(mod).run()

            # there are a couple extra tensors created in `insertable_tensor_check`
            self.assertTrue(max_live_tensors == 3)

        # See https://github.com/pytorch/pytorch/issues/100348
        def test_inductor_detach_view(self):
            def fn(x: torch.Tensor) -> torch.Tensor:
                a = x * 2
                return a, a.detach()

            fn_opt = torch._dynamo.optimize("inductor")(fn)
            inp = torch.ones(2, 2, requires_grad=True, device=GPU_TYPE)
            inp_ref = inp.detach().clone().requires_grad_(True)
            out_ref = fn(inp_ref)
            out = fn_opt(inp)
            out_ref[0].sum().backward()
            out[0].sum().backward()
            self.assertEqual(inp.grad, inp_ref.grad)

        @requires_gpu()
        @unittest.skipIf(
            not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
            "Does not support mem_eff_attention",
        )
        def test_sdpa_inference_mode_aot_compile(self):
            class TestSDPA(torch.nn.Module):
                def __init__(self) -> None:
                    super().__init__()

                def forward(
                    self,
                    q: torch.Tensor,
                    k: torch.Tensor,
                    v: torch.Tensor,
                    attn_mask: torch.Tensor,
                ):
                    return torch.nn.functional.scaled_dot_product_attention(
                        q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=False
                    )

            q = torch.rand([10, 4, 128, 64], device=GPU_TYPE, dtype=torch.bfloat16)
            k = torch.rand([10, 4, 128, 64], device=GPU_TYPE, dtype=torch.bfloat16)
            v = torch.rand([10, 4, 128, 64], device=GPU_TYPE, dtype=torch.bfloat16)
            attn_mask = (
                torch.rand([10, 4, 128, 128], device=GPU_TYPE, dtype=torch.bfloat16)
                < 0.9
            )

            inputs = (q, k, v, attn_mask)

            import torch.export._trace as export_trace

            with torch.inference_mode():
                traced = export_trace._export_to_torch_ir(
                    TestSDPA(),
                    inputs,
                    disable_constraint_solver=True,
                    restore_fqn=False,
                )
                torch._inductor.aot_compile(traced, inputs)

        def test_optimize_indexing_assert(self):
            def has_indirect(code, tl_fn: str):
                self.assertTrue(
                    tl_fn in code,
                    msg=f"{tl_fn} not present:\n{code}",
                )
                for line in code.split("\n"):
                    if tl_fn in line:
                        stmt = line.split(tl_fn)[-1]
                        # indirect indexing involves a `tmp` variable
                        self.assertTrue(
                            "tmp" in stmt,
                            msg=f"Indirect indexing not present in code:\n{line}",
                        )

            def has_assert(code, lower: bool, upper: bool):
                self.assertIn(
                    "device_assert", code, msg=f"No device asert found:\n{code}"
                )
                for line in code.split("\n"):
                    if "device_assert" in line:
                        self.assertTrue(
                            ("0 <= " in line) is lower,
                            msg=f"Lower bound {'' if lower else 'not '}elided:{line}",
                        )
                        self.assertTrue(
                            (" < " in line) is upper,
                            msg=f"Upper bound {'' if upper else 'not '}elided:{line}",
                        )

            def fn(x: torch.Tensor) -> torch.Tensor:
                s = 1.0 * torch.arange(x.shape[0], device=x.device)
                return x[s.long()]

            # aten.index
            for dynamic in (False, True):
                fn_opt = torch.compile(fn, dynamic=dynamic)

                x = torch.randn(8, device=GPU_TYPE)
                code = run_and_get_triton_code(fn_opt, x)
                self.assertEqual(fn_opt(x), fn(x), msg=f"{dynamic=}")

                # Check that there's indirect indexing...
                has_indirect(code, tl_fn="tl.load")
                if not dynamic:
                    # We elide the assert for static shapes
                    self.assertNotIn("device_assert", code)
                else:
                    # ...but we generate an upper bound for dynamic shapes
                    has_assert(code, lower=False, upper=True)

            def fn(a, z, b, idx0, idx1):
                idx2 = torch.arange(a.shape[-1], device=a.device)
                a.index_put_((z, idx0, idx1, idx2), b, accumulate=True)
                return a

