1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# Owner(s): ["module: inductor"]
import functools
import unittest
import torch
from torch._dynamo import config as dynamo_config
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import is_big_gpu
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
skipGPUIf,
)
from torch.testing._internal.common_utils import IS_LINUX, parametrize
from torch.testing._internal.inductor_utils import (
GPU_TYPE,
HAS_CUDA,
HAS_GPU,
requires_gpu,
)
class TestUnbackedSymints(InductorTestCase):
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_expand(self, device):
def fn(x, y):
nz = torch.nonzero(x)
# unbacked symint in nz.size
x_exp = nz.expand([-1, 128])
# unbacked symint in target sizes
y_exp = y.expand([-1, nz.size(0)])
return x_exp, y_exp
example_inputs = (
torch.randn((32), device=device),
torch.randn((32, 1), device=device),
)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_expand_ok_with_runtime_assert(self, device):
def fn(x):
nz = x.nonzero()
torch._check(nz.size(0) == 128)
return nz.expand([128, -1, 2])
x = make_tensor(32, 4, device=device, dtype=torch.float32, exclude_zero=True)
actual = torch.compile(fn, fullgraph=True)(x)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_broadcast_tensors(self, device):
def fn(x):
nz = x.nonzero()
a = torch.zeros([nz.size(0), 512])
b = torch.ones([nz.size(0), 1])
return a * b
x = torch.randn(32, 4, device=device)
actual = torch.compile(fn, fullgraph=True)(x)
expected = fn(x)
torch.testing.assert_close(actual, expected)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_autotuning(self, device):
def fn(x, y):
nz = torch.nonzero(x)
# unbacked symint in the GEMM input shape
a = x.new_ones([nz.size(0), y.size(0)])
return a @ y
example_inputs = (
torch.randn((64), device=device),
torch.randn((32, 16), device=device),
)
with inductor_config.patch(
{
"max_autotune_gemm": True,
}
):
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_scalar_outputs": True})
def test_split_with_sizes(self, device):
def fn(x, y):
l = y.tolist()
s = torch.split(x, l)
d = l[0] + l[1] + l[2]
return s[0].sum(), d
example_inputs = (torch.randn((32), device=device), torch.tensor((7, 16, 9)))
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_view_of_slice(self, device):
# Tests View.create(slice, size_with_unbacked_symint)
def fn(x):
nz = torch.nonzero(x) # introduce unbacked symint
squared = nz * nz # avoid ReinterpretView when lowering Slice
sliced = torch.ops.aten.slice.Tensor(squared, dim=1, start=-2, end=None)
view = sliced.unsqueeze(dim=0)
return view.squeeze(
dim=0
) # make sure no unbacked symint in output's stride
example_inputs = (torch.randn(1, 1, 1, 1, device=device),)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@requires_gpu()
@dynamo_config.patch({"capture_scalar_outputs": True})
def test_triton_kernel_grid(self, device):
if device == "cpu":
raise unittest.SkipTest("Triton kernel requires GPU")
from torch.testing._internal.triton_utils import add_kernel
def fn(x):
maxlen = max(x.item(), 512)
a = torch.ones(maxlen, device=device)
b = torch.ones(maxlen, device=device)
out = torch.zeros_like(a)
# unbacked symint in grid
add_kernel[(1, 1, maxlen)](a, b, out, maxlen, 32)
return out
example_inputs = (torch.randint(high=1024, size=(1,), device=device),)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@skipGPUIf(not HAS_GPU, "requires gpu and triton")
@dynamo_config.patch({"capture_dynamic_output_shape_ops": True})
def test_nonzero_in_inference_mode(self, device):
def fn(x):
return torch.nonzero(x)
example_inputs = (torch.randint(0, 2, (128,), device=device),)
with torch.inference_mode():
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@inductor_config.patch({"max_autotune": True})
@dynamo_config.patch({"capture_scalar_outputs": True})
def test_equivalent_backed_unbacked(self, device):
# Tests scenario when there are two equivalent backed & unbacked symints,
# but when we look-up a size hint on the unbacked symint, we ignorantly
# use the default fallback hint.
def fn(x, w, a, b):
