1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
# Owner(s): ["oncall: jit"]
import io
import math
import unittest
import torch
from torch.nn import init
from torch.testing._internal.common_utils import skipIfLegacyJitExecutor
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestGenerator(JitTestCase):
# torch.jit.trace does not properly capture the generator manual seed
# and thus is non deterministic even if the generator is manually seeded
@skipIfLegacyJitExecutor("legacy JIT executor does not support Generator type")
@unittest.expectedFailure
def test_trace(self):
def f():
generator = torch.Generator()
generator.seed()
generator.manual_seed(2023)
generator.initial_seed()
tensor = torch.empty(2, 2)
tensor.uniform_(0, 1, generator=generator)
return tensor
traced_f = torch.jit.trace(f, ())
# Run this 3 times to ensure that the generator is being manually seeded
# each time the traced function is run
for i in range(3):
torch.manual_seed(1)
eager_tensor = f()
# Change the seed of the default generator to
# check that we're using the generator from the
# trace
torch.manual_seed(2)
traced_tensor = traced_f()
self.assertEqual(eager_tensor, traced_tensor)
def test_script(self):
def f():
generator = torch.Generator()
generator.seed()
generator.manual_seed(2023)
generator.initial_seed()
tensor = torch.empty(2, 2)
tensor.normal_(-1.0, 1.0, generator=generator)
return tensor
script_f = torch.jit.script(f, ())
# Run this 3 times to ensure that the generator is being manually seeded
# each time the traced function is run
for i in range(3):
torch.manual_seed(1)
eager_tensor = f()
# Change the seed of the default generator to
# check that we're using the generator from the
# trace
torch.manual_seed(2)
script_tensor = script_f()
self.assertEqual(eager_tensor, script_tensor)
def test_default_generator(self):
def f():
# check that calling manual seed for the default generator works
torch.manual_seed(2023)
tensor = torch.empty(2, 2)
tensor.normal_(-1.0, 1.0)
return tensor
torch.manual_seed(1)
eager_tensor = f()
torch.manual_seed(2)
script_f = torch.jit.script(f, ())
script_tensor = script_f()
self.assertEqual(eager_tensor, script_tensor)
def test_generator_arg(self):
def f(generator: torch.Generator):
tensor = torch.empty(2, 2)
tensor.normal_(-1.0, 1.0, generator=generator)
return tensor
generator = torch.Generator()
generator.manual_seed(2023)
script_f = torch.jit.script(f, (generator,))
for i in range(3):
generator = torch.Generator()
generator.manual_seed(2023 + i)
torch.manual_seed(1 + i)
eager_tensor = f(generator)
generator = torch.Generator()
generator.manual_seed(2023 + i)
torch.manual_seed(1 + i)
script_tensor = script_f(generator)
self.assertEqual(eager_tensor, script_tensor)
def test_save_load(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.foo = torch.nn.Linear(2, 2, bias=False)
self.bar = torch.nn.Linear(2, 2, bias=False)
self.reset_parameters()
def reset_linear(self, module, generator):
init.kaiming_uniform_(
module.weight, a=math.sqrt(5), generator=generator
)
def reset_parameters(self):
generator = torch.Generator()
generator.manual_seed(1)
self.reset_linear(self.foo, generator)
generator = torch.Generator()
generator.manual_seed(2)
self.reset_linear(self.bar, generator)
def forward(self, x):
x = self.foo(x)
x = self.bar(x)
generator = torch.Generator()
generator.manual_seed(3)
r = torch.empty_like(x)
r.normal_(0.0, 1.0, generator=generator)
return x, r
eager_foo = Foo()
script_module = torch.jit.script(Foo())
saved_module = io.BytesIO()
torch.jit.save(script_module, saved_module)
saved_module.seek(0)
loaded_module = torch.jit.load(saved_module)
self.assertEqual(eager_foo.foo.weight, loaded_module.foo.weight)
self.assertEqual(eager_foo.bar.weight, loaded_module.bar.weight)
try:
# Run this 3 times so make sure that the generator seed is being set
# every time forward is called
for i in range(3):
x = torch.ones(2, 2)
out1, r1 = eager_foo(x)
out2, r2 = loaded_module(x)
try:
self.assertEqual(out1, out2)
except: # noqa: B001, E722
print(f"Iteration {i}:\n{out1=}\n{out2=}")
raise
try:
self.assertEqual(r1, r2)
except: # noqa: B001, E722
print(f"Iteration {i}:\n{r1=}\n{r2=}")
raise
except: # noqa: B001, E722
print(loaded_module.forward.code)
raise
|