            # aten.index_put
            for dynamic in (False, True):
                fn_opt = torch.compile(fn, dynamic=dynamic)
                a = torch.randn(1, 32, 32, 4, device=GPU_TYPE)
                z = torch.zeros((), dtype=torch.int64, device=GPU_TYPE)
                b = torch.randn(33, 1, device=GPU_TYPE)
                idx0 = torch.randint(32, (33,), device=GPU_TYPE).view(33, 1, 1)
                idx1 = torch.randint(32, (33,), device=GPU_TYPE).view(33, 1)
                inps = (a.clone(), z, b, idx0, idx1)
                code = run_and_get_triton_code(fn_opt, *inps)

                # Correctness
                out_opt = fn_opt(a.clone(), z, b, idx0, idx1)
                out = fn(a.clone(), z, b, idx0, idx1)
                self.assertEqual(out_opt, out, msg=f"{dynamic=}")

                # We have an indirect store via atomic_add
                has_indirect(code, tl_fn="tl.atomic_add")
                # We cannot elide he assert in this case
                has_assert(code, lower=True, upper=True)

        def test_not_materialize_pointwise_reduction(self):
            def fn(a, b):
                return (a - b).sum(dim=-1).amax(dim=-1)

            N = 16
            K = 7
            fn_opt = torch._dynamo.optimize("inductor")(fn)
            inps = [
                torch.randn(N, 1, K, device=GPU_TYPE),
                torch.randn(1, N, K, device=GPU_TYPE),
            ]
            code = run_and_get_triton_code(fn_opt, *inps)
            self.assertEqual(
                code.count("tl.store"), 2 if config.triton.multi_kernel else 1
            )
            self.assertTrue("out_ptr1" in code)
            self.assertFalse("out_ptr0" in code)
            self.assertEqual(fn_opt(*inps), fn(*inps))

        def test_numpy_on_gpu(self):
            x = np.arange(10, dtype=np.float32)

            @torch.compile
            def fn(x):
                return np.sin(x)

            def fn_gpu(x):
                with torch.device(GPU_TYPE):
                    return fn(x)

            r = fn_gpu(x)
            code = run_and_get_triton_code(fn_gpu, x)
            self.assertIn("tl_math.sin", code)
            self.assertEqual(type(r), np.ndarray)
            self.assertEqual(r, np.sin(x))

        def test_numpy_autograd(self):
            def my_torch(x):
                y = torch.cat([torch.sin(x) ** 2, torch.max(x)[None]])
                return y.sum()

            def my_np(x):
                y = np.concatenate([np.sin(x) ** 2, np.max(x)[None]])
                return np.sum(y)

            @torch.compile
            def wrapper(x):
                return torch.compiler.wrap_numpy(my_np)(x)

            @torch.compile
            def wrapper2(x):
                x = x.numpy()
                y = my_np(x)
                return torch.from_numpy(y)

            x_np = torch.arange(8, dtype=torch.float32, requires_grad=True)
            x = torch.arange(8, dtype=torch.float32, requires_grad=True)
            out_np = wrapper(x_np)
            out = my_torch(x)
            self.assertEqual(out, out_np)

            x2_np = torch.arange(8, dtype=torch.float32, requires_grad=True)
            out2_np = wrapper2(x2_np)
            self.assertEqual(out, out2_np)

            out_np.backward()
            out.backward()
            self.assertEqual(x.grad, x_np.grad)

            out2_np.backward()
            self.assertEqual(x.grad, x2_np.grad)

        # Disable constant propagation, so we isolate value range analysis
        @patch.object(config, "constant_and_index_propagation", False)
        @patch.object(config, "joint_graph_constant_folding", False)
        def test_cant_optimize_compute(self):
            def ones():
                return torch.ones([4], device=GPU_TYPE)

            def suffix(inp):
                return (inp.to(torch.int64) + 1).to(torch.float64)

            ten = torch.rand([4], device=GPU_TYPE)

            for foo in (
                lambda x: x + 2147483657,
                lambda x: torch.where(x < 0, ones(), ones() - 2) * (-(2 ** (40))),
                lambda x: x + ten,
                lambda x: x + ten.sum(),
            ):

                def fn():
                    return suffix(foo(ones()))

                fn_opt = torch._dynamo.optimize("inductor")(fn)
                code = run_and_get_triton_code(fn_opt)

