1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
# Owner(s): ["module: inductor"]
import sys
import unittest
import torch
from torch.testing._internal.common_utils import IS_LINUX, skipIfXpu
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
try:
import triton # noqa: F401 # @manual
import triton.language as tl # @manual
except ImportError:
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("requires triton") # noqa: B904
from torch._inductor import config
from torch._inductor.runtime.hints import (
AttrsDescriptorWrapper,
AutotuneHint,
DeviceProperties,
HeuristicType,
TRITON_MAX_BLOCK,
)
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch._inductor.runtime.triton_heuristics import (
autotune_hints_to_configs,
CachingAutotuner,
triton_config,
)
from torch._inductor.test_case import run_tests, TestCase
class TestTritonHeuristics(TestCase):
device_type = GPU_TYPE
def test_triton_config(self):
"""
Make sure block size does not exceed the maximum defined in inductor config.
"""
cfg = triton_config({"x": 2048, "y": 2}, 64, 64)
for label in "XYZ":
key = f"{label}BLOCK"
if key not in cfg.kwargs:
continue
self.assertTrue(cfg.kwargs[key] <= TRITON_MAX_BLOCK[label])
def _test_artificial_zgrid(self):
def forward(primals_1, primals_2, primals_5):
view = torch.ops.aten.reshape.default(primals_5, [-1, 2, 4])
primals_5 = None
permute = torch.ops.aten.permute.default(view, [0, 2, 1])
clone = torch.ops.aten.clone.default(
permute, memory_format=torch.contiguous_format
)
permute = None
view_1 = torch.ops.aten.reshape.default(clone, [-1, 4])
clone = None
permute_1 = torch.ops.aten.permute.default(primals_1, [1, 0])
primals_1 = None
addmm = torch.ops.aten.addmm.default(primals_2, view_1, permute_1)
primals_2 = None
return addmm
s0 = 16777472
s1 = 8
args = [
torch.rand([2, 4], device=GPU_TYPE),
torch.rand([2], device=GPU_TYPE),
torch.rand([s0, s1], device=GPU_TYPE),
]
torch._dynamo.mark_dynamic(args[-1], 0)
foo_c = torch.compile(forward)
self.assertEqual(forward(*args), foo_c(*args))
args = [
torch.rand([2, 4], device=GPU_TYPE),
torch.rand([2], device=GPU_TYPE),
torch.rand([s0, s1], device=GPU_TYPE),
]
self.assertEqual(forward(*args), foo_c(*args))
@skipIfXpu
def test_artificial_zgrid(self):
self._test_artificial_zgrid()
@skipIfXpu
@config.patch("cpp_wrapper", True)
def test_artificial_grid_cpp_wrapper(self):
self._test_artificial_zgrid()
def _get_cos_kernel_caching_autotuner_args(self):
@triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.cos(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
triton_meta = {
"signature": {"in_ptr0": "*fp32", "out_ptr0": "*fp32", "xnumel": "i32"},
"device": DeviceProperties.create(torch.device("cuda")),
"constants": {},
"configs": [
AttrsDescriptorWrapper(divisible_by_16=(0, 1, 2), equal_to_1=())
],
}
configs = [
triton_config({"x": 16}, 64),
triton_config({"x": 256}, 64),
]
inductor_meta = {}
return {
"fn": triton_,
"triton_meta": triton_meta,
"configs": configs,
"save_cache_hook": False,
"mutated_arg_names": [],
"reset_to_zero_arg_names": [],
"optimize_mem": True,
"heuristic_type": HeuristicType.POINTWISE,
"inductor_meta": inductor_meta,
}
@skipIfXpu
def test_pre_hook_assert(self):
# assert if any of the configs passed to the CachingAutotuner have pre-hooks
args = self._get_cos_kernel_caching_autotuner_args()
def pre_hook(kwargs):
if "in_ptr0" in kwargs:
kwargs["in_ptr0"].zero_()
for cfg in args["configs"]:
cfg.pre_hook = pre_hook
with self.assertRaisesRegex(AssertionError, "pre_hook"):
autotuner = CachingAutotuner(**args)
def test_autotune_hints_to_configs(self):
device_props = DeviceProperties.create(torch.device(GPU_TYPE))
device_props = device_props._replace(warp_size=8)
hints = {AutotuneHint.ONE_ELEMENT_PER_THREAD}
size_hints = (1024,)
block_size = 256
seen_num_elements_per_warp = set()
def mock_triton_config(
size_hints,
x,
y=None,
z=None,
num_stages=None,
num_elements_per_warp=None,
min_elem_per_thread=None,
):
seen_num_elements_per_warp.add(num_elements_per_warp)
return None
with unittest.mock.patch(
"torch._inductor.runtime.triton_heuristics.triton_config",
mock_triton_config,
):
_ = autotune_hints_to_configs(hints, size_hints, block_size, device_props)
self.assertTrue(8 in seen_num_elements_per_warp)
if __name__ == "__main__":
if IS_LINUX and HAS_GPU:
run_tests()
|