File: test_logging.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (123 lines) | stat: -rw-r--r-- 4,292 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Owner(s): ["oncall: jit"]

import os
import sys

import torch


# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase


if __name__ == "__main__":
    raise RuntimeError(
        "This test file is not meant to be run directly, use:\n\n"
        "\tpython test/test_jit.py TESTNAME\n\n"
        "instead."
    )


class TestLogging(JitTestCase):
    def test_bump_numeric_counter(self):
        class ModuleThatLogs(torch.jit.ScriptModule):
            @torch.jit.script_method
            def forward(self, x):
                for i in range(x.size(0)):
                    x += 1.0
                    torch.jit._logging.add_stat_value("foo", 1)

                if bool(x.sum() > 0.0):
                    torch.jit._logging.add_stat_value("positive", 1)
                else:
                    torch.jit._logging.add_stat_value("negative", 1)
                return x

        logger = torch.jit._logging.LockingLogger()
        old_logger = torch.jit._logging.set_logger(logger)
        try:
            mtl = ModuleThatLogs()
            for i in range(5):
                mtl(torch.rand(3, 4, 5))

            self.assertEqual(logger.get_counter_val("foo"), 15)
            self.assertEqual(logger.get_counter_val("positive"), 5)
        finally:
            torch.jit._logging.set_logger(old_logger)

    def test_trace_numeric_counter(self):
        def foo(x):
            torch.jit._logging.add_stat_value("foo", 1)
            return x + 1.0

        traced = torch.jit.trace(foo, torch.rand(3, 4))
        logger = torch.jit._logging.LockingLogger()
        old_logger = torch.jit._logging.set_logger(logger)
        try:
            traced(torch.rand(3, 4))

            self.assertEqual(logger.get_counter_val("foo"), 1)
        finally:
            torch.jit._logging.set_logger(old_logger)

    def test_time_measurement_counter(self):
        class ModuleThatTimes(torch.jit.ScriptModule):
            def forward(self, x):
                tp_start = torch.jit._logging.time_point()
                for i in range(30):
                    x += 1.0
                tp_end = torch.jit._logging.time_point()
                torch.jit._logging.add_stat_value("mytimer", tp_end - tp_start)
                return x

        mtm = ModuleThatTimes()
        logger = torch.jit._logging.LockingLogger()
        old_logger = torch.jit._logging.set_logger(logger)
        try:
            mtm(torch.rand(3, 4))
            self.assertGreater(logger.get_counter_val("mytimer"), 0)
        finally:
            torch.jit._logging.set_logger(old_logger)

    def test_time_measurement_counter_script(self):
        class ModuleThatTimes(torch.jit.ScriptModule):
            @torch.jit.script_method
            def forward(self, x):
                tp_start = torch.jit._logging.time_point()
                for i in range(30):
                    x += 1.0
                tp_end = torch.jit._logging.time_point()
                torch.jit._logging.add_stat_value("mytimer", tp_end - tp_start)
                return x

        mtm = ModuleThatTimes()
        logger = torch.jit._logging.LockingLogger()
        old_logger = torch.jit._logging.set_logger(logger)
        try:
            mtm(torch.rand(3, 4))
            self.assertGreater(logger.get_counter_val("mytimer"), 0)
        finally:
            torch.jit._logging.set_logger(old_logger)

    def test_counter_aggregation(self):
        def foo(x):
            for i in range(3):
                torch.jit._logging.add_stat_value("foo", 1)
            return x + 1.0

        traced = torch.jit.trace(foo, torch.rand(3, 4))
        logger = torch.jit._logging.LockingLogger()
        logger.set_aggregation_type("foo", torch.jit._logging.AggregationType.AVG)
        old_logger = torch.jit._logging.set_logger(logger)
        try:
            traced(torch.rand(3, 4))

            self.assertEqual(logger.get_counter_val("foo"), 1)
        finally:
            torch.jit._logging.set_logger(old_logger)

    def test_logging_levels_set(self):
        torch._C._jit_set_logging_option("foo")
        self.assertEqual("foo", torch._C._jit_get_logging_option())