                # this cannot be optimized away, value too large
                self.assertTrue("to(tl.int64)" in code)
                self.assertEqual(fn_opt(), fn())

        # Disable constant propagation, so we isolate value range analysis
        @patch.object(config, "constant_and_index_propagation", False)
        @patch.object(config, "joint_graph_constant_folding", False)
        def test_optimize_compute(self):
            def ones():
                return torch.ones([4], device=GPU_TYPE)

            def suffix(inp):
                return (inp.to(torch.int64) + 1).to(torch.float64)

            for foo in (
                lambda x: x + 500,
                lambda x: torch.where(x < 0, ones(), ones() - 2) * (-(2 ** (20))),
                lambda x: x / 30,
            ):

                def fn():
                    return suffix(foo(ones()))

                fn_opt = torch._dynamo.optimize("inductor")(fn)
                code = run_and_get_triton_code(fn_opt)

                # this can be optimized away, value too large
                self.assertTrue("to(tl.int64)" not in code)
                self.assertTrue("to(tl.int32)" in code)

                self.assertEqual(fn_opt(), fn())

        # https://github.com/pytorch/pytorch/issues/130335
        def test_ctr_not_moved_to_cuda_when_used_in_index_put(self):
            @torch.compile
            def f(x, mask):
                x[:, mask] = -math.inf
                return x

            x_tmp = torch.randn(512, 19, device=GPU_TYPE)
            x = x_tmp.permute(1, 0).view(-1, 128, 4)[:, :, 1:]

            mask_tmp = torch.ones(128, 3, dtype=torch.int32, device=GPU_TYPE)
            mask = mask_tmp == mask_tmp
            f(x, mask)
            code = run_and_get_triton_code(f, x, mask)
            # What we are testing here:
            # inductor has a pass to move tensor constructors on cpu to cuda
            # (the -math.inf will become a scalar-tensor input to index_put_())
            # we are asserting that when inductor allocates this tensor,
            # it does not move the tensor constructor to cuda and keeps it on CPU.
            self.assertFalse("empty_strided_cuda(()" in code)

        @config.patch("triton.use_block_ptr", False)
        def test_evict_last_non_coalesced_loads(self):
            @torch.compile
            def f(a, b):
                return (a * b).sum(dim=-1)

            N = 512
            inps = (
                torch.randn(N, N, N, device=GPU_TYPE).permute(2, 1, 0),
                torch.randn(N, N, N, device=GPU_TYPE).permute(1, 2, 0),
            )
            code = run_and_get_triton_code(f, *inps)
            lines = [line for line in code.split("\n") if "tl.load" in line]
            if config.triton.multi_kernel:
                # the first 2 lines are generated for the persistent reduction
                # variant.
                self.assertExpectedInline(
                    "\n".join(lines),
                    """\
    tmp0 = tl.load(in_ptr0 + (x1 + (512*x0) + (262144*r2)), rmask, eviction_policy='evict_last', other=0.0)
    tmp1 = tl.load(in_ptr1 + (x3 + (262144*r2)), rmask, other=0.0)
        tmp0 = tl.load(in_ptr0 + (x1 + (512*x0) + (262144*r2)), rmask, eviction_policy='evict_last', other=0.0)
        tmp1 = tl.load(in_ptr1 + (x3 + (262144*r2)), rmask, eviction_policy='evict_first', other=0.0)""",
                )
            else:
                self.assertExpectedInline(
                    "\n".join(lines),
                    """\
        tmp0 = tl.load(in_ptr0 + (x1 + 512*x0 + 262144*r2), rmask, eviction_policy='evict_last', other=0.0)
        tmp1 = tl.load(in_ptr1 + (x3 + 262144*r2), rmask, eviction_policy='evict_first', other=0.0)""",
                )

        @config.patch("triton.use_block_ptr", True)
        def test_evict_last_non_coalesced_loads_block_ptr(self):
            @torch.compile
            def f(a, b):
                return (a * b).sum(dim=-1)

            N = 512
            inps = (
                torch.randn(N, N, N, device=GPU_TYPE).permute(2, 1, 0),
                torch.randn(N, N, N, device=GPU_TYPE).permute(1, 2, 0),
            )
            code = run_and_get_triton_code(f, *inps)
            lines = [line for line in code.split("\n") if "tl.load" in line]

            if config.triton.multi_kernel:
                # the first 2 lines are generated for the persistent reduction
                # variant.
                self.assertExpectedInline(
                    "\n".join(lines),
                    """\
    tmp0 = tl.load(in_ptr0 + (x1 + (512*x0) + (262144*r2)), rmask, eviction_policy='evict_last', other=0.0)
    tmp1 = tl.load(tl.make_block_ptr(in_ptr1, shape=[262144, 512], strides=[1, 262144], block_shape=[XBLOCK, RBLOCK], order=[0, 1], offsets=[xoffset, roffset]), boundary_check=[1], padding_option='zero')
        tmp0 = tl.load(in_ptr0 + (x1 + (512*x0) + (262144*r2)), rmask, eviction_policy='evict_last', other=0.0)
        tmp1 = tl.load(block_ptr0, boundary_check=[1], padding_option='zero', eviction_policy='evict_first')""",  # noqa: B950 line too long
                )
            else:
                self.assertExpectedInline(
                    "\n".join(lines),
                    """\
        tmp0 = tl.reshape(tl.broadcast_to(tl.load(block_ptr0, boundary_check=[2], padding_option='zero', eviction_policy='evict_last')[:, None, :, :], [(511 + XBLOCK) // 512, ((1) * ((1) <= ((511 + XBLOCK) // 512)) + ((511 + XBLOCK) // 512) * (((511 + XBLOCK) // 512) < (1))), ((512) * ((512) <= (XBLOCK)) + (XBLOCK) * ((XBLOCK) < (512))), RBLOCK]), [XBLOCK, RBLOCK])
        tmp1 = tl.load(block_ptr1, boundary_check=[1], padding_option='zero', eviction_policy='evict_first')""",  # noqa: B950 line too long
                )

        # Disable index propagation, so the indirect indexing isn't optimized away
        @patch.object(config, "constant_and_index_propagation", False)
        def test_computed_indirect_mask(self):
            def fn(x, n):
                tmp = torch.arange(n, device=x.device)
                return x[tmp] + 1

            x = torch.randn(8, device=GPU_TYPE)
            fn_opt = torch.compile(fn)
            code = run_and_get_triton_code(fn_opt, x, 8)
            # load should be masked
            self.assertTrue(
                "tl.load(in_ptr0 + (tmp0), xmask" in code
                or "tl.load(in_ptr0 + (tmp0), (xmask).to(tl.int1)" in code
            )
            self.assertEqual(fn(x, 8), fn_opt(x, 8))

        @config.patch("triton.prefer_nd_tiling", True)
        @config.patch("triton.max_tiles", 3)
        @parametrize(
            "block_multiple, ynumel_exceed_ygrid_size",
            [
                # xdim has constant mask, ydim does not
                [True, True],
                # xdim, ydim both have a constant mask
                [True, False],
                # if numel not a block multiple, no constant mask
                [False, False],
                # TODO: test zdim too
            ],
        )
        def test_has_constant_mask(self, block_multiple, ynumel_exceed_ygrid_size):
            from torch._inductor.runtime.hints import TRITON_MAX_BLOCK
            from torch._inductor.runtime.runtime_utils import get_max_y_grid

            shape = [TRITON_MAX_BLOCK["Y"], TRITON_MAX_BLOCK["X"]]

            if not block_multiple:
                shape = [s + 1 for s in shape]

            if ynumel_exceed_ygrid_size:
                shape[0] = (
                    shape[0] * (math.ceil(get_max_y_grid() / shape[0])) + shape[0]
                )