# Make tensors where 1st dim is unbacked/backed.
u0, s0 = a.item(), b.size(0)
unbacked = x.expand(u0, *x.shape)
backed = x.expand(s0, *x.shape)
# The cat unifies u0 and s0 -- i.e. u0 == s0.
cat = torch.cat([backed, unbacked, unbacked], dim=1) # [s0, 30, 16]
mat1 = torch.permute(cat, [0, 2, 1]) # [s0, 16, 30]
mat2 = w.expand(u0, *w.shape) # [u0, 30, 32]
bmm = torch.ops.aten.bmm(mat1, mat2)
return bmm
example_inputs = (
torch.randn((10, 16), dtype=torch.float32, device=device),
torch.randn((30, 32), dtype=torch.float32, device=device),
torch.tensor(7, device=device),
backed := torch.randn((7,), device=device),
)
torch._dynamo.mark_dynamic(backed, 0) # create backed symint
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@requires_gpu()
@dynamo_config.patch({"capture_scalar_outputs": True})
def test_vertical_pointwise_reduction_fusion(self, device):
# reset in case we run both cpu and cuda tests
torch._inductor.metrics.reset()
# Tests fusing a pointwise & reduction op with unbacked numel/rnumel.
def fn(x, y, repeats):
u0 = repeats.item()
unbacked = y.expand(u0, *y.shape) # [u0, 1, 16]
# Note: We add x to both pointwise and reduction. Otherwise, the
# scheduler will refuse to fuse ops whose only common buffer has
# unbacked symints.
pointwise = unbacked + x
reduction = torch.sum(pointwise + x)
return pointwise, reduction
example_inputs = (
torch.randn(32, 16).to(GPU_TYPE),
torch.randn(1, 16).to(GPU_TYPE),
torch.tensor(32).to(GPU_TYPE),
)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@dynamo_config.patch({"capture_scalar_outputs": True})
@parametrize(
"torch_fn", [torch.mm, torch.bmm, torch.addmm], name_fn=lambda fn: fn.__name__
)
@parametrize("coordinate_descent_tuning", [True, False], name_fn=str)
def test_mm_and_friends(self, device, torch_fn, coordinate_descent_tuning):
if torch_fn == torch.addmm:
torch_fn = functools.partial(torch_fn, torch.ones(1, device=device))
def fn(x, w, repeats, is_bmm):
u0 = repeats.item()
torch._check_is_size(u0)
x_unbacked = x.expand(u0, 32)
w_unbacked = w.expand(32, u0)
if is_bmm:
# Make sure inputs are batched.
x_unbacked = x_unbacked.expand(10, *x_unbacked.shape)
w_unbacked = w_unbacked.expand(10, *w_unbacked.shape)
return torch_fn(x_unbacked, w_unbacked)
example_inputs = (
torch.randn(1, 32, device=device),
torch.randn(32, 1, device=device),
torch.tensor(100, device=device),
torch_fn == torch.bmm,
)
with inductor_config.patch(
{
# coordinate_descent_tuning has its own path during decomp
"coordinate_descent_tuning": coordinate_descent_tuning,
}
):
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_unbacked_range_tree_divisor(self, device):
def fn(x, num):
u0 = num.item()
torch._check_is_size(u0)
zeros = torch.zeros(u0, device=device, dtype=torch.int)
return (torch.ops.aten.index(x, [None, zeros]),)
example_inputs = (
torch.randn(16, 16, device=device),
torch.tensor(3, device=device),
)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
@dynamo_config.patch({"capture_scalar_outputs": True})
def test_unbacked_masked_scatter(self, device):
def fn(value, mask):
u0 = mask.count_nonzero()
source = torch.ones(u0, dtype=torch.float32, device=device)
return torch.masked_scatter(value, mask, source)
value = make_tensor(10, 10, dtype=torch.float32, device=device)
mask = make_tensor(10, 10, dtype=torch.bool, device=device)
example_inputs = (value, mask)
actual = torch.compile(fn, fullgraph=True)(*example_inputs)
expected = fn(*example_inputs)
torch.testing.assert_close(actual, expected)
instantiate_device_type_tests(TestUnbackedSymints, globals(), allow_xpu=True)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if IS_LINUX and HAS_GPU and (not HAS_CUDA or is_big_gpu()):
run_tests()
|