File: fixtures_src.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (76 lines) | stat: -rw-r--r-- 1,947 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from typing import Union

import torch


class TestVersionedDivTensorExampleV7(torch.nn.Module):
    def forward(self, a, b):
        result_0 = a / b
        result_1 = torch.div(a, b)
        result_2 = a.div(b)
        return result_0, result_1, result_2


class TestVersionedLinspaceV7(torch.nn.Module):
    def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
        c = torch.linspace(a, b, steps=5)
        d = torch.linspace(a, b)
        return c, d


class TestVersionedLinspaceOutV7(torch.nn.Module):
    def forward(
        self,
        a: Union[int, float, complex],
        b: Union[int, float, complex],
        out: torch.Tensor,
    ):
        return torch.linspace(a, b, out=out)


class TestVersionedLogspaceV8(torch.nn.Module):
    def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
        c = torch.logspace(a, b, steps=5)
        d = torch.logspace(a, b)
        return c, d


class TestVersionedLogspaceOutV8(torch.nn.Module):
    def forward(
        self,
        a: Union[int, float, complex],
        b: Union[int, float, complex],
        out: torch.Tensor,
    ):
        return torch.logspace(a, b, out=out)


class TestVersionedGeluV9(torch.nn.Module):
    def forward(self, x):
        return torch._C._nn.gelu(x)


class TestVersionedGeluOutV9(torch.nn.Module):
    def forward(self, x):
        out = torch.zeros_like(x)
        return torch._C._nn.gelu(x, out=out)


class TestVersionedRandomV10(torch.nn.Module):
    def forward(self, x):
        out = torch.zeros_like(x)
        return out.random_(0, 10)


class TestVersionedRandomFuncV10(torch.nn.Module):
    def forward(self, x):
        out = torch.zeros_like(x)
        return out.random(0, 10)


class TestVersionedRandomOutV10(torch.nn.Module):
    def forward(self, x):
        x = torch.zeros_like(x)
        out = torch.zeros_like(x)
        x.random(0, 10, out=out)
        return out