            a = torch.zeros(shape, device=GPU_TYPE, dtype=torch.bool)
            b = torch.zeros((shape[0], 1), device=GPU_TYPE, dtype=torch.bool)

            opt_fn = torch.compile(torch.add)
            code = run_and_get_triton_code(opt_fn, a, b)

            if block_multiple:
                self.assertTrue("xmask = tl.full" in code)
                if ynumel_exceed_ygrid_size:
                    self.assertTrue("ymask = yindex < ynumel" in code)
                else:
                    self.assertTrue("ymask = tl.full" in code)
            else:
                self.assertTrue("ymask = yindex < ynumel" in code)
                self.assertTrue("xmask = xindex < xnumel" in code)

        def test_kernel_names_descriptive(self):
            @torch._dynamo.optimize("inductor")
            def fn1(x):
                return x.cos().sin()

            @torch._dynamo.optimize("inductor")
            def fn2(x):
                x = torch.mm(x, x)
                x = torch.softmax(x, dim=1)
                return x

            mod = nn.Sequential(
                nn.Linear(4, 4),
                nn.LayerNorm(4),
                nn.ReLU(),
            ).to(device=GPU_TYPE)

            @torch._dynamo.optimize("inductor")
            def fn3(x):
                return mod(x)

            func_and_kernel_aten = [
                (fn1, "triton_poi_fused_cos_sin", (torch.randn(8, device=GPU_TYPE),)),
                (
                    fn2,
                    "triton_poi_fused__softmax",
                    (torch.randn(4, 4, device=GPU_TYPE),),
                ),
                (
                    fn3,
                    "triton_poi_fused_native_layer_norm_relu",
                    (torch.randn(4, 4, device=GPU_TYPE),),
                ),
            ]
            func_and_kernel_torch = [
                (fn1, "triton_poi_fused_cos_sin", (torch.randn(8, device=GPU_TYPE),)),
                (
                    fn2,
                    "triton_poi_fused_softmax",
                    (torch.randn(4, 4, device=GPU_TYPE),),
                ),
                (
                    fn3,
                    "triton_poi_fused_layer_norm_relu"
                    if torch._dynamo.config.inline_inbuilt_nn_modules
                    else "triton_poi_fused_LayerNorm_ReLU",
                    (torch.randn(4, 4, device=GPU_TYPE),),
                ),
            ]

            def test_funcs(func_and_kernel):
                with torch.no_grad():
                    for fn, kernel_name, inps in func_and_kernel:
                        code = run_and_get_triton_code(fn, *inps)
                        if kernel_name not in code:
                            print(code)
                        self.assertTrue(kernel_name in code)

            test_funcs(func_and_kernel_aten)
            patch.object(config.triton, "descriptive_names", "torch")(test_funcs)(
                func_and_kernel_torch
            )

        @patch.object(config, "profile_bandwidth", True)
        def test_bandwidth_profiler(self):
            @torch._dynamo.optimize("inductor")
            def fn(x):
                x = x.cos()
                x = x.cos()
                x = torch.mm(x, x)
                x = x.sin()
                x = x.relu()
                return x

            inp = torch.randn(4, 4, device=GPU_TYPE)
            code = run_and_get_triton_code(fn, inp)
            fn(inp)
            self.assertTrue("start_graph" in code)
            self.assertTrue("end_graph" in code)

        def test_comment_graph_fragment(self):
            @torch._dynamo.optimize("inductor")
            def fn(x):
                x = x.sin()
                x = x.relu()
                return x

            inp = torch.randn(4, 4, device=GPU_TYPE)
            code = run_and_get_triton_code(fn, inp)
            fn(inp)
            if config.cpp_wrapper:
                self.assertTrue("fused_relu_sin" in code)
            else:
                self.assertTrue("Graph fragment" in code)
                self.assertTrue(
                    "%sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default]"
                    in code
                )
                self.assertTrue(
                    "%relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default]"
                    in code
                )

        def test_split_op_with_sym(self):
            def fn(x: torch.Tensor) -> torch.Tensor:
                # split(tensor, sympy.Integer), split(tensor, sympy.Expr)
                return torch.split(x, x.shape[0]), torch.split(x, x.shape[0] // 2)

            for dynamic_shapes in [True, False]:
                with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes):
                    torch._dynamo.reset()
                    fn_opt = torch._dynamo.optimize("inductor", dynamic=dynamic_shapes)(
                        fn
                    )
                    inps = torch.randn([5, 5])
                    fn_opt(inps)

        @skipIfRocm
        @unittest.skipIf(IS_FBCODE, "fbcode system python does not provide torch")
        def test_indirect_device_assert(self):
            dir_path = os.path.dirname(os.path.realpath(__file__))
            test_path = os.path.join(dir_path, "indirect_assert_helper.py")
            fns = ("first_arg", "store", "second_arg", "same_pm_one", "same_pp_one")

            def test(fn, ndims, dyn_shape, one_size=False):
                proc = subprocess.Popen(
                    [
                        sys.executable,
                        test_path,
                        fn,
                        str(ndims),
                        str(dyn_shape),
                        str(one_size),
                    ],
                    stdout=subprocess.PIPE,
                    stderr=subprocess.PIPE,
                    env={**os.environ, "MKL_THREADING_LAYER": "GNU"},
                )
                stderr = proc.communicate()[1]
                self.assertTrue(
                    any(
                        "out of bounds" in err.decode("utf-8")
                        for err in stderr.splitlines()
                    ),
                    f"{fn}, {ndims}, {dyn_shape}, {one_size}",
                )

            for fn, ndims, dyn_shape in itertools.product(fns, (2, 3), (True, False)):
                test(fn, ndims, dyn_shape)

            test("first_arg", 2, False, True)

            for fn, dyn_shape in itertools.product(
                ("upper1", "upper2", "lower1", "lower2"), (True, False)
            ):
                test(fn, 2, dyn_shape)

        @patch("torch._inductor.config.comment_origin", True)
        @patch("torch._functorch.config.max_dist_from_bw", 0)
        def test_inductor_sequence_nr(self):
            class Model(torch.nn.Module):
                def __init__(self) -> None:
                    super().__init__()
                    self.conv1 = torch.nn.Conv2d(
                        in_channels=16,
                        out_channels=16,
                        kernel_size=(1, 1),
                        stride=1,
                        padding="same",
                        bias=True,
                    )
                    self.bn1 = torch.nn.BatchNorm2d(num_features=16)
                    self.relu1 = torch.nn.ReLU()
                    self.loss_fn = torch.nn.L1Loss()

                def forward(self, x, target):
                    y = x
                    x = self.conv1(x)
                    x = self.bn1(x)
                    x = self.relu1(x)
                    x = x + y
                    x = torch.flatten(x)
                    output = self.loss_fn(x, target)
                    return (output,)

            def get_triton_codegen(optimized_module, args):
                def run_with_backward():
                    result = optimized_module(*args)
                    result[0].backward()
                    return result

                res, (fwd_code, bwd_code) = run_and_get_code(run_with_backward)
                return fwd_code, bwd_code

            x = torch.rand(100, 16, 32, 32, requires_grad=True, device=GPU_TYPE)
            target = torch.rand(1, device=GPU_TYPE)
            args = [x, target]
            model = Model().to(device=GPU_TYPE)
            opt_model = torch.compile(model)
            fwd_code, bwd_code = get_triton_codegen(opt_model, args)

            bwd_seq_nr_set = set()
            fwd_seq_nr_set = set()
            for idx, code in enumerate([fwd_code, bwd_code]):
                seq_nr_set = bwd_seq_nr_set if idx > 0 else fwd_seq_nr_set
                prefix = "BWD" if idx > 0 else "FWD"
                for line in code.split("\n"):
                    if "seq_nr" in line:
                        res = re.search(r"seq_nr:(\d+)", line)
                        if res:
                            seq_nr_set.add(int(res.group(1)))
            self.assertTrue(bwd_seq_nr_set.issubset(fwd_seq_nr_set))

