File: test_custom_operators.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (153 lines) | stat: -rw-r--r-- 4,913 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Owner(s): ["oncall: jit"]

import os
import sys
import unittest

import torch


# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase


if __name__ == "__main__":
    raise RuntimeError(
        "This test file is not meant to be run directly, use:\n\n"
        "\tpython test/test_jit.py TESTNAME\n\n"
        "instead."
    )


def canonical(graph):
    return torch._C._jit_pass_canonicalize(graph).str(False)


class TestCustomOperators(JitTestCase):
    def test_dynamic_op_registry(self):
        from torch._ops import _OpNamespace

        self.assertTrue(hasattr(torch, "ops"))

        if "_test" in torch.ops.__dict__:
            torch.ops.__dict__.pop("_test")

        # Don't use `hasattr()` because it will call `__getattr__`.
        self.assertNotIn("_test", torch.ops.__dict__)
        torch.ops._test
        self.assertIn("_test", torch.ops.__dict__)
        self.assertEqual(type(torch.ops._test), _OpNamespace)

        self.assertNotIn("leaky_relu", torch.ops._test.__dict__)
        op = torch.ops._test.leaky_relu
        self.assertTrue(callable(op))
        self.assertIn("leaky_relu", torch.ops._test.__dict__)
        op2 = torch.ops._test.leaky_relu
        self.assertEqual(op, op2)

    def test_getting_invalid_attr(self):
        for attr in ["__origin__", "__self__"]:
            with self.assertRaisesRegexWithHighlight(
                AttributeError,
                f"Invalid attribute '{attr}' for '_OpNamespace' '_test'",
                "",
            ):
                getattr(torch.ops._test, attr)

    def test_simply_calling_an_operator(self):
        input = torch.randn(100)
        output = torch.ops.aten.relu(input)
        self.assertEqual(output, input.relu())

    def test_default_arguments_are_used(self):
        output = torch.ops._test.leaky_relu(torch.tensor([-1.0, 1.0]))
        self.assertEqual(output, torch.tensor([-0.01, 1]))

    def test_passing_too_many_args(self):
        with self.assertRaisesRegexWithHighlight(
            RuntimeError,
            r"aten::relu\(\) expected at most 1 argument\(s\) but received 2 argument\(s\)",
            "",
        ):
            torch.ops.aten.relu(1, 2)

    def test_passing_too_few_args(self):
        with self.assertRaisesRegexWithHighlight(
            RuntimeError, r"aten::relu\(\) is missing value for argument 'self'.", ""
        ):
            torch.ops.aten.relu()

    def test_passing_one_positional_but_not_the_second(self):
        with self.assertRaisesRegexWithHighlight(
            RuntimeError,
            r"aten::type_as\(\) is missing value for argument 'other'.",
            "",
        ):
            torch.ops.aten.type_as(torch.ones(5, 5))

    def test_passing_unknown_kwargs(self):
        with self.assertRaisesRegexWithHighlight(
            RuntimeError,
            "Unknown keyword argument 'foo' for operator '_test::leaky_relu'",
            "",
        ):
            torch.ops._test.leaky_relu(torch.ones(5), foo=torch.ones(5))

    def test_passing_and_returning_lists(self):
        # Replace with actual test once we support lists.
        a, b = torch.rand(5), torch.rand(5)
        output = torch.ops._test.cat([a, b])
        output_ref = torch.cat([a, b])
        self.assertEqual(output, output_ref)

    def test_calling_scripted_custom_op(self):
        @torch.jit.script
        def func(x):
            return torch.ops.aten.relu(x)

        input = torch.ones(5, 5)
        self.assertEqual(func(input), input.relu())

    def test_calling_traced_custom_op(self):
        input = torch.ones(5, 5)
        func = torch.jit.trace(torch.ops.aten.relu, [input])
        self.assertEqual(func(input), input.relu())

    @unittest.skip(
        "Need to figure out default dtype differences between fbcode and oss"
    )
    def test_script_graph_for_custom_ops_matches_traced_graph(self):
        input = torch.ones(5, 5)
        trace = torch.jit.trace(torch.ops.aten.relu, [input])
        self.assertExpectedInline(
            canonical(trace.graph),
            """\
graph(%0 : Float(5, 5)):
  %1 : Float(5, 5) = aten::relu(%0)
  return (%1)
""",
        )

    def test_script_graph_contains_custom_op(self):
        @torch.jit.script
        def func(x):
            return torch.ops.aten.relu(x)

        self.assertExpectedInline(
            canonical(func.graph),
            """\
graph(%x.1 : Tensor):
  %1 : Tensor = aten::relu(%x.1)
  return (%1)
""",
        )

    def test_generic_list(self):
        self.assertEqual(torch.ops._test.get_first([["hello"]]), "hello")

    # https://github.com/pytorch/pytorch/issues/80508
    def test_where_no_scalar(self):
        x = torch.rand(1, 3, 224, 224)
        torch.ops.aten.where(x > 0.5, -1.5, 1.5)  # does not raise