1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
from typing import Union
import torch
class TestVersionedDivTensorExampleV7(torch.nn.Module):
def forward(self, a, b):
result_0 = a / b
result_1 = torch.div(a, b)
result_2 = a.div(b)
return result_0, result_1, result_2
class TestVersionedLinspaceV7(torch.nn.Module):
def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
c = torch.linspace(a, b, steps=5)
d = torch.linspace(a, b)
return c, d
class TestVersionedLinspaceOutV7(torch.nn.Module):
def forward(
self,
a: Union[int, float, complex],
b: Union[int, float, complex],
out: torch.Tensor,
):
return torch.linspace(a, b, out=out)
class TestVersionedLogspaceV8(torch.nn.Module):
def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
c = torch.logspace(a, b, steps=5)
d = torch.logspace(a, b)
return c, d
class TestVersionedLogspaceOutV8(torch.nn.Module):
def forward(
self,
a: Union[int, float, complex],
b: Union[int, float, complex],
out: torch.Tensor,
):
return torch.logspace(a, b, out=out)
class TestVersionedGeluV9(torch.nn.Module):
def forward(self, x):
return torch._C._nn.gelu(x)
class TestVersionedGeluOutV9(torch.nn.Module):
def forward(self, x):
out = torch.zeros_like(x)
return torch._C._nn.gelu(x, out=out)
class TestVersionedRandomV10(torch.nn.Module):
def forward(self, x):
out = torch.zeros_like(x)
return out.random_(0, 10)
class TestVersionedRandomFuncV10(torch.nn.Module):
def forward(self, x):
out = torch.zeros_like(x)
return out.random(0, 10)
class TestVersionedRandomOutV10(torch.nn.Module):
def forward(self, x):
x = torch.zeros_like(x)
out = torch.zeros_like(x)
x.random(0, 10, out=out)
return out
|