        @config.patch(
            {
                "coordinate_descent_tuning": True,
                "triton.unique_kernel_names": True,
                "benchmark_kernel": True,
            }
        )
        @skipIfRocm
        @expectedFailureXPU
        @unittest.skipIf(
            torch.cuda.is_available() and torch.cuda.get_device_capability() < (9, 0),
            "Triton does not support fp8 on A100",
        )
        def test_red_followed_by_transposed_pointwise(self):
            bs = 26624
            dim = 1024

            @torch.compile(dynamic=False)
            def f(in1, in2, a, b, scale_a, scale_b):
                out = torch.nn.functional.silu(in1) * in2
                out_row = (out / out.amax(dim=1, keepdim=True)).to(torch.float8_e4m3fn)
                out_col = (out / out.amax(dim=0, keepdim=True)).to(torch.float8_e4m3fn)

                # setup strides for _scaled_mm
                out_row = out_row.contiguous()
                out_col = out_col.t().contiguous().t()

                return (
                    torch._scaled_mm(
                        out_row, a, scale_a, scale_b, out_dtype=torch.bfloat16
                    ),
                    torch._scaled_mm(
                        b, out_col, scale_a, scale_b, out_dtype=torch.bfloat16
                    ),
                )

            in1 = torch.randn((bs, dim), dtype=torch.bfloat16, device=GPU_TYPE)
            in2 = torch.randn((bs, dim), dtype=torch.bfloat16, device=GPU_TYPE)
            a = (
                torch.randn((dim, dim), dtype=torch.bfloat16, device=GPU_TYPE)
                .t()
                .to(torch.float8_e4m3fn)
            )
            b = torch.randn((dim, bs), dtype=torch.bfloat16, device=GPU_TYPE).to(
                torch.float8_e4m3fn
            )
            # Scales
            scale_a = torch.tensor(1.0, device=GPU_TYPE)
            scale_b = torch.tensor(1.0, device=GPU_TYPE)

            # warmup
            _, (wrapper,) = run_and_get_code(f, in1, in2, a, b, scale_a, scale_b)

            # Previously indcutor decide reduction hint for a reduction kernel without considering
            # the pointwise nodes. That will cause the third reduction kernel in this wrapper to be a
            # persistent inner reduction and cause bad perf.
            #
            # We fix that by making the third reduction a non-persistent reduction
            # and improve the perf by 4.14x (451us -> 109us)
            self.assertEqual(3, wrapper.count("def triton_red_"))
            self.assertEqual(0, wrapper.count("def triton_per_"))

            if DO_PERF_TEST:
                with torch.profiler.profile(
                    activities=[torch.profiler.ProfilerActivity.CUDA]
                ) as p:
                    for _ in range(1000):
                        f(in1, in2, a, b, scale_a, scale_b)

                print(p.key_averages().table(max_name_column_width=200))

        def test_non_blocking_copy_codegen(self):
            # Checks non_blocking arg is present in codegen
            # (see https://github.com/pytorch/pytorch/issues/136260)
            def fn(x):
                return x.to(device=self.device, non_blocking=True)

            inp = torch.randn(3, 4)
            _, (code,) = run_and_get_code(torch.compile(fn), inp)

            if config.cpp_wrapper:
                # cpp_wrapper passes "True" as "1" in this case, so check it more
                # explicitly.
                FileCheck().check("aoti_torch_copy_").check_same("1)").run(code)
            else:
                FileCheck().check("copy_").check_same("True").run(code)

        def test_layer_norm_inplaces_after_matmul(self):
            # https://github.com/pytorch/pytorch/issues/132826
            batch_size = 32
            seq_length = 50
            hidden_size = 768

            layer_norm = torch.nn.LayerNorm(hidden_size, device=GPU_TYPE)

            def fn(inp, weight):
                matmul_output = inp @ weight
                final_output = layer_norm(matmul_output)
                return final_output

            inps = [
                torch.randn(batch_size, seq_length, hidden_size, device=GPU_TYPE),
                torch.randn(hidden_size, hidden_size, device=GPU_TYPE),
            ]
            fn_opt = torch.compile(fn)
            code = run_and_get_triton_code(fn_opt, *inps)
            self.assertTrue(len(re.findall(r"in_out_ptr\d+", code)) > 0)
            self.assertEqual(fn_opt(*inps), fn(*inps))

        @torch._functorch.config.patch("donated_buffer", True)
        def test_donated_buffer_inplace(self):
            batch_size = 32
            seq_length = 50
            hidden_size = 256

            inp = torch.randn(
                batch_size,
                seq_length,
                hidden_size,
                requires_grad=True,
                device=self.device,
            )
            weight = torch.randn(
                hidden_size, hidden_size, requires_grad=True, device=self.device
            )

            layer_norm = torch.nn.LayerNorm(hidden_size, device=self.device)

            def fn(inp, weight):
                matmul_output = inp @ weight
                final_output = layer_norm(matmul_output)
                return final_output

            fn_opt = torch.compile(fn)

            def wrapper(inp, weight):
                return fn_opt(inp, weight).sum().backward()

            _, code = run_and_get_code(wrapper, inp, weight)
            self.assertTrue("in_out_ptr" in code[1])

    class RNNTest(TestCase):
        device_type = GPU_TYPE

        class Model(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.gru = torch.nn.GRU(16, 16, batch_first=True)

            def forward(self, x):
                return self.gru(x)

        def test_rnn_compile_safe(self):
            device = torch.device(GPU_TYPE)
            model = RNNTest.Model().to(device)
            model = torch._dynamo.optimize("inductor")(model)
            x = torch.rand(1024, 20, 16).to(device)
            model(x)

    class NanCheckerTest(TestCase):
        @config.patch("nan_asserts", True)
        def test_nan_checker_pass(self):
            def f(x):
                return torch.softmax(x, dim=-1)

            x = torch.randn(2, 1024, device=GPU_TYPE)
            ref = f(x)
            actual, code = run_and_get_code(torch.compile(f), x)
            self.assertTrue(torch.allclose(ref, actual))

            code = code[0]
            if config.cpp_wrapper:
                self.assertIn("aoti_torch_check_inf_and_nan", code)
            else:
                self.assertIn("# make sure graph inputs are not nan/inf", code)
                self.assertRegex(code, r"assert not .*\.isnan\(\)\.any\(\).item\(\)")
                self.assertRegex(code, r"assert not .*\.isinf\(\)\.any\(\).item\(\)")

        @config.patch("nan_asserts", True)
        def test_nan_checker_fail(self):
            def f(x):
                return torch.softmax(x, dim=-1)

            x = torch.randn(2, 1024, device=GPU_TYPE)
            x[0, 0] = float("nan")
            with self.assertRaises(
                AssertionError if not config.cpp_wrapper else RuntimeError
            ):
                torch.compile(f)(x)


if HAS_CPU:

    class TestFull(TestCase):
        def test_full_dtype(self):
            pytypes = (
                bool,
                int,
                float,
                # TODO: Triton's JITFunction._type_of has no support for complex
                # complex,
            )

            dtypes = (
                torch.bool,
                torch.int32,
                torch.int64,
                torch.float32,
                torch.float64,
                None,
                # torch.complex64,
                # torch.complex128,
            )

            def fn(pytype, dtype):
                if pytype is bool:
                    fill_value = True
                elif pytype is int:
                    fill_value = 42
                elif pytype is float:
                    fill_value = 42.0
                else:
                    raise AssertionError(f"Unexpected Python type: {pytype}")

                return torch.full(
                    (4, 6), fill_value, dtype=dtype, device=torch.device("cpu")
                )

            fn_opt = torch._dynamo.optimize("inductor")(fn)

            for pytype, dtype in itertools.product(pytypes, dtypes):
                with enable_python_dispatcher():
                    with torch.no_grad():
                        ret_opt = fn_opt(pytype, dtype)

                self.assertEqual(ret_opt, fn(pytype, dtype))


if __name__ == "__main__":
    from torch._inductor.test_case import run_tests

    if HAS_CPU or HAS_GPU:
        run_tests(needs="